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In order to model the heat transfer of cryogenic contact refrigeration system, the 
fractal recursive thermal contact resistance model is established. In this model real 
contact surfaces are described based on developed Cantor set fractal theory and 
the volume conservation of plastically deformed asperities is considered. It is 
concluded from comparison with the experimental results at low temperature that 
this model can predict thermal contact resistance well.  

 
 
 
INTRODUCTION 
 
Complex scientific instruments such as the space infrared detective facility or miniature thermal contact 
switch apparatus in satellite are often cooled through bolted or pressed links to their refrigeration systems. 
When two rough nominally flat surfaces are brought together under load, the discrete real contact points 
impede the heat flow through contact surfaces and result in the temperature drop and thermal contact 
resistance (TCR) at the interface. In the past many TCR models based on statistics theory had been 
proposed to predict this resistance. However, the principal statistical roughness parameters such as 
roughness height, slope, and curvature in those models are always dependent of length scale and 
resolution of the instrument. And at the same time, roughness measurements on a variety of surfaces have 
demonstrated that their structure follows fractal geometry where similar rough images of surfaces appear 
under repeated magnification [1]. This implies that Fractal geometry may be an effective method to study 
TCR phenomenon. In this paper the Cantor set fractal theory is used to describe the surface morphology 
of the interface and the fractal TCR network model is obtained based on the elastic-plastic theory. This 
model considers the volume conservation of plastically deformed materials and the constriction resistance 
of asperities. The calculating results agree well with the experimental ones at low temperature. 
 
 
CANTOR SET FRACTAL THERMAL CONTACT RESISTANCE MODEL 
 
Topographic description of contact surfaces 
The self-affined Cantor set fractal method of Warren and Krajcinovic [2,3] is further developed to 
represent isotropic contact surface. At each step of Cantor set construction of the surface (see Figure 1), 
the middle section of the initial segments are removed so that the remaining horizontal length of segments 
at the (i)th generation is 1/fr of the length constructed at (i-1)th generation (fr>1). Similarly, the recess 
depth at the (i)th generation of the Cantor set surface is 1/fz of the depth at (i-1)th generation (fz>1). It is 
also shown from Figure 1 that the horizontal length Li in x or y direction and recess depth hi in z direction 
of the (i)th generation are L0(1/fr)i and h0(1/fz)i respectively. 

At (i)th generation, the Cantor set profile contains the N=si asperities and the Cantor set surface 



contains N=s2i segments where s is the number of asperities on a repeating segments. It is noted that 
Figure 1 is just an example of s=3. And the length of each asperity at the (i)th generation is δi=L0(1/sfr)i . 
The height is zi=h0(fz-1)(1/fz)i. Further, the gap between adjacent asperities at (i)th generation which is 
generated on the single asperity at (i-1)th generation is gi =L0(fr-1)/[(s-1)frisi-1]. Here L0 corresponds to 
the profile length, and h0 is equal to twice of the R.M.S. roughness height. 

 

  
Figure 1  Fractal surface profile of Cantor set (s=3)    Figure 2  Elastic-plastic contact model of asperities  
 
Deformation of the cantor set surfaces 
Here the real contact surfaces are equivalent to that an elastic-plastic solid surface with Cantor set fractal 
structure is in contact with an idealized smooth rigid semi-infinite surface. Since the Cantor set fractal 
surface is composed of the small asperities stacking upon the large asperities self-similarly, each asperity 
behaves as an elastic-plastic axial loaded column.  

When the normal load P is given, the smooth rigid surface will first be in contact with the youngest 
generation (i→∞). If P>Pc,i (critical load of plastic deformation), the ith generation asperities will flow 
plastically into troughs surrounding the asperities and then the smooth surface will be in contact with 
(i-1)th generation asperities. Such process will not stop until the (nc-1)th generation of asperities whose 
critical load is large than the exerted load. Thus the oldest plastically deformed asperities is the (nc)th 
generation (see Figure 2). And the corresponding contact area is  
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where Z+ represents the positive integers, σy is the yield stress, trun(ζ) truncates ζ to an integer 
value. Therefore, for the given normal load, the deformation of asperities at the whole generations can be 
classified into two parts: (a) asperities at [nc,∞] generations deform plastically and (b) asperities at [0, 
nc-1] generations deform elastically. The contact interface is deforming from plastically to elastically. 
This is absolutely different from the traditional theory of Greenwood and Williamson [4] in which 
deformation of the identical asperities transits from elasticity to plasticity. 

Figure 3 shows the change of the ratio between real and apparent contact area under increasing load. 
From it, you can see that how small the real contact area is compared with apparent ones. Since Equation 
(2) includes the truncation function, the calculating results of real contact area are discrete and increase 
with load like stairs. In addition, because aluminum is softer than stainless steel, the ratio of aluminum is 



much larger than stainless steel.  
 

  
(a) Aluminum s=12,D=2.56,fr=1.55,fz=1.506       (b) Stainless Steel s=14, D=2.767, fr=1.266, fz=1.219 

Figure 3  Ratio between numerical results of real and apparent contact area of aluminum and stainless steel 
 

Thermal contact resistance model 
It is assumed that the plastically deformed asperities at [nc,∞] generations will fill in adjacent troughs and 
increase the height of the (nc-1)th generation by hnc-1-unc (see Figure 2). Hence, the increased volumes of 
asperities at (nc-1)th generation is equal to the plastically flowed volume of ones at [nc,∞] generations: 
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Considering the volume conservation of plastic deformation and elastic deformation of asperities, 

the actual height of asperities at [0,nc-1] generation under the given load is derived to equation (4). 
According to Fourier law and CMY model [5], heat conduction resistance Ra,i and constriction 

resistance Rc,i of single asperity at (i)th generation in [0,nc-1] can be obtained. Because of recursive 
construction of Cantor set fractal contact surfaces, the total thermal contact resistance Rt,0 is the recursive 
serial and parallel resistance of the constriction resistance and heat conduction resistance.  
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COMPARISON AND DISCUSSION 
 
In order to check the Cantor set fractal TCR model, the experiment was conducted at the interface of 
Al5052 and stainless steel 304 respectively. The temperature of experiments was 155K and the vacuity 
was less than 1.5 Pa. The normal contact pressure is from 1.0307 to 6.9675 MPa. The surface morphology 
of the specimens was measured by STRA-1 stylus profilometer. The physical properties of materials were 
measured in the experiment, which is listed in Table1. 

The experimental results are illustrated in Figure 4 in the form of Thermal contact conductance 



(reciprocal of TCR). Because of the discrete real contact area, the calculating results are discrete, too. The 
fitting curves of staircase numerical results are used to compare and predict the real conductance. The 
equations of fitting curves are y=5470x0.5121 for aluminum and y=318.5x0.5562 for stainless steel 
respectively. From Figure 4, it is shown that the fitting curve of Cantor set fractal TCR model can predict 
the experiment results well. 

 
Table 1  Experimental parameters of Aluminum and Stainless steel samples 

 

Material 
Thermal conductivity 

(W/m2K) 
Elastic modulus 

(GPa) 
Yielding strength 

(MPa) 
R.M.S 

height (µm)
h0 

(µm) 
Fractal dimension 

D 

Al-5052 107 73.3 450 3.2692 6.5384 1.71 
SS-304 10.7 201 2400 2.1328 4.2656 1.85 

 

   
(a) Aluminum s=12, D=2.56, fr=1.55, fz=1.506        (b) Stainless Steel s=14, D=2.767, fr=1.266, fz=1.219 

Figure 4  Comparison between experiment and numerical results 
 
 
CONCLUSION 
 
In this paper Cantor set fractal theory is used to describe rough surface topography. Considering the 
volume conservation of plastically deformed asperities, the fractal recursive TCR model is established. It 
is concluded from the model that the asperities of the contact interface are deforming from plastically to 
elastically under normal load. The simulated results are in good agreement with the experimental results 
at low temperature. This model provides a new way to study the phenomenon of TCR.  
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