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Polymer composite materials are used in a wide variety of cryogenic applications to 
replace metals because of their unique and highly tailorable properties. In order to 
develop high performance polymer composites for cryogenic applications, it is 
necessary to understand how polymer composites behave at cryogenic temperatures 
and how their cryogenic properties are affected by factors such as filler content and 
matrix type etc. This review presents detailed discussions on the effects of various 
factors on the cryogenic mechanical and thermal properties at the unique operating 
environments.  

INTRODUCTION 

Polymer composite materials are being increasingly employed to manufacture structural components that 
are exposed to low temperature environments in space and superconducting applications [1-18]. The 
involved composites include fiber and particle reinforced thermoplastic and thermosetting polymer 
composites. The cryogenic applications of polymer composites can be classified as support structures, 
vessels and electrical insulation. Fundamental mechanical, thermal and electrical requirements should be 
met by polymer composites for specific cryogenic applications. Composites are subjected to uncommon 
synergetic conditions in cryogenic environments: high mechanical stress by electromagnetic force, 
thermo-mechanical stress caused by the cryogenic environment, phase transition of coolant and high 
energy radiation etc. The cryogenic mechanical and thermal properties of polymer composites are 
important in cryogenic applications. In order to meet the requirements of mechanical and thermal 
properties for cryogenic applications, various polymer composites have been studied extensively. This 
review presents detailed discussions on the effects of various factors on the cryogenic mechanical and 
thermal properties at the unique operating environments.  

MECHANICAL PROPERTIES 

Fiber reinforced plastic composites 
Fiber reinforced plastics (FRP) were widely used in cryogenic applications because of their high strength, 
high stiffness, low weight and good thermal properties. Fiber type, fiber direction and interfacial 
properties play very important roles in determining the mechanical properties of FRP.  

Hartwig et al [19] discussed the influence of the fiber type on the fatigue behavior of unidirectional 
cross-plied composites. The fatigue behavior was studied on composites with the same epoxy matrix but 
different types of fibers. The fatigue behavior at 77 K of epoxy composites with different fiber types 



(carbon AS4, ceramic Al2O3 and Kevlar 49 fibers etc) is shown in Figure1 (so-called S-N curves, namely 
stress-load cycles diagram). The highest strength is achieved for carbon fiber composites. 

 
 
 
 
 
 
 
 
 

 
 
 

 
Composites having a poor transverse strength are sensitive to microcracks induced in the matrix. The 

formation of microcracks at fatigue loading is different for different matrix types, and so is the fatigue 
endurance limit. In Figure 2 the influence of the different matrix was shown on the fatigue behavior of 
unidirectional carbon fiber reinforced plastic (CFRP) composites by strain-life diagrams [19].  

The influence of fiber directions on the mechanical properties of FRP wasstudied by Hussain et al [20] 
and Baynham et al [21].The mechanical properties of FRP in parallel to fiber direction is higher as the 
properties are mainly controlled by the fibers. However, the mechanical properties of FRP in transverse to 
fiber direction is inferior because the properties are mainly governed by the properties of the matrix and 
the fiber-matrix interface. Hussain et al suggested that Young’s modulus in the transverse to fiber 
direction can be improved by incorporating Al2O3 particles into the matrix (Figure 3) [19]. The Al2O3 
filler dispersions act as secondary reinforcement. 

Particulate reinforced polymer composites 
The mechanical properties at liquid nitrogen temperature of various particle reinforced polymer 
nano-composites have been studied recently by our research group. These nanocomposites include 
epoxy/SiO2, polyimide/SiO2 and polyimide/clay nanocomposites. It has been shown that the cryogenic 
mechanical properties can be effectively enhanced by incorporating proper quantities of nano-fillers into 
the matrix (as an example, see Figure 4) [22]. 

 

            
Figure1. S-N curves of unidirectional fiber           Figure 2. Strain-life curves of UD carbon fiber 

   reinforced epoxy composites at 77 K [19]            composites under tensile loading [19] 
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Figure 3. Young’s modulus in the transverse to fiber            Figure 4. The tensile properties at 77K of 
direction as a function of fiber content □ CFRP [19]          polyimide/silica hybrid films 
■ CFHRC (CFRP contained 10 vol % Al2O3 particles ) 



THERMAL PROPERTIES 

Thermal properties of polymer composites are important design parameters in cryogenic applications. The 
factors influencing the thermal expansion and conductivity of composites at low temperatures will be 
reviewed below.  

Thermal expansion 
Nadeau and Baschek et al [23,24] studied the factors influencing the thermal expansion. The influencing 
factors include thermal cycling, mechanical creep loading and mechanical geometrical shape (plates, 
half-tubes and tubes). The results showed that the expansion was influenced in different manners by 
thermal cycling and mechanical creep loading. The influence of thermal cycling on expansion was shown 
in Figure 5. [23]. The result indicated that the integral thermal expansion was lowered by more than 20%. 
In addition, the influence of thermal cycling on the coefficient of thermal expansion was significant as 
well. The influence of mechanical creep loading on expansion of carbon reinforced plastics with different 
fiber angles was also reported. The results showed that in the range of ω=±30° the thermal expansion 
was not sensitive to the change of the fiber angle. 

Thermal conductivity 
The thermal conductivity of fiber reinforced plastic is much lower than that of metals and shows 
anisotropic. Hence, in general, it is much more difficult to dissipate heat in fiber reinforced plastic than in 
metals. This is an important consideration in some situation [25]. 

SUMMARY 

Polymer composite materials are being increasingly employed for cryogenic applications. Cryogenic 
properties of the polymer composites are influenced by a number of factors. This review has given 
detailed discussions on the effects of various factors on the cryogenic mechanical and thermal properties. 

       
Figure 5. Thermal expansion of carbon fiber reinforced            Figure 6 The thermal conductivity of LDPE  
plastics (±30°) before and after thermal cycling (100              and GRP composites [25] 
cycling,77-293 K). (a)Integral thermal expansion; 
(b) coefficient of thermal expansion [23] 
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