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The nonlinear transport properties of superconductors near the transition are
usually described by the so called power law E/Ec = (J/Jc)

n. We report a
wide-range resistive transition equation with the form of an ”extended power
law”. This equation fits the experimental data of MgB2 and high Tc cuprates.
The applicability of this equation for the transport properties of normal-metal-
sheathed superconducting material is also discussed.

INTRODUCTION

For designing superconducting magnets, fault current limiters, cables and many other devices thor-
ough knowledge of the electromagnetic response near the critical state is necessary. In principle
this should be determined by the Maxwell equations combined with a proper materials equation
J(E, T, B). At present, power law E(J) characteristics of the form

E = Ec[J/Jc0(T, B)]n (1)

are often used (see e.g.[1], [2], [3], [4] and references there-in). In this study we show that the E(J)
isothermal characteristics for wider range including the crossover to Ohmic-like regimes have the
general form of extended power law which well fits experimental data.

EXTENDED POWER LAW

This form can be derived from the Ginzburg-Landau (GL) free energy density[5]
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where fn0 is the free energy density of normal state, Ψ (r) is the complex order parameter, A is the
vector potential. Gorkov found that the GL theory based on Eq.(2) is derivable as a rigorous limiting
case of the BCS microscopic theory with Ψ (r) proportional to the local value of the gap parameter
∆ (r) and the effective charge e∗ in Eq.(2) equal to 2e [6].

Working in the London limit, Nelson and co-workers showed that according to the GL free en-
ergy Eq.(2) a system of N flux lines with a field H along the z direction in a sample length L can
be described with the free energy represented by the trajectories {−→rj (z)} of these flux lines[7]. Con-
sidering further the pinning potential VP (−→r ) arising from inhomogeneities and defects in sample[8,
9], the free energy of such a sample with N flux lines can be expressed as
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Here V (rij) = V (|−→ri −−→rj |) = 2ε0K0 (rij/λab) is the interaction potential between lines with in-plane

London penetration depth λab and K0 (x) is the modified Bessel function K0 (x) ≈ (π/2x)1/2 e−x. εl

is the linear tension of flux line and ε0 ≈ (Φ0/4πλab)
2 is the energy scale for the interaction.

Thermally activated flux motion can be considered as the sequence of thermally activated jumps
of the vortex segments or vortex bundles between the metastable states generated by disorder. Every
elementary jump is viewed as the nuclearation of a vortex loop, and the mean velocity of the vortex
system is determined by the nuclearation rate[8, 9]

v ∝ exp (−δF/kT ) (4)

here δF is the free energy for the formation of the critical size loop or nucleus which can be found
by means of the standard variational procedure from the free energy functional due to the in-plane
displacement −→u (z) of the moving vortex during loop formation
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where fL =
−→
J ×−→ez /c is the Lorentz force due to applied current J and fη is the viscous drag force

on vortex, fη = −ηvvortex, with vvortex = d−→u /dt and viscous drag coefficient η ≈ (Φ0Bc2) / (ρnc
2) as

estimated by Bardeen and Stephen[10].
By a derivation similar to that used Ref.9, one finds the barrier energy

δF = U(Jp) ≈ Uc(
Jc

Jp

)µ (7)

which implies a current-voltage characteristic of the form

E(J) = ρfJexp[− Uc

kT
(
Jc

Jp

)µ] (8)

where Uc is a temperature- and field-dependent characteristic pinning energy related to the stiffness
coefficient and Jc is a characteristic current density related to Uc ,µ is an numerical exponent.

Considering the real size effect Eq.(8) leads to a general normalized form of the current-voltage
characteristic[11] in the form

y = x exp [−γ (1 + y − x)p] (9)

where
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with JL the transport current density corresponding to the case where the critical size of loop
formation is equal to the real sample size L. The ρf in Eq.(8) is the flux flow resistance of a pinning
free mixed state as derived by Bardeen and Stephen.Its relation with the normal resistance is of the
form
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In an earlier work[12], this response equation has also been shown in connection with the
Anderson-Kim model.Compared with the widely used power law nonlinear response E ∝ Jn (see
Refs.[1],[2],[3],[4]), equation(9) can also be asymptotically expressed in an extended power law form

y

x
= a0 + f(x− y)n−1 (11)

with n the maximal slope at the inflection point of lny ∼ lnx curve so
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(12)
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Figure 1: The numerical solutions of Eq.(9)(solid symbols) and Eq.(11)(lines).

and a0 = e−γ, f is a numerical factor depending on the parameters γ and p in Eq.(9).
In Fig.1 we show the numerical solutions of Eq.(9) and Eq.(11) for comparison.

COMPARISON WITH EXPERIMENTS

Accounting further the resistive transition between pinning free flux-flow superconducting phase
and the normal phase one finds a wide range resistive transition equation of the form

R

Rn

= exp[−
2∑

i=1

γi(1 + yi − xi)
piθ(Ti − T )] (13)

with xi, yi, γi, and Ti the normalized current, voltage, symmetry-breaking factor, and critical tem-
perature, respectively, defined as
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Ic0(T, B)
,
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γ1 ≡ ln
Rn(T, B)

Rf (T, B)
, γ2 ≡ Uc(T, B)

kT
,

T1 ≡ Tc(B), T2 ≡ Tm(B), (14)

where Id is the depairing current and Ic0 is the critical current of vortex solid for overcoming the
activation energy barrier Uc(T, B). θ(x) is the Heaviside function and pi are exponents[13]. Rf is the
unpinned flux-flow resistance of the mixed state in type-II superconductors. In Fig.2 we show the
comparison of the resistive transition Equation(13) with the experimental data of the temperature
dependent resistance of MgB2 in different applied fields measured by Finnemore et al.[14]. The
current density used in their standard four-probe technique is sufficiently low with the value of
0.1− 0.3A/cm2.

It is widely believed that the mechanism of superconductivity in high-Tc cuprates may be essen-
tially different from the familiar s wave type pairing on which conventional BCS theory is based[15].
Kwok et al. studied the width and shape of the resistive transition fo untwined and twinned single
crystals of YBCO in fields up to 8T[16]. We compare our resistive Equation(12) with their experi-
mental data of untwinned YBCO crystal in Fig.3.
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Figure 2: Comparison of Eq.(13) with the experi-
mental resistance data of MgB2 samples measured
by Finnemore
et al.(Ref.14). 2, ◦,△,▽, ∗, ⊳, ⊲,+, ⋆,× denote ex-
perimental data of resistive transitions in differ-
ent applied fields and lines denote the theoretical
curves in Eq.(13) with corresponding applied fields.
The parameters in Eq.(13) are (1)Uc(T, B) ∝

[Tm(B) − T ]0.8(B + 5.46)−4.3; (2)Ic0 ∝ Tm(B) −

T, Id ∝ [Tc(B) − T ]1.5γ0.5
1 ; (3)Tm(B) = Tc(0)[1 −

(B/21.7)0.84], Tc(B) = Tc(0)(1 − B/22.4), Tc(0) =
40.2K; (4)γ1 ≡ ln[Rn(T, B)/Rf (T, B, J → 0)] =
ln[Bc2(T )/B], where Bc2(T ) = 0.6[Tc(0) − T ]0.98.
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Figure 3: Comparison of Eq.(13) with the exper-
imental resistance data of an untwinned YBCO
crystal measured in different applied fields for H‖c

by Kwok et al.(Ref.16). 2, ◦,△,▽, ∗, ⊳, ⊲,+, ⋆,×
denote experimental data and lines denote the
theoretical curves in Eq.(13) with corresponding
applied fields. The parameters in Eq.(13) are
(1)Uc(T, B) ∝

[Tm(B) − T ]3B−4.22; (2)Ic0 ∝ Tm(B) − T, Id ∝

Tc(B)[1 − T/Tc(B)]2.3γ0.5
1 ; (3)Tm(B) = Tc(0)[1 −

(B/1200)0.36], Tc(B) =
Tc(0)[1 − (B/3.6 × 106)0.3], Tc(0) = 97K; (4)γ1 ≡

ln[Rn(T, B)/Rf (T, B, J → 0)] = ln[Bc2(T )/B]m,
where m = 0.84B−0.59 − 0.07 and Bc2(T ) =
0.6[Tc(0) − T ]3.3.

METAL-SHEATHED CONDUCTORS

The material equation Eq.(9) for a homogeneous type-II superconductor can be generalized to de-
scribe the characteristics of metal-sheathed HTS conductor. For a uniform long conductor, the
voltage at a total current I according to Eq.(9) has the form

V (I) = ReffIe−U(JP )/kT (15)

with Reff the effective resistance of the conductor

Reff =
L

a
[

1

r + 1
ρ−1

f +
r

r + 1
ρ−1

m ]
−1

(16)

where L, a, ρm and r are the length, area of section, resistivity of metal sheath and the ratio:
Metal/HTSC of this conductor respectively. Taking the U(J) of the form of Anderson-Kim model
one may have the form

U(JP ) =
~I0

e
(1 +

V

I0Reff

−
I

I0

) (17)

Measurements of the I ∼ V characteristics of individuals bare filaments extracted from very
high Jc multifilament Ag-sheathed (Bi, Pb)2Sr2Ca2Cu3Ox superconducting tapes show that all fila-
ments possessed local characteristics of c-axis transport across intrinsic Josephson junctions although
current was always injected to flow along the ab planes[17]. Based upon this important finding and
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considering the current shunting into the metal sheath we attempt to describe the I − V character-
istics of real wires or tapes with a model of series connection and express the voltage on unit length
of conductor with transport current I as

V (I) = Vab(I) + Vc(I) (18)

where Vab(I) is the contribution from the main part of conductor with the characteristic of the ab
plane transport

Vab(I) =
I(1− lc)

a
[

1

r + 1
ρ−1

f +
r

r + 1
ρ−1

m ]
−1

e−U(JP )/kT (19)

and Vc(I) is the contribution from the part with c-axis transport which has the total path length
lc ¿ 1 in unit length of conductor. In an earlier work it is shown that the I − V characteristics of
a resistive shunted Josephson junction can be described with an equation like Eq.(9)[18]. Thus we
have

Vc(I) = IRcexp[− ~IJ

ekT
(1 +

Vc(I)

IJRc

− I

IJ

)] (20)

where

Rc =
Ic

a
(

1

r + 1
ρ−1

c +
r

r + 1
ρ−1

m )
−1

(21)

is the shunting resistance of the c-axis transport part with total path length lc and resistivity ρc. IJ

is the maximum Josephson current in the absence of noise.
Usually, the resistivity of metal ρm ¿ ρf , ρc and the maximal Josephson current IJ is much

smaller than the critical current I0 of the conductor. Thus, when I > IJ , one finds from Eq.(18)-(21)
approximate reduced relation for sheathed conductor similar to

y′ = x′exp[−γ′(1 + y′ − x′)p] (22)

where

x′ ≡ I/I ′0 , y′ ≡ V (I)/(ReffI
′
0) , γ′ ≡ ~I ′0/ekT (23)

with

Reff ≈ L

a
(
r + 1

r
)ρm (24)

and

I ′0 = I0[1− ekT

~I0

ln(1 + lcexp[
~I0

ekT
])] (25)

The analytic relation(22) is useful for studying the operation of superconducting devices electric
engineering such as fault current limiter, magnet etc..

SUMMARY

We show an extended power law form of current-voltage characteristics which well fits the wide
range experimental data of high-Tc MgB2 and YBCO materials. This equation combined with the
Maxwell equation may provide a useful tool for applied superconductivity design.
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