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A pair of superconducting interaction region quadrupole magnets for BEPCII was 
designed and fabricated at Brookhaven National Laboratory, USA. The cryogenic 
system for the IR magnets was designed at Harbin Institute of Technology, China. This 
paper provides the results of thermal fluid modeling for the magnet cryostat. The 
numerical analyses were carried out for two types of cooling methods, the subcooled 
liquid helium and the supercritical helium flow. The pressure and temperature changes 
in the cooling circuits are given. 

 
 
 
INTRODUCTION 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1  Cryostat of SCQ magnet in BEP
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radial supports and one axial support. The heat loads at 4K for the SCQ magnet are mainly due to the 
thermal conductions of the radial key supports and the axial support, the thermal conduction and radiation 
through multi-layer insulation (MLI). The stainless steel support keys, aligned with and welded to the 
outer vacuum vessel, engage slots in G-10 retainers, arranged in a 90° pattern around the circumference 
of the outer helium channel, in two axial locations. The G-10 retainers are also mechanically and 
thermally stationed to the 80K heat shield. The inner diameter of the outer cryostat wall is 290mm and the 
outer diameter of the inner cryostat wall is 138mm. The gaps of outer and inner helium cooling passages 
are respectively 6.0mm and 2.0mm. The cooling tubes of heat shields are 5.0mm in diameter. In order to 
avoid the flow instabilities in the constrained cooling channels, the single-phase helium fluid including 
the subcooled liquid or supercritical flow will be adopted to cool the magnets and were studied in this 
paper by numerical simulation.  
 
 
PHYSICAL MODEL AND BOUNDARY CONDITIONS 
 
The single-phase helium flow goes through the outer and the inner cooling channel of the magnet in turn. 
The numerical simulation for the cooling channel was performed by a commercial computational code of 
FLUENT. The simplified physical model is given in Figure 2. Without considering the axial heat load, 
one quarter of the channel is modeled due to symmetry of structure and radial thermal loads. The helium 
fluid adsorbs the heat along the passage induced by the heat conduction through the radial supports and 
radiation from 80K heat shields. In the model, for the outer shell of the outer cooling channel, the heat 
conduction fluxes are added to the contact surfaces with the support keys, and the radiation heat is evenly 
guided into the whole area of the outer shell. For the inner cooling passage, only the radiation heat is 
taken into consideration. The lengths of the outer and inner channel are about 900mm and 1000mm, 
respectively. The material of the channel is stainless steel, and the properties are used as the function of 
the temperature. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 2  Physical model 
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SUPERCRITICAL HELIUM COOLING MODELING 
 
The supercritical helium used to cool the magnet is produced by the subcooler. The helium at 2.7bar and 
5.2K from the J-T circuit of the refrigerator flows through the heat exchanger immersed in the LHe 
control dewar and cooled to 4.46K by the saturated liquid helium at 1.2bar in the dewar. And then the 
helium goes into the magnet cryostat. The steady state, three-dimensional turbulent flow was modeled. 
The standard ε−k   momentum equation and standard wall function were adopted for the simulation. The 
coordinates of the circumferential φ, radial r and axial z are defined as shown in Figure 1. The origins are 
set at the end of the outer channel. The mass flow rate is 12g/s.  

The temperature change at different radius at the same circumferential φ is show in Figure 3. At 
φ=20o and φ=-20o, along the radial direction, the conduction heat goes into the cold mass at liquid helium 
temperature region through the local small contact surface between the G-10 retainers and the outer wall 
of the outer cooling channel. For the worse case, the stainless steel key only touches the left surface and 
the surface along the positive Z direction of the G-10 retainers (Figure 2). It will cause the different heat 
flux to the cooling flow at different spots along the passage. Based on the above structure and the 
calculated curves, the temperature changes are different for the spots at φ=20o (Figure 3a) and φ=-20o 

(Figure 3b). The highest temperature of the supercritical helium channel is about 6.0K at φ=-20o, but 5.5K 
at φ=20o, which happens nearby the outer wall of the channel. The closer to the cold mass, the lower is 
the temperature of the fluid. The helium fluid close to the magnet keeps lower than 4.8K even at the hot 
spots. The pressure drop is about 10Pa to be neglected. In the inner helium channel, due to only radiation 
heat flux, the temperature is almost uniform. In order to lower down the highest temperature, the mass 
flow rate should be increased. 
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Figure 3a  Temperature vs. axial position at φ=20

UBCOOLED HELIUM COOLING MODELING
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o    Figure 3b  Temperature vs. axial position at φ=-20o
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for both cooling methods. The temperature of the magnet keeps around 4.5K.  
Even though less subcooled flow can be used for the magnets cooling than the supercritical flow, one 

major concern for the subooled flow is when the temperature of the subcooled helium rises up to the 
saturated temperature of 4.6K at 1.4bar, it will turn to the two-phase and probably cause the flow 
instability. Therefore, the supercritical flow is preferred when the cooling capacity is plentiful. 
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Figure 4  Comparison of the temperature vs. ax
 
 
CONCLUSION 
 
The numerical simulations were performed for the m
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