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This paper presents an adaptive neuro-fuzzy control strategy for the bridge type 
superconducting fault current controller (SFCC), which can automatically decide 
the phase-delay angle according to the fault current amplitude, limit the fault 
current amplitude to the degree that the system can endure, and recover to the 
normal situation immediately after the fault current ceases. Simulation results 
show that this design’s performance is good. 

 
 
INTRODUCTION 
 
The bridge-type fault current controller (FCC), which was previously called fault current limiter (FCL), 
consists of a full-wave bridge, an inductance, and an optional bias power supply. The FCC can make the 
inductor switched automatically into the ac circuit and limit the amount of fault current, when values are 
higher than a preset current value; and present no impedance to the ac current flow, when load current 
values are smaller than the preset value [1]. By using a superconducting core, no loss will occur, here this 
is called SFCC. By changing the phase-delay angle, it can limit the fault current to any degree. It may be 
appropriate to preset the phase-delay angle if only short-circuit will occur, yet in some situation, for 
example, sudden overload may occur, in this situation the preset phase-delay angle is no longer 
appropriate. 

This paper proposes an advanced adaptive neuro-fuzzy control strategy for SFCC, which can 
automatically determine the proper phase-delay angle. Simulations of single-phase mode will also be 
presented. Simulation results demonstrate that this design’s performance is good. 

 
 

THE BRIDGE-TYPE SUPERCONDUCTING FAULT CURRENT CONTROLLER AND THE 
PROPOSED ADAPTIVE NEURO- FUZZY CONTROL STRATEGY 

 
The bridge-type superconducting fault current 
controller without a bias power supply is shown in 
Figure 1. Consider the most common 10KV/400A 
subsystem in China, the parameters are set as follows: 

3/10KVVS = , mHLS 6.6= , Ω= mRS 264 ,

mHLb 20= , 25Load = Ω . And the system 

frequency is 50Hz. By setting the phase-delay angle, 
the fault current amplitude can be adjusted. Changing 
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Figure 1  The circuit of SFCC
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the phase-delay angle α from 0 to 90 degrees results in a gradual decrease of the fault current. The ac 

current has a sinusoidal wave shape for phase angles up to 90°. The short-circuit current will decrease 

further for angles greater than 90°. At α = 90° the effect of the SFCC is the same as if it were replaced by 

a series connected inductor Lb. For angles α > 90° the SFCC produces ac currents that are discontinuous 

and adjustable in amplitude[1]. 

What is interested here is how to set the phase-delay angle automatically according to the overload 
or short-circuit level. As it’s known, fuzzy reasoning is capable of handling imprecise and uncertain 
information whilst neuro networks are capable of being identified using plant data, and the neuro-fuzzy 
networks combine the advantages of both fuzzy reasoning and neuro networks[2], so the neuro-fuzzy 
networks can be used to model SFCC and obtain the proper phase-delay angle.  

In simulation, in large scale (during the first two cycles of the fault current), the neuro-fuzzy 
inference structure is used. In the neuro-fuzzy inference structure, three input parameters are used. They 
are the current phase angle minus the voltage source phase angle θ , the fault current amplitude A, and 
the fault current amplitude minus nominal current amplitude AΔ . When the inductance is switched into 
the circuit, the parameter θ  is changed according to overload level. For example, if the load resistance is 
changed to 2.5Ω in the above-mentioned systems, and the other parameters is not changed, θ  will be 

- 71.7° , and 5Ω  will be -57.8° . So the parameter θ  can indicate the overload level. To measure θ  

quickly and precisely, a very fast phase angle estimation algorithm for a single phase system having 
sudden angle jumps [3] is applied. In small scale (the fault current amplitude is near the nominal one), PI 
control strategy is better suited, so a PI regulator is used to modify the phase-delay angle. The input of the 
PI regulator is the parameter AΔ . 

 
 

SIMULATION PROCESSES 
 
To obtain the inference structure of the neuro-fuzzy networks, data for training must first be collected. 
And then these data are trained to generate the neuro-fuzzy inference structure. 

 
data obtaining and training 
To obtain the data described before, simulations are done on different overload level. In project, 
experiments should be done in similar condition to obtain these data. Here the overload resistance is set to: 
20.83Ω，10Ω , 5Ω，3.33Ω，2.5Ω，0Ω， corresponding to the fault current of 1.2 times, 2.5 times, 5 
times, 7.5 times, 10 times of the nominal one and the short-circuit current . Table1 is part of the data 
acquired when the overload resistance is set to5Ω . 

 
Table1  data when overload resistance is5Ω  

 
θ (rad) -0.9825 -0.9825 -0.9825 -0.9825 -0.9825 -0.9825 -0.9825 -0.9825

A 1359.6 1258.7 1171.8 942.3 888.9 795.6 577.1 460.0 
AΔ  971.2 870.3 783.4 553.9 500.5 407.2 188.7 71.6 

α (deg) 50 60 70 90 100 110 130 140 
 

By using the data obtained before, membership functions of the inputs and the output can be obtained. To 
obtain the neuro-fuzzy inference structure precisely, up to 60 epochs of training is applied. After training, 



the neuro-fuzzy inference structure is obtained.  
 

control strategy 
The strategy used here is that when the current detector detects that the load current is 20% larger than the 
nominal level, the fault current control program starts to work. The phase-delay angle is preset to 90o, 
thus before the fault current falls to zero, the inductance is completely switched into the circuit. At the  
peek amplitude of the fault current, the parameters A, AΔ  ，θ  are measured and these parameters and 
the preset phase-delay angleα =900 are used as the checking data to modify the membership function 
parameters of the neuro-fuzzy inference structure, so as to make the neuro-fuzzy inference structure to 
adapt the real-time situation. Then the nominal value of the load current , here A=400, AΔ =0 ,and the 
measured θ  are used as the input of the adaptive neuro-fuzzy inference structure， so as to produce the 
phase-delay angleα and it is applied to the next half-cycle of fault current. During the following three 
half-cycles, the same method is used except that the previously obtained α  is used as the checking data. 
After that, a PI regulator is used to produce the phase-delay angle instead.  

 
 

SIMULATION RESULT 
 
Using the strategy mentioned above, the simulation results are obtained. Here, two cases are shown. In 
the first case, at 0.06s , the overload resistance is set to 5Ω (five times overload)，at 0.16s, the fault 
current ceases(the load resistance is reset to Ω25 ), at 0.24s, the overload resistance is set to 2.5Ω (ten 
times overload)，and at 0.34s, the fault current ceases again. In the second case, at 0.1s, the overload 
resistance is set to Ω5.12 (two times overload), at 0.2s, short circuit occurs (the overload resistance is 
0Ω ), and at 0.3s, fault current ceases. These two cases are shown in Figure 2 and Figure 3.

From the figures, it is can be found that whatever the fault current amplitude is, after the first 
half-cycle of the fault current (when the phase-delay angle is preset to 90o,and the inductance is 
completely switched into the circuit), the fault current amplitude can be always limited to the amplitude 
near the nominal level, and after the fault current ceases, it will recover to the normal situation 
immediately (within 1~2 cycles). 
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Figure 2  The first case 
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Figure 3  The second case 

 
 
CONCLUSION 
 
The simulations show that the adaptive neuro-fuzzy control strategy for SFCC can suit with any overload 
and short-circuit situation, and can limit the fault current amplitude near the nominal level. After fault 
current ceases, it can also recover to the normal situation immediately .The transient fault current limiting 

ability can be increased by selecting a larger inductance bL , and the stable fault current limiting ability is 

always good by using this control strategy. This control strategy will then greatly enhance the bridge-type 
superconducting fault current controller’s performance, and provide a potential application to the 
electrical system.  
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