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The steady-state motion of a gas bubble inside a non-isothermal, spherical, liquid 
filled cryogenic target is investigated by taking into account the effects of gravity, 
the thermally induced gradient of the gas-liquid interfacial tension and the finite 
size of the liquid container. The net result is an expression for the temperature 
gradient at the target exterior, which will sustain a uniform liquid layer of 
hydrogen isotopes inside an ICF target. A simple model was established on the 
basis of the calculation and analysis above. 

 
 
 
INTRODUCTION 
 
An optimal configuration for ICF targets is a spherical shell containing a uniform layer of fusion fuel 
condensate on the interior surface. Such targets, in particular those containing a thick fuel layer, are 
difficult to fabricate because the fuel sags due to gravity, thus making the condensate layer thicker at the 
bottom of the target than at the top [1]. 

The non-contact thermal gradient method [2] is one such technique that is designed to counteract the 
gravity induced fuel sagging. This technique employs a vertically imposed temperature gradient across 
the target. In particular, the magnitude and direction of this gradient are chosen such that the thermally 
induced migration of the liquid fuel may precisely counterbalance its slumping due to gravity, bringing 
about a uniform liquid fuel layer on the inner surface of the target. 

The purpose of this work is to study the steady-state motion of a gas bubble inside a spherical 
micro-shell under the influence of gravity, a thermally induced gradient of gas-liquid interfacial tension, 
and the finite size of the micro-shell--a situation frequently encountered in fabricating high-compression 
inertial confinement fusion (ICF) targets. 
 
 
THEORY 
 
To conveniently describe the thermally induced behavior of hydrogen isotopes inside a spherical ICF 
target, the system under investigation is divided into four regions. Starting from the innermost region they 
are the fuel vapor, liquid, spherical glass shell (SGS), and helium gas regions, and all considered 
concentric spheres. The helium exchange gas envelope responsible for cooling the target is assumed to be 
quiescent.  

Both the vapor and liquid of the hydrogen isotopes are assumed to be Newtonian and incompressible. 
The flow fields are assumed to be laminar, and azimuthally symmetric. The thermodynamic and transport 
properties, namely, density, viscosity and thermal conductivity are defined at average target temperature, 
which is nearly the temperature at the target equator since the temperature gradient across the target is 



linear and in the vertical direction. Also we assume that there is no mass transfer between the liquid and 
the gas. Another assumption is that the bubble has already attained its terminal velocity        
when it becomes concentric with the micro-shell. 
 
Calculation about the fuel thickness of ICF target 
According to the mass conservation in cryogenics target, the total mass in the cryogenic target is constant 
whether the status of the fuel is liquid or gas. When the infilling processing is completed, the whole mass 
in cryogenic target is 
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whereρf is the density of the initial gas.ρl（T）andρg（T）are respectively densities of condensed and 
saturated vapor fuel. V0, Vc, Vg are total volume, the condensed and the saturated vapor volume in the 
target, respectively.  

If δ=W/R, here R and W is respectively the inner radius and the fuel thickness of the target，then 
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It is obviously that when the initial gas density and the temperature T are constant, we can get theδ , 
then the thickness of fuel in target. To demonstrate this relation more clearly, we figure out the relation 
curve between the relative volume of vapor bubble and temperature of normal hydrogen (see Figure 1). 
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Figure2  The relation curve between relative volume of vapor bubble and temperature of normal 

hydrogen(ρf  g/cm3) 
 
Governing equations of fluid field 
Since the fluid flows are azimuthally symmetries, in terms of the Stokes stream functionψ  defined 
as θψθυ ∂∂−= )sin1( 2rr , and rr ∂∂= /)sin1( ψθυθ , the low Reynolds number approximation of the 
fluid equation in the spherical coordinate system is 
E2（E2ψl）＝0  and  E2（E2ψg）＝0                                                (3) 
where 
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Vref is the reference velocity, and RB is the radius of the gas bubble. The title denotes that the variables are 

expressed in real units, rυ and θυ  are the r component and theθ component of the flow respectively. The 



general solution to Eq.(3) also can be obtained in terms of the Happel & Brenner [3]. 
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where U is the steady-state velocity of the bubble, b＝RB/R.  
at r＝1: lr ,υ ＝ gr ,υ ＝0 , gl ，＝ θθ υυ ,  and 
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where µ  is the viscosity of the fluids, and the glγ  is the gas-liquid interfacial tension.  

at r＝0:  is finite.                                                  ),0(g θψ

Following Haberman & Sayre (1950) [4], the drag force on the bubble is given by 
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where Gg, Fb respectively stand for the weight and buoyancy forces. 
After a straightforward, yet tedious, algebra, the expression for the steady-state velocity U of the 

bubble is obtained as 
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where 
g

l
µ
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The function I2 in (5) represents the effect of the interfacial tension gradient on the velocity of the 
bubble. Because the interfacial tension gradient results from the non-isothermal temperature field, if the 
temperature gradient across the target is conformed, the I2 then can be estimated as follow: 
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also the velocity of the bubble can be gotten. 
 
Governing equations of temperature field 
Due to the fact that Reynolds numbers of the liquid and gas flows are low and that the Prandtl number for 
liquid hydrogen is approximately unity, which allows one to ignore the convection term in the heat 
equation and therefore, reduces the heat equation for the fluids to 
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This is an exactly the Laplacian equation.  
According to the continuities of the temperature fields: 
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),0(Tg θ is limited，where d=RB/R0, R0 is the outer radium of the target. 

Also according to the condition of the heat fluxes: 
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Then we can get the temperature field of the target. 
 
 



DISCUSSIONS 
 
Let the temperature field on the outer surface of the spherical shell be specified as 
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We note that for a small temperature change across the target, the interfacial tension can be 
expressed as a linear function of the temperature T at the liquid-gas interface: 

T)T( 10 γ+γγ ＝                                                                      (8) 

whereγ0 is the interfacial tension at some reference temperature and γ1 is a constant. The constantγ1 

represents the magnitude of the rate of change in surface tension with respect to temperature. 
Therefore I2 can be evaluated analytically, and the temperature gradient needed to hold a bubble 

stationary is  
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CONCLUSIONS 
 
The steady-state migration velocity of a gas bubble located at the center of a spherical shell has been 
calculated by considering the combined effect of gravity, interfacial tension gradient, and the finite size of 
the shell. An analytical expression for the temperature gradient that will sustain a stationary bubble at the 
center of the spherical shell has been derived. Also a calculating function relation about liquid H2 
thickness of cryogenic target is proposed using the mass conservation in cryogenic target. The analytic 
method for the model is also fit for the D2, T2 or the mixture of the D-T. 

It must be pointed out that the present work does not include the corresponding release and 
absorption of heat in the processes of condensation and evaporation, also not consider the isotope effects 
such as the differences in the thermodynamic properties and transport coefficients of the isotopic species. 
A theory intended to include factors above is currently being formulated and will be reported in a future 
publication. 
 
 
ACKOWNLEGEMENT 
 
This work is supported by National Natural Science Foundation of China. 
 
 
REFERENCES 
 
1. Miller.J.R, A new method for producing cryogenic laser fusion targets, Advanced in Cryogenics Engineering (1987), 23  
669～674 
2. Kim. K., Mok. L., and Bernat. T. P. et al, Non-contact thermal gradient method of fabrication of uniform cryogenic inertial  
fusion target, Journal of Vacuum Science and Technology (1985), A 3(3) 1196～1200 
3. Happel.J, Brenner.H. Low Reynolds Number Hydrodynamics.2nd ed. Martinus Nijhoff Publishers, Boston (1983) 
4. Haberman. W.L., Sayre. R.M., Motion of rigid and fluid sphere in stationary and moving liquid inside cylindrical tubes.  
David W. Taylor Model Basin Rep No.1143, Washington DC, 1950 


	ICEC 20
	Return to Main Menu


