
Comparison of the performance of regenerators to counterßow heat exchangers

Will, M.E., de Waele, A.T.A.M.

Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, NL-5600 MB
Eindhoven, The Netherlands

Irreversible processes in regenerators and heat exchangers limit the perfor-
mance of cryocoolers. In our research we study the possibility to avoid regen-
erators in pulse-tube refrigerators (PTR�s) by using two identical PTR�s oper-
ating in opposite phase. The two regenerators are replaced by one counterßow
heat exchanger. In this contribution we treat the performances of regenerators
and heat exchangers from a fundamental point of view. The losses in the two
systems are calculated from the entropy production due to the various irre-
versible processes. The expressions are brought in special forms which make
comparison relatively easy.

INTRODUCTION

Irreversible processes in regenerators and heat exchangers limit the performance of cryocoolers.
In our research we study the possibility to avoid regenerators in pulse-tube refrigerators (PTR�s)
by using two identical PTR�s operating in opposite phase. The two regenerators are replaced by
one counterßow heat exchanger [1]. The performances of heat exchangers and regenerators can be
compared by calculating the entropy-production rates by the four different irreversible processes:
axial thermal conduction in the gas, axial thermal conduction in the material, ßow resistance and
heat exchange between the gas and the material.
The regenerator is supposed to be Þlled with spherical particles with diameter dh. The free

ßow area of the regenerator is Ag = (1− f)A where f is the Þlling factor and A is the area of
the cross section. The heat exchanger is supposed to consist of N parallel tubes with diameter
d1 for the high- and N tubes for the low-pressure side. The total cross section for the gas ßow is
Ag = 2Nπd

2
1/4. The wall thickness of one tube at pressure p is δw = d1p/pc with pc the breaking

stress of the material. As δw ¿ d1 we will disregard the difference between the total area A and
the area of the gas ßow Ag. So in the case of the heat exchanger A ≈ Ag. It will turn out that,
in the optimum situation, the tube diameter and the corresponding Reynolds numbers, will be
very small so we only consider laminar ßow. We will further assume ideal-gas conditions. In order
to avoid unnecessary complications we will treat the various contributions to lowest order in the
temperature differences. The basic expressions for the entropy-production rates are derived from
a paper by De Waele et al. [2] and the thesis from Steijaert [3].

LOSSES

Heat conduction
The entropy-production rate per unit length due to heat conduction in the gas in the axial direction
can be written as

d úScg
dl

= Ag
Nuκg
T 2

µ
dT

dl

¶2
. (1)
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Here κg is the coefficient of thermal conductivity of the gas, T is the temperature, and l the length
co-ordinate. The parameterNu represents the Nusselt number which is different for the regenerator
and the heat exchanger.
The entropy production due to axial heat conduction through the material can be given as

d úScm
dl

= As
κs
T 2

µ
dT

dl

¶2
(2)

with κs the thermal conductivity of the solid material. For the regenerator As = fA and κs = Ckκm
with Ck a factor taking into account the bad thermal contact between the grains and κm the thermal
conductivity of the material. For the heat exchanger As = 2Nπδwd1 = 4Ap/pc and κs = κm.

Flow resistance
The entropy production due to ßow resistance can be written as

d úSf
dl

= η
z

AT

∗
n
2
V 2m (3)

with η the viscosity of the gas, Vm the molar volume,
∗
n
2
the mean square molar ßow, and z a

geometrical factor. For the regenerator z = 1600/d2h and for the heat exchanger z = 128/d
2
1.

Heat exchange
The entropy production due to the heat exchange between gas and material can be written as
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= ge
C2p

∗
n
2

AκgNu

1
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¶2
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with Cp the molar heat capacity of the gas and ge a geometrical factor which is ge = d2h/12f for
the regenerator and ge = d21 for the heat exchanger.

OPTIMIZATION

The optimal regenerator and heat exchanger can be found by minimizing the entropy productions.
If we are looking for the optimum grain size dh we can write the total entropy production for the
regenerator per unit volume by adding up the four contributions and dividing by A. The result is
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T 2
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+ 0.16f
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with j =
∗
n/A the molar ßux. For the heat exchanger
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The last two terms in Eqs.(5) and (6) depend on the grain size dh and the tube diameter d1
respectively. The coefficient of thermal conductivity and the viscosity of the gas are approximated
by the relations κg = κ0

√
T and η = η0

√
T with κ0 and η0 contants. The optimum values for the

diameters are given by

d4h0 = 3072
fNurη0κ0T

4

p2
¡
dT
dl

¢2 (7)
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respectively. They result in minimum contributions of the ßow and the heat exchange to the
entropy-production rates of

σ2rfe0 =
10000

3

1

Nurf

η0
κ0

R4j4

Tp2

µ
dT

dl

¶2
(9)
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. (10)

Note that these terms vary as T−1 while the heat conduction terms vary as T−2, so the relative
importance of the heat conduction terms increases with lower temperatures. The ratio of the
optimum diameters is given by

d4h0
d410

= 150
fNur
Nue

(11)

and the ratio of the minimum dissipation rates is

σ2rfe0
σ2efe0

=
25

24

Nue
Nurf

(12)

so, within the limitations of the validity of our calculations, the ratios are only determined by the
Þlling factor and the ratio between the Nusselt numbers and independent of the many possible
other parameters.

NUMERICAL VALUES

The gas properties are detremined by the values for helium κ0 = 0.008 W/K3/2m, η0 = 1.05
µPas/K1/2, and Cp = 20.8 J/molK. For stainless steel κm = 15 W/Km and pc = 250 MPa. The
Nusselt number is for the regenerator Nur = 10 and for the heat exchanger Nue = 4.36. In our
calculations we use somewhat arbitrarily p = 1.75 MPa, j = 100 mol/sm2, f = 0.5, Ck = 0.16,
T = 200 K, dT/dl = 200 K/m. With these values we can calculate the various contributions to
the entropy production. For the regenerator

σr =

·
0.56 + 1.2 + 1.07

mm2

d2h
+ 0.64

d2h
mm2

¸
W
Km3

. (13)

The diameter dependence of the two last terms is similar to the one given in Fig.1. In the optimum
situation dh0 = 1.14mm and σrf0 = σre0 = 0.83W/Km3. The total entropy-production rate density
in the optimum situation is σr0 = 3.43 W/Km3.
For the heat exchanger we get the relation

σe =

·
0.49 + 0.42 + 0.086

mm2

d21
+ 8.7

d21
mm2

¸
W
Km3

. (14)

The most interesting are the diameter dependent terms. The entropy-production rates of the two
last terms together with the total is given in Fig.1 as a function of the tube diameter. In the
optimum situation the tube diameter d10 = 0.314 mm and σef0 = σee0 = 0.87 W/Km3. The total
is σe0 = 2.65 W/km3.
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Figure 1: Entropy-production rate densities for a heat exchanger due to the ßow resistance and
the heat exchange between the gas and the matrix. The total shows a minimum which corresponds
to the optimum performance of the regenerator.

DISCUSSION AND CONCLUSIONS

The entropy production in an optimized heat exchanger is less than in an optimized regenerator,
so a PTR with a heat exchanger should work better. At temperatures much lower than 200 K the
contributions from the ßow resistance and the heat exchange become signiÞcantly less than the
contributions due to the heat conduction in the axial directions. Therefore, one has some freedom
to choose diameters which are more convenient than the small values found in the optimization
procedure.
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