Manoeuvring: Ferry in turning – rudder 5°
Determine the turning circle radius R for the ferry in Tables 6.1 and 6.2 at 3 kn speed with rudder at ( = -5°. 

Nonlinear coefficients can be neglected. R follows from the relation V = r(R, where 
[image: image1.wmf]y

&

=

r

 is the yaw rate.

Solution
The non-dimensional motion equations using only linear coefficients for steady turning are:
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We compute some necessary quantities:
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Thus:
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The radius R of the turning circle is given by:
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Note that the turning radius does not depend on speed within this simplified model. 

Manoeuvring: Ferry in turning – rudder 20°
Determine the turning circle radius R for the ferry in Tables 6.1 and 6.2 at 20 kn speed with rudder at ( = 20°.

Nonlinear coefficients can be neglected. R follows from the relation V = r(R, where 
[image: image10.wmf]y
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 is the yaw rate.

Solution

The non-dimensional motion equations using only linear coefficients for steady turning are:
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We compute some necessary quantities:
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Thus:
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The turning rate is negative due to the different sign convention for rudder angle and yaw angle. 

The radius R of the turning circle is given by:
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Note that the turning radius does not depend on speed within this simplified model. 

Manoeuvring: Series 60 in turning circle
A side thruster is installed in the Series-60 ship in Tables 6.1 and 6.2. The thruster is installed 4 m aft of F.P. and yields 300 kN side thrust at zero speed. The zero-speed efficiency of the thruster is ( = 0.8. Which turning rate and radius of turning circle are achieved for the ship with side thruster alone (rudder in central position) for 2 kn speed? Assume linear correlation between hull forces and motions. R follows from the relation V = r(R, where 
[image: image19.wmf]y
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 is the yaw rate.

Forward speed changes the thrust of a bow thruster T from the value at zero speed T0:

[image: image20.emf]
Solution
The zero-speed thrust is corrected for forward speed reading from the diagram for V = 2 kn:
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The motion equations using only linear coefficients and steady turning with zero rudder angle are:
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We compute some necessary quantities:
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V = 2 kn = 2 ( 0.5144 = 1.029 m/s
The ‘unit’ force (used to make forces non-dimensional) is:
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and
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Thus:
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Thus the turning rate is:
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The radius R of the turning circle is given by:
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The ship is almost turning on the spot. The transverse velocity is that at the origin of the coordinate system, i.e. amidships. The ship is turning around a point ahead of amidships, thus amidships is moving in the opposite direction of the waterjet thrust.
Note: The Series-60 ship is in addition only very weakly yaw stable. Thus linear prediction fails already at moderate yaw rates and transverse velocities. This inherent weakness increases as the forward speed decreases. Thus in this case a nonlinear simulation would have been highly advisable.

 Manoeuvring: Ferry in turning circle with thruster
Determine the turning circle radius R for the ferry in Tables 6.1 and 6.2 at 3 kn speed with rudder in central position, using only its side thruster. The side thruster is located 5% L aft of F.P. It has 2 m diameter and 3000 kW power. The efficiency of the bow thruster is ( = 0.8. Nonlinear coefficients can be neglected. R follows from the relation V = r(R, where 
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 is the yaw rate.

Forward speed changes the thrust of a bow thruster T from the value at zero speed T0:

[image: image37.emf]
Solution
The area of the bow thruster is
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The thrust of the transverse bow thruster at zero speed follows from the relations:
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This is corrected for forward speed reading from the diagram for V = 3 kn:
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The motion equations using only linear coefficients and steady turning with zero rudder angle are:
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We compute some necessary quantities:
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V = 3 kn = 3 ( 0.5144 = 1.543 m/s
The ‘unit’ force (used to make forces non-dimensional) is:
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Thus:
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The radius R of the turning circle is given by:
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Manoeuvring: Containership in turning circle with rudder 5°
Determine the turning circle radius R for the container ship in Tables 6.1 and 6.2 at 15 kn speed with rudder at ( = -5°. 

Nonlinear coefficients can be neglected. R follows from the relation V = r(R, where 
[image: image53.wmf]y
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 is the yaw rate.

Solution
The non-dimensional motion equations using only linear coefficients for steady turning are:
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We compute some necessary quantities:
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Thus:
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The radius R of the turning circle is given by: 
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Manoeuvring: Containership in turning circle with thruster
The container ship in Tables 6.1 and 6.2 sails in a turning circle with rudder in centre position using just its bow thruster at maximum power. The bow thruster is located 4 m aft of the forward perpendicular. The power of the thruster is 4000 kW. The pipe diameter is 2.5 m. The ship speed is 5 kn. The efficiency of the bow thruster is ( = 0.8. Compute the radius of the turning circle R assuming linear correlation between hull forces and motions. 
R follows from the relation V = r(R, where 
[image: image62.wmf]y
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 is the yaw rate.
Forward speed changes the thrust of a bow thruster T from the value at zero speed T0:
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Solution
The area of the bow thruster is:
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The thrust of the transverse bow thruster at zero speed follows from the relations:


[image: image65.wmf]83
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2

2

0

10

90

.

5

83

.

10

91

.

4

1025

×

=

×

×

=

×

×

=

v

A

T

r

 N
This is corrected for forward speed reading from the diagram for V = 5 kn:
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The non-dimensional linear motion equations for steady turning with zero rudder angle are:


[image: image68.wmf]þ

ý

ü

î

í

ì

×

=

t

x

T

T

u

D

'

'

'

'

r




with 
[image: image69.wmf]ú

û

ù

ê

ë

é

+

-

-

+

-

-

=

'

'

'

'

'

'

'

'

G

r

v

r

v

x

m

N

N

m

Y

Y

D


We compute some necessary quantities:
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V = 5 kn = 5 ( 0.5144 = 2.572 m/s
The 'unit' force (used to make forces non-dimensional) is:
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and
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Thus:
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The radius R of the turning circle is given by:
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Manoeuvring: Nomoto equation

a) A ship lays rudder according to sine function over time alternating between port and starboard with amplitude 10° and 2 minutes period. The ship performs course changes of (20°. The maximum course deviation to port occurs 45 seconds after the maximum rudder angle to port has been reached. Determine from these data the parameters of the Nomoto equation:
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The ship is yaw stable for K > 0. Is the ship yaw stable?

b) The ship speed is reduced to 50% of the value in a). The rudder action is the same as in a). How large is the amplitude of course changes and what is the delay between maximum rudder angle and maximum course deviation? Hint: The non-dimensional constant T' depends only on hull characteristics, non-dimensional K' only on rudder characteristics. 

Solution
a) The rudder angle changes as:
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The course angle changes as
:
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Inserting these expressions in the Nomoto equation yields:
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With 
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, we get (first imaginary part, then real part):
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K is positive, thus the ship is yaw stable.

b) The non-dimensional values K' = K(L/U and T'=T(U/L remain unchanged as they just depend on the characteristics of hull and rudder. Thus K is now half as large (K = 0.074 s(1) and T is twice as large (T = 38.2 s).

Let us write the yaw angle as function of time with yet unknown amplitude and time shift:
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The Nomoto equation then yields:


[image: image91.wmf](

)

(

)

(

)

t

i

t

t

i

t

t

i

e

K

e

i

e

T

s

s

w

w

w

w

y

w

y

°

-

=

-

+

×

-

-

10

Re

Re

Re

)

(

0

)

(

2

0


(

[image: image92.wmf]s

t

i

Ke

i

T

w

w

w

y

10

)

(

2

0

-

=

-


Sorting in real and imaginary parts yields two equations:



[image: image93.wmf]K

T

t

s

10

)

cos(

2

0

w

y

w

-

=

;


[image: image94.wmf]K

t

s

10

)

sin(

0

w

y

w

-

=


Using the relation cos2+sin2=1, we get:
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For (ts, we must make sure that we find the correct value in the right quadrant, using both sin and cos information:
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The solution is thus in the second quadrant:
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Manoeuvring: Nomoto equation with rudder change
A ship lays rudder according to sine function over time alternating between port and starboard with amplitude 10° and 2 minutes period. The rudder height is 6 m. The ship performs course changes of (20°. The maximum course deviation to port occurs 45 s after the maximum rudder angle to port has been reached. The Nomoto equation then yields K = 0.148 s(1 and T = 19.1 s.

Now the rudder height is kept constant at 6 m, but the rudder area is increased from 18 m2 to 24 m2. The speed is kept as before.

Remember that K is the 'rudder effectiveness', T a hull characteristic. 

a) Determine the rudder lift coefficient before and after the modification!

b) Determine the new K and T after the modification!

c) Determine the course amplitude ( and the delay between maximum rudder angle and maximum course deviation ts after the modification!
Solution
Originally the rudder aspect ratio was 
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We estimate the lift coefficients, assuming CQ ( 1 (as usual):
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For ( = 2, ( = 10°:
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For ( = 1.5, ( = 10°:
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The rudder force depends on the lift coefficient times the rudder area (and the speed, which is not changed here). Thus the new K (rudder force per rudder angle) is given by:
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T remains at 19.1s. Then we can use the same formulae as in the previous exercise to derive:
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Manoeuvring: System identification using Norrbin equation
A ship follows the 'Norrbin' equation:
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The ship performs a pull-out manoeuvre and the following curve for 
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is recorded:

[image: image111.png]Manoeuvring: System identification using Norrbin equation

A ship follows the 'Norrbin’ equation:

T+ + a)® = —K§

The ship performs a pull-out manoeuvre and the following curve for ¥ is recorded:
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a) Determine the constants T and a!

b) Sketch a corresponding curve of @ for the case that at t = 0 ¥ = 0.002 rad/s instead of

1 = 0.02 rad/s.

Solution

a) Consider long term behaviour of ship. Then the rudder angle is 6 = 0 in a pull-out

manoeuvre. The yaw rate 1) does no longer change, i.e. b = 0. Then the Norrbin equation
yields:
1

2
Jz = Tooom 2008

T+ +a® K6 —+ai®=0—1+ay? =0 > o

Consider now the initial behaviour. At t = 0, we have § = 0. A tangential to the curve
(measured from curve) determines ¢ = —0.0077rad/s? at ¢ = 0. This determines T using
the Norrbin equation for t = 0:

T + )+ a® = —K§ — T - (—0.0077) + 0.02 — 20408 - 0.02> =0 —» T = —18.6 s

«a remains the same and thus the long-term behaviour remains the same. T remains the
same. This determines 1 at t = 0:

T + )+ ai)® K& 18.61) + 0.002 — 20408 - 0.002> = 0 — ¢) = 0.0001 rad /s’

This is an almost horizontal tangential at t = 0. The ship turns much slower (w much
smaller). So the curve may look like:
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a) Determine the constants T and (!
b) Sketch a corresponding curve of 
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 for the case that at t = 0 we have 
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 = 0.002 rad/s instead of  0.02 rad/s.

Solution
a) Consider long term behaviour of ship. Then the rudder angle is ( = 0 in a pull-out manoeuvre. The yaw rate 
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 does no longer change, i.e. 
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Consider now the initial behaviour. At t = 0, we have ( = 0. A tangential to the curve (measured  from curve) determines 
[image: image118.wmf]0077

.

0

-

=

y

&

&

 rad/s2 at t = 0. This determines T using the Norrbin equation for t = 0:


[image: image119.wmf]6

.

18

0

02

.

0

20408

02

.

0

)

0077

.

0

(

3

3

-

=

®

=

×

-

+

-

×

®

-

=

+

+

T

T

K

T

d

y

a

y

y

&

&

&

&

s

b) ( remains the same and thus the long-term behaviour remains the same. T remains the same. This determines 
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This is an almost horizontal tangential at t = 0. The ship turns much slower (
[image: image122.wmf]y
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 much smaller). So the curve may look like:
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The ship performs a pull-out manoeuvre and the following curve for ¥ is recorded:
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a) Determine the constants T and a!

b) Sketch a corresponding curve of @ for the case that at t = 0 ¥ = 0.002 rad/s instead of

1 = 0.02 rad/s.

Solution

a) Consider long term behaviour of ship. Then the rudder angle is 6 = 0 in a pull-out

manoeuvre. The yaw rate 1) does no longer change, i.e. b = 0. Then the Norrbin equation
yields:
1

2
Jz = Tooom 2008

T+ +a® K6 —+ai®=0—1+ay? =0 > o

Consider now the initial behaviour. At t = 0, we have § = 0. A tangential to the curve
(measured from curve) determines ¢ = —0.0077rad/s? at ¢ = 0. This determines T using
the Norrbin equation for t = 0:

T + )+ a® = —K§ — T - (—0.0077) + 0.02 — 20408 - 0.02> =0 —» T = —18.6 s

«a remains the same and thus the long-term behaviour remains the same. T remains the
same. This determines 1 at t = 0:

T + )+ ai)® K& 18.61) + 0.002 — 20408 - 0.002> = 0 — ¢) = 0.0001 rad /s’

This is an almost horizontal tangential at t = 0. The ship turns much slower (w much
smaller). So the curve may look like:
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Manoeuvring: Waterjet versus rudder
A motor yacht of 10 t displacement is equipped with a 1 m2 profile rudder with ( = 1.2. The yacht is a twin-screw ship with central rudder. The rudder lies outside the propeller slip stream. The yacht has a speed of 13.33 m/s. For the central position of the rudder we can assume a velocity of 0.75 ship speed due to the wake. The ‘glide ratio’ (ratio of propeller thrust to ship weight) is ( = 0.15.

The yacht shall be converted to waterjet propulsion. For this purpose propeller and rudder shall be dismantled and waterjets be installed. Waterjets are used to manoeuvre the ship by turning the jets by a maximum of 35°, just as previously the maximum rudder angle was 35°. The speed may be assumed to be unaffected by the conversion.

Will the yacht react faster or slower after its conversion? Why?

Solution
The rudder lies in an area of V = 10 m/s, i.e. ship speed. At a rudder angle of 35° a profile rudder with ( = 1.2 has typically CL ( 1.2. The rudder force is then:
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The thrust of the waterjets is at straight-ahead course:
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The transverse force at 35° angle of the jet is:
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Thus the manoeuvring force is reduced by a factor of 7! The yacht will react much slower after the conversion to waterjets.

Also, yaw stability will be reduced as the rudder increases yaw stability like all fins in the aftbody.

Manoeuvring: Rudder lift force of a semi-balanced rudder
Determine the rudder lift at 10° rudder angle for the semi-balanced rudder behind a propeller and hull. The ship speed is 30 kn, the propeller thrust 4000 kN, the wake fraction w = 0.25. Correct the rudder lift for the propeller loading according to Söding
 as given in the book. Take dimensions from the sketch. Following Goodrich and Molland
 we assume that at 10° rudder angle the depicted semi-balanced rudder may have 79.2% of the lift of a ‘normal’ rudder.

[image: image127.png]Manoeuvring: Rudder lift of a semi-balanced rudder

Determine the rudder lift at 10° rudder angle for the semi-balanced rudder behind a propeller
and hull. The ship speed is 30 kn, the propeller thrust 4000 kN, the wake fraction w = 0.25.
Correct the rudder lift for the propeller loading according to Séding (1998a,b). Take dimensions
from the sketch. Following Goodrich and Molland (1979) we assume that at 10° rudder angle
the depicted semi-balanced rudder may have 79.2% of the lift of a 'normal’ rudder.

GOODRICH, G.J.; MOLLAND, A.F. (1979). Wind tunnel investigation of semi-balanced ship
skeg rudders. Naval Architect, pp.285-301

M~
WL
scale:
—— 1 metre
Solution
The rudder has an aspect ratio of
b? 62
= =_—=1
Ar 36
We assume Cg = 1. Then the lift coefficient for the rudder (79.2% of normal’ rudder) is:
A-(A+0.7
Cy, [271' (A(+ .7)2> -sina+ Cq - sin? a cos a] -0.792
1-1.7 . o 2 o o
2T P2 -sin 10° + 1 - sin” 10° cos 10| - 0.792

= 0.225

The ship speed is Vy = 30kn=30-0.5144 = 15.432m/s. The inflow velocity is V4 = (1-0.25)-V =
(1 —0.25) -15.432 = 11.574 m/s. The propeller diameter is taken from the sketch as Dp = 4 m,
ie. A, =025mD% = 0.257 - 42 = 12,566 m?.

T 4000000
CBVZA,  1925.115742.12.566

Crp, 4.64

The rudder lift is:

1025
L::C@-q-AR::Cig-VX-AR::0225-—5—-1L5%f-36:556kN

This lift does not take into account the propeller loading. Following Séding (1998a,b), we add
a correction:

AL T-(l}

) sind = 4000 - (1 f ) sin 10° = 987 kN

1 1
V14 CTh V1+4.64

Thus the total transverse rudder force is 1543 kN.




Solution
The rudder has an aspect ratio of 
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We assume CQ = 1.  Then the lift coefficient for the rudder (79.2% of ‘normal’ rudder) is:
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The ship speed is V0 = 30 ( 0.5144 = 15.432 m/s. The inflow velocity is 
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 = 11.574 m/s. The propeller diameter is taken from the sketch as DP = 4 m, i.e. 
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The rudder lift is: 
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This lift does not take into account the propeller loading. Following Söding, we add a correction:
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Thus the total transverse rudder force is 556+987 = 1543 kN.

Manoeuvring: Autopilot influence on resistance
A twin-screw ship has a central rudder outside the propeller slipstream. The ship has a wake fraction 
w = 0.25. The rudder has an effective side ratio ( = 2.5 and an area AR = 40 m2. The ship sails with 20 knots speed. The rudder fluctuates around the mean rudder angle 0° due to seaway and wind. The variance (square root of average of square of fluctuations) of the rudder angle is 10°. By improving the autopilot, the variance is reduced to 5°. The lift and drag coefficients are given by (CQ ( 1):
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How much is the resulting reduction in effective power (= variance in power) if the speed is constant at 20 knots? Assume ( = 1019 kg/m3.

Solution
The lift coefficient is:
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The drag coefficient is:
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Thus the resistance coefficient difference is 
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The inflow velocity to the rudder is: 
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This yields a difference in resistance:
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The difference in effective power relates to ship speed and is thus:
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Manoeuvring: Stopping of a tanker

A tanker of 250000 t displacement sails at 15 knots at a delivered power PD = 15000 kW. The overall efficiency is
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The tanker shall perform a soft stop manoeuvre. The engine is reducing linearly the torque Q within one minute to zero. The next three minutes are used to brake the shaft and to prepare the engine for reverse operation. The following two minutes the engine is started and accelerated again linearly to full reverse torque.

How long will be the stopping distance for the tanker if it sails exactly straight ahead? Quantities not given are to be estimated!

Hints:

1. During the short periods of acceleration and deceleration of the engine, the ship speed is virtually constant.
2. The linear deceleration and acceleration shall be approximated by step functions covering the same ‘area’ of Q ( t, where t is the time:
[image: image148.png]Manoeuvring Exercise 6

A tanker of 250000t displacement sails at 15 knots at a delivered power Pp = 15000kW. The

overall efficiency is

R-U

—— =07
Pp

The tanker shall perform a soft stop manoeuvre. The engine is reducing linearly the torque @
within one minute to zero. The next three minutes are used to brake the shaft and to prepare

the engine for reverse operation. The following two minutes the engine is started and accelerated
again linearly to full reverse torque.

n=

How long will be the stopping distance for the tanker if it sails exactly straight ahead? Quantities
not given are to be estimated!

Hints:

1. During the short periods of acceleration and deceleration of the engine, the ship speed is
virtually constant

2. The linear deceleration and acceleration shall be approximated by step functions covering
the same ’area’ of @ - t, where ¢ is the time:

3. The added mass in longitudinal motion may be approximated by

m" 1

m ~ n/(I3/V) - 14

where L is the length, V the displacement of the ship.

4. In reverse propeller operation the ratio of thrust to resistance shall be |T'/R| = 0.945.

Solution
The initial speed is Uy = 15kn = 15+ 0.5144 = 7.716m/s.
The stopping constant % is:

Ry Pp-n _ 15000-0.7 -
= = = = 22. kNs
U2 U2 77163 860 kNs*/m

k

The mass of the ship needs to be increased by the hydrodynamic mass for longitudinal motion.
This is rather small:

1 1

NEI)) —14> 250000~ (1 ’ /(3163 /250000) — 14

We consider three time intervals successively:

m+m'=m- (1 | ) 257500 t
T




3. The added mass in longitudinal motion may be approximated by 
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L is the length, ( the displacement of the ship.

4. In reverse propeller operation, the ratio of thrust to resistance shall be |T/R| = 0.945.

Solution
The initial speed is U0 = 15 ( 0.5144 = 7.716 m/s.

The stopping constant k is: 
[image: image150.wmf]860

.

22

716

.

7

7

.

0

15000

3

3

0

2

0

0

=

×

=

×

=

=

U

P

U

R

k

D

h

 kNs2/m2
The mass of the ship needs to be increased by the hydrodynamic mass for longitudinal motion. This is rather small:
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We consider three time intervals successively:

1. time interval (( t = 60 s):

Half torque yields approximately half thrust. The ship speed will remain approximately constant during the short period. Initially thrust T (minus thrust deduction) and resistance R are in equilibrium, i.e. T0 = R0. 
Thus: 
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The original equation:
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transforms to:
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The distance travelled is:
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2. time interval (( t = 240 s):

The thrust is now zero and thus uT = 0. The original equation yields:
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Integration yields:
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3. time interval (300 s until full stop):
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The interval ends when the ship is fully stopped, i.e. u2 = 0. As we do not have to determine the stopping time, we can simply compute directly:
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The total stopping distance is: 
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� Rudder angle usually is taken as positive to port, course change negative to port.


� Söding, H. (1998). Limits of potential theory in rudder flow predictions. Ship Technology Research 45, pp. 141–155.


� Goodrich, G.J., Molland, A.F. (1979). Wind tunnel investigation of semi-balanced ship skeg rudders. Trans RINA 121
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