Derivation of potential of Airy wave on shallow water
We will derive the potential of a regular wave on finite water depth H and the dispersion relation coupling frequency ( and wave number k. 
We use an x-z-coordinate system with z pointing down. The origin lies in the calm-water surface. We assume small wave amplitude h and linearise all expressions (potential and surface elevation) accordingly.

The flow is independent of y (= quasi two-dimensional flow). The wave elevation is described by ((x,t). The potential is denoted by (. We state field equation and boundary conditions to describe the flow of such an elementary wave:
1. Potential flow is governed by Laplace's equation:

(xx + (zz = 0

2. No water flows through the sea bottom at z = H:

(z = 0

3. No water flows through the water surface (kinematic condition). The vertical particle velocity (z  must be equal to the substantial derivative of the water surface with respect to time at z = ((x,t):
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4. There is atmospheric pressure p0 at the water surface (dynamic condition). Bernoulli's equation gives at z = ((x,t):
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5. Waves propagate in x-direction with velocity (celerity) c:

( (x,z,t) = ((x-ct,z)
In a moving coordinate system (x',z) with x' = x(ct, the flow becomes steady (= time independent).

We linearise conditions 3 and 4 for small wave amplitude:
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A Taylor expansion with respect to the z-coordinate gives:

(z (x,(,,t) = (z (x,0,t) +(zz (x,0,t)(( +…
(t (x,(,,t) = (t (x,0,t) +(zt (x,0,t)(( +…
Linearisation gives then for kinematic and dynamic conditions at z = 0:
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Combining these equations allows elimination of (:
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This condition substitutes the dynamic and kinematic conditions.

We expect a solution periodic in x' and decreasing in z-direction. We therefore use an approach writing ( as a product of two unknown functions:

( = f(x') ( h(z)

A modified Laplace equation:

(x’x’ + (zz = 0
then gives
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The l.h.s. does not depend on z, the r.h.s. does not depend on x'. Therefore the l.h.s. and r.h.s. do not depend on either z or x' and are constant. We write:
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and
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k has to be real to give a periodic solution in x'. A complex k would lead to solutions increasing or decreasing with x'. The general solution for the equation for f is:
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where ( = k ( c. 
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 denotes an arbitrary complex amplitude which is constant in time and space. The general solution for the equation for h is:
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The no-penetration condition at the sea bottom gives:
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Thus we can write:
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Recall a theorem of addition of hyperbolic functions:
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and get:
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We combine now the function f and h to the potential function ( = f(h, where the factors 
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We now use the linearised combined free-surface condition at z = 0:
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to find a relation between k and (:
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This equation holds for all x and t only if:
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giving (for 
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) the dispersion relation:
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The unknown amplitude 
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 is determined by the kinematic condition at z = 0:
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With ( = k ( c we get:
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