Derive Vibration: Natural frequency of simple beam in bending
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Consider a slender beam with flexible supports at both ends x = 0 and x = l. Young's modulus E; cross sectional moment of inertia I, and mass per length ( = ((A of the beam are constant.

Let's derive the natural frequency for the depicted vibration mode.
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 is here the vertical vibration amplitude at a point x on the beam. Elementary beam analysis gives the stiffness operator:


[image: image3.wmf]'

'

'

'

4

4

ˆ

ˆ

)

ˆ

(

z

EI

dx

z

d

EI

z

K

=

=


The mass operator is:


[image: image4.wmf]z

A

z

z

M

ˆ

ˆ

)

ˆ

(

r

m

=

=


Damping is neglected. This yields then the differential equation:
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This linear, homogeneous differential equation has any linear combination of sin, cos, sinh, and cosh as solution. Due to the boundary conditions 
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, a pure sin function remains as possible solution for the lowest natural frequency as depicted in the sketch:
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We insert this expression in the differential equation:
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With ( = 2( f, this yields the natural frequency:
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