Vibrations: Evaluation of vibrations following ISO 6954
Consider a harmonic oscillation of 16 Hz frequency in a passenger cabin. What is according to ISO 6954 the limit value for the deflection amplitude for ‘adverse comments not probable’?

Note that standard deviation ( and amplitude A are coupled for harmonic oscillations by 
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Solution

Passenger cabins fall into the category ‘A’ of ISO 6954. The limit value for the standard deviation of acceleration amplitude is then 
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71.5 mm/s2. This converts into an amplitude for the acceleration of:
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Acceleration and deflection amplitude are coupled for a harmonic oscillation with circular frequency 
( = 2(f:
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Vibrations: Beam vibrations
Consider a stiffened steel plate field. Each stiffener can be approximated by a beam of length 
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m. The beam has a moment of inertia I = 0.0013 m4 and area A = 0.018 m2. Density of steel is ( = 7800 kg/m3, Young's modulus E = 2.1(1011 N/m2.
a) Estimate the lowest natural frequency in longitudinal bending in air for flexible support on both ends.

b) Estimate the lowest natural frequency in longitudinal bending in air for fixed support on both ends.

c) Estimate the lowest natural frequency in longitudinal bending in air for partially flexible support on both ends (( = 0.75).

Solution
a) The lowest natural frequency follows from: 
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b) The frequency is modified: 
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c) The factor is then taken from the diagram (Fig.5.7) to 1.6: 
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Vibrations: Longitudinal vibrations of a slender truss
Consider the undamped longitudinal vibration of a truss, fixed at the left end, excited by a force F at the free right end of the truss. Derive the general equation for variable cross section area A(x).


[image: image9]
Then find the specific solution for a truss of constant cross section area A = 10(4 m2, Young's modulus 
E = 2.1(1011 N/m2, density ( = 7800 kg/m3, length l = 1 m, exciting force F = 1000 N, circular frequency of excitation ( = 104 s(1.

Determine the function of longitudinal deflection.

Solution
Consider force equilibrium at an arbitrary section element of the truss: 
[image: image10.wmf]÷

ø

ö

ç

è

æ

-

=

dx

z

d

EA

dx

d

z

K

ˆ

)

ˆ

(



[image: image11.wmf])

(

ˆ

x

z

is the complex deflection amplitude of the truss at position x (+ to the right).

The mass operator M is: 
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. There is no excitation between x = 0 und x = l. The exciting force (per length) is thus 
[image: image13.wmf]0

ˆ

=

F

. Instead we have as boundary condition at x = l:
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( is the normal stress, ( is the strain. At the left end (x = 0), we have due to the fixed support: 
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The fundamental vibration equation (for D = 0) yields then:
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For our special case of E and A constant over the length of the truss, this simplifies to:
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The solution of this differential equation is a superposition of sin and cos functions. Due to the boundary condition on the left side, only the sin function is possible:
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Inserting this expression in the differential equation yields:
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 is the speed of sound.)

The amplitude a follows from the boundary condition on the right end of the truss:
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There are resonances (with infinite a as we have no damping) for kl = (/2, 3(/2, 5(/2, .... But for the given data, we get the finite solution:
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Vibrations: Natural frequency of ship hull as a beam
Consider two ships which are geometrically similar, but differ in scale by a factor 2. Both ships are of the same material and the mass distributions of both ships are similar. How are the lowest natural frequencies of the two ships in vertical bending vibrations related?

Solution
The natural frequency of a beam is proportional to:
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The natural frequency of the bigger ship is half the natural frequency of the smaller ship.
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