Preface	00
Contributors	00

PART **1** Theoretical, Experimental and Numerical Techniques

1	Hist	History of Shock Waves			
	by P.	Krehl			
	1.1	Introdu	ction	00	
	1.2	Shock V	Waves: Definition and Scope	00	
	1.3	Early Pe	ercussion Research	00	
	1.4	Evolutio	on of Shock Waves	00	
		1.4.1	Natural Supersonic Phenomena and Early		
			Speculations	00	
		1.4.2	Shock Waves in Gases	00	
		1.4.3	Shock Waves in Liquids	00	
		1.4.4	Shock Waves in Solids	00	
	1.5	Evolutio	on of Detonation Physics	00	
	1.6	Mileston	nes in Early High Speed Diagnostics	00	
	1.7	Further	Reading	00	
	1.8	Chrono	logical Table		

2 General Laws for Propagation of Shock Waves through Matter

by L.F. Henderson

2.1	Introduction				
2.2	The Riemann Problem				
2.3	Length and Time Scales				
2.4	The Co	nservation Laws for a Single Shock Wave	00		
	2.4.1	Laboratory Frame Coordinates	00		
	2.4.2	Shock Fixed Coordinates	00		
2.5	The Hu	goniot Adiabatic	00		
	2.5.1	The Hugoniot Equation	00		
	2.5.2	The Raleigh Equations	00		
	2.5.3	Solution of a Simple Shock Riemann Problem	00		
2.6	Thermo	odynamic Properties of Materials	00		
2.7	Thermodynamic Constraints on the EOS				
2.8	Non-Thermodynamic Constraints on the EOS				
	2.8.1	Convexity	00		
	2.8.2	Shock Wave Stability Constraints	00		
2.9	Other N	Non-Thermodynamic EOS Constraints	00		
2.10	The Bethe-Weyl (B-W) Theorem 0				
2.11	Shock V	Wave Interactions	00		
	2.11.1	Dimensions of the Interactions	00		
	2.11.2	Two-Dimensional Shock Wave Interactions	00		
	2.11.3	Three-Dimensional Shock Wave Interactions	00		
2.12	The Tri	ple-Shock Theory and Related Theorems	00		
	2.12.1	The Theorems	00		
	2.12.2	Application of Shock Wave Interactions	00		
2.13	Crocco?	s Theorem	00		
2.14	The Ref	fraction Law	00		
2.15	Concluding Remarks 00				

2.16 References

3	Theory	of Shock	Waves
	1110017	or onoch	114100

3.1	Shock Waves in Gases
	by G. Emanuel
	311 Introduction

2			
3.1.1	Introdu	ction	00
3.1.2	Jump C	onditions	00
	3.1.2.1	Steady Normal Shock Waves	00
	3.1.2.2	Mach Number	00
	3.1.2.3	Jump Direction	00

		3.1.2.4	Unsteady Normal Shock Waves	00	
		3.1.2.5	Oblique Waves	00	
	3.1.3	Shock V	Vave Configurations	00	
		3.1.3.1	Local vs. Global Analysis	00	
		3.1.3.2	Single Shock System	00	
		3.1.3.3	Multiple Shock System	00	
	3.1.4	Interact	ions	00	
		3.1.4.1	Shock Impingement	00	
		3.1.4.2	Shock-Expansion and Expansion-Shock		
			Interactions	00	
		3.1.4.3	Boundary-Layer Interaction	00	
	3.1.5	Real Ga	s Phenomena	00	
		3.1.5.1	Low Temperature Phenomena	00	
		3.1.5.2	High Temperature Phenomena	00	
	3.1.6	Perfect	Gas Shock Waves	00	
		3.1.6.1	Steady Shock Waves	00	
		3.1.6.2	Unsteady Shock Waves	00	
		3.1.6.3	Characteristic Theory	00	
		3.1.6.4	Shock Formation	00	
		3.1.6.5	Steady, Two-Dimensional Axisymmetric		
			Shock waves	00	
		3.1.6.6	General Theory	00	
		3.1.7	References		
3.2	Shock Waves in Liquids				
	by S. Ito	h			
	3.2.1	Fundam	iental Properties of Liquid	00	
		3.2.1.1		00	
		3.2.1.2	, i	00	
			Viscosity of Liquid	00	
	3.2.2		lotion in Liquids and Equation of State	00	
			Pressure Wave in Liquids	00	
		3.2.2.2		00	
		3.2.2.3	Plane Shock Relation for Water	00	
	3.2.3	Shock V	Vaves in Water Due to Underwater		
		Explosi	on of High Explosives		
		3.2.3.1	0 1	00	
		3.2.3.2	Numerical Procedure	00	
		3.2.3.3	Experiments of Underwater Shock		
			Waves	00	
	3.2.4	Von Ne	umann Reflection of Underwater Shock		
		Wave		00	
		3.2.4.1	Introduction	00	

		3.2.4.2		00
		3.2.4.3	Wave Configuration of Oblique Interaction of Underwater Shock	
			Waves	00
	3.2.5	Applicat		00 00
	5.2.5		tion of Underwater Shock Waves	00
		3.2.5.1	Shock Compaction of Powders	00
		3.2.5.2	Explosive Forming by Underwater Shock Waves	00
	3.2.6	Reference		00
3.3		Waves in		
ر.ر		agayama	Solids	
	3.3.1	Introdu	ation	00
	3.3.2	Basics	ction	00
	5.5.2	3.3.2.1	Shock Jump Conditions	00
		3.3.2.1	5 1	00
	3.3.3		nental Method	00
	5.5.5	3.3.3.1		00
		3.3.3.2		00
	3.3.4		Jugoniot Curve and High-Pressure	00
	5.5.4		n of State for Solids	00
		3.3.4.1		00
		3.3.4.1	Empirical Linear Relation Reflection and Transmission of Shock	00
		3.3.4.2		00
	3.3.5	Charle T	Waves at the Material Interface	00
	5.5.5	3.3.5.1	Thermodynamics	00
		3.3.3.1	Grüneisen Equation of State for Condensed Media	00
		2252		00
		3.3.5.2	Irreversibility of Shock Compression	00
		2252	Process Torrest Columbrian	00
	226	3.3.5.3	Temperature Calculation	00
	3.3.6		of Applications	00
		3.3.6.1		00
		3.3.6.2	Wave Splitting by Elastic-Plastic	00
	3.3.7	Reference	Transition or High-Pressure Phase	00
24		tion Shoc		
3.4			KS	
	by A. K			
	3.4.1	Introduc		00
	3.4.2	Shock A		00
	3.4.3		dmissibility	00
	3.4.4	Shock S		00
	3.4.5	Weak Sl	hocks	00

3.5

3.4.6	Shock D	Shock Dynamics			
3.4.7	Conclud	ing Remarks	00		
3.4.8	Referenc	es			
Stability	of Shock	x Waves			
by N. M.	Kuznetsov	,			
3.5.1	Introduc	tion	00		
3.5.2	Hydrody	namic Conditions of Shock Wave			
	Stability		00		
	3.5.2.1	One-Dimensional Conditions of			
		Shock Wave Stability	00		
	3.5.2.2	Corrugation Stability of Shock Waves	00		
	3.5.2.3	Nonuniqueness of Shock Front			
		Representation	00		
	3.5.2.4	Regions Where a Shock Wave			
		Discontinuity is Unstable and Where			
		Its Representation is Nonunique	00		
	3.5.2.5	On the Physical Meaning of the			
		Solutions with Steady-State			
		Corrugation Perturbations of a Shock			
		Wave and with Acoustic Waves			
		Emanated by the Shock Front	00		
	3.5.2.6	Resonance Reflection of a Sound			
		Wave and Shock Wave Stability	00		
	3.5.2.7	General Characteristics and a Simple			
		Example of Relation between Instability			
		and Nonuniqueness of Steady-State			
		Regimes	00		
	3.5.2.8	Stability of Shock Waves Pertaining			
		to the Lower and Upper Branches of			
		the Z-Shaped Segment of the Shock			
		Wave Hugoniot Curve. Splitting of an			
		Unstable Shock Wave	00		
	3.5.2.9	Simple Interpretation of the			
		Instability Mechanisms and Criteria			
		for Instability	00		
	3.5.2.10	Feasibility of Experimental Observation			
		of Hydrodynamic Instability of Shock			
		Waves	00		
	3.5.2.11	Stability of Shock Wave Supported by a			
		Piston	00		

	3.5.3		of the Structure of Shock and	00	
			on Waves	00	
		3.5.3.1	The Experimental Data on Structural		
		2 7 2 2	Instability of Shock Waves	00	
		3.5.3.2	The Structure of Shock Waves and		
			Stability of Viscous Compression		
			Discontinuities	00	
		3.5.3.3	On the Hydrodynamic Approach to Flows with Structurally Unstable Shock		
			Waves	00	
		3.5.3.4	On the Mechanisms of Structural		
			Instability of Shock and Detonation		
			Waves	00	
		3.5.3.5	Two-Fronts Model of a Shock (or		
			Detonation) Wave with Instantaneous		
			Heat Release	00	
		3.5.3.6	Two-Fronts Model of Shock and		
			Detonation Waves with Non-		
			Instantaneous Relaxation	00	
	3.5.4	Referenc	es		
3.6	Shock Waves in Space				
	by M. Gedalin				
	3.6.1	Introduc	tion	00	
	3.6.2	MHD Sh	locks	00	
	3.6.3	Shock M	lorphology	00	
	3.6.4	Bow Sho	ock Observations	00	
	3.6.5	Collision	lless Shock Theory	00	
			Field Structure	00	
		3.6.5.2	Nonlinear Waves and Ramp Width	00	
		3.6.5.3	-	00	
		3.6.5.4	Ion Motion	00	
		3.6.5.5	Electron Heating	00	
	3.6.6	Shock Pa	article Acceleration	00	
		3.6.6.1	Shock Drift Acceleration	00	
		3.6.6.2	Diffusive Acceleration	00	
		3.6.6.3	Electron Acceleration	00	
	3.6.7	Conclusi	ions	00	
	3.6.8	Referenc	es		
3.7	Geome		ck Dynamics		
	by Z-Y I	Han and X-2	Z Yin		
	3.7.1		Vaves Propagation through Quiescent	_	
		Gases		00	

3.7.1.1	Fundamental Concepts and Theoretical	
	Basis	00
3.7.1.2	Two-Dimensional Shock Diffraction	00
3.7.1.3	Three-Dimensional Shock Wave	
	Diffraction	00
3.7.1.4	Diffraction of Shock Waves Propagating	
	into Non-Uniform Quiescent Gases	00
Shock Waves Propagation through Moving Gases		
3.7.2.1	Shock Waves Propagation through	
	Uniform Flow Fields	00
3.7.2.2	Shock Waves Propagation through	
	Non-Uniform Flow Fields	00
Referen	ces	
	3.7.1.2 3.7.1.3 3.7.1.4 Shock V 3.7.2.1 3.7.2.2	Basis 3.7.1.2 Two-Dimensional Shock Diffraction 3.7.1.3 Three-Dimensional Shock Wave Diffraction 3.7.1.4 Diffraction of Shock Waves Propagating into Non-Uniform Quiescent Gases Shock Waves Propagation through Moving Gases 3.7.2.1 Shock Waves Propagation through Uniform Flow Fields 3.7.2.2 Shock Waves Propagation through

4 Shock Tubes and Tunnels: Facilities, Instrumentation and Techniques

4.1	Shock Tubes			
	by M. Ni	ishida		
	4.1.1	Introduc	ction	00
	4.1.2	Shock Ju	ump Relation	00
	4.1.3	One-Dir	nensional Propagation of a Small	
		Disturba		00
	4.1.4	Shock T	ube Theory	00
		4.1.4.1		00
		4.1.4.2	Relation between Region (1) and	
			Region (2)	00
		4.1.4.3	Relation between Region (2) and	
			Region (3)	00
		4.1.4.4		
			Region (4)	00
		4.1.4.5		
			Shock Tube End Wall	00
		4.1.4.6	Interaction between the Reflected Shock	
			Wave and Contact Surface	00
	4.1.5	Techniq	ue for Shock Tube Operation	00
			Diaphragm	00
			Variable Cross Section Shock Tube	00
		4.1.5.3	Shock Tube for Generating Strong	
			Shock Waves	00
	4.1.6	Reference	ces	

	by R. Morgan						
4.3	Piston Driven Shock and Expansion Tunnels						
	by R. M	by R. Morgan					
4.4	Blast Ti	Blast Tubes					
	by R. Ro	by R. Robey					
	4.4.1	4.4.1 General Description					
	4.4.2		nental Design Specification	00			
	4.4.3		iental Design Configurations	00			
		4.4.3.1		00			
		4.4.3.2		00			
		4.4.3.3	Explosive Outside the Blast Tube	00			
	4.4.4	Driver I	Design	00			
	4.4.5	Detonab	ble Gas Driver	00			
	4.4.6	Simulati	ion Scaling	00			
	4.4.7	Simulation Envelope		00			
	4.4.8		entation	00			
	4.4.9	Applicat		00			
		4.4.9.1	Non-Ideal Blast Wave Simulations	00			
		4.4.9.2		00			
			Civil Defense Studies	00			
			Detonation Studies	00			
	4.4.10	Conclus		00			
	4.4.11	Reference		00			
4.5	-		Hypersonic Wind Tunnels				
	by B. Chanetz and A. Chpoun						
	4.5.1	Introduction		00			
	4.5.2	The Nozzle		00			
	4.5.3	The Dif		00			
	4.5.4	1	Process	00			
	4.5.5	-	nic and Hypersonic Continuous Wind				
		Tunnels		00			
		4.5.5.1	Return-Circuit Continuous Wind				
			Tunnels	00			
		4.5.5.2	Open-Circuit Continuous Wind				
			Tunnels	00			
	4.5.6		own Wind Tunnels	00			
		4.5.6.1		00			
		4.5.6.2	Description of a Classical Cold				
			Blow-Down Wind Tunnel	00			

4.2 Shock Tunnels

	4.5.6.3	Induction Blow Down Wind Tunnel	00
	4.5.6.4	Description of a Hot Blow-Down	
		Wind Tunnel	00
4.5.7	Experin	nental Techniques	00
	4.5.7.1	Pitot Probe Technique	00
	4.5.7.2	Multi-Hole Pressure Probes	00
	4.5.7.3	Electron Beam Fluorescence	
		Technique (EBFT)	00
	4.5.7.4	Heat Flux Measurement by Surface	
		Measurement Techniques	00
	4.5.7.5	Infrared Thermography Technique	00
	4.5.7.6	Laser Doppler Velocimetry (LDV)	00
4.5.8	Summa	ry	00
4.5.9	Referen	ces	

5 Measurement Techniques and Diagnostics

by H. Kleine

	5.1.1	Density-	Sensitive Flow Visualization	00	
	5.1.2	The Sha	dow Technique	00	
	5.1.3	Schlierer	n Method	00	
	5.1.4	Color So	chlieren Techniques	00	
	5.1.5	Directio	n-Indicating Color Schlieren Method	00	
	5.1.6	Interferometry			
	5.1.7	Shearing Interferometry			
	5.1.8	Holographic Interferometry			
	5.1.9	Light Sc	ources and Recording Materials	00	
	5.1.10	Time Ev	olution Visualization and Animation	00	
	5.1.11	Reference	ces	00	
5.2	Spectroscopic Diagnostics				
	by D.F. I	Davidson &	- R.K. Hanson		
	5.2.1	Introduc	ction	00	
	5.2.2	Absorpt	ion Theory and Line Shapes	00	
	5.2.3	Ultravio	let and Visible Laser Absorption		
		Techniq	ues	00	
		5.2.3.1	Visible and Near Ultraviolet Transitions		
			Available without Frequency Doubling:		
			CN, SiH, CH, NCO, C ₂ , SiH ₂ , NH ₂ , TiN	00	
		5.2.3.2	Ultraviolet Transitions Available		
			with Frequency Doubling: OH, NH	00	

	5.2.3.3	Ultraviolet Transitions Available Using	
		BBO Frequency Doubling: CH ₃ , NO,	
		O ₂ , HO ₂	00
	5.2.3.4	Lamp Absorption: Working without	
		Lasers	00
5.2.4	Frequer	ncy Modulation Methods	00
	5.2.4.1	Theory and Experiment	00
	5.2.4.2	$\rm NH_2$ and $\rm ^1CH_2$	00
5.2.5	Infrared	Laser Absorption and Emission	
	Techniq	ues	00
	5.2.5.1	Room Temperature Diodes	00
	5.2.5.2	Pb Salt Diode Lasers	00
	5.2.5.3	CO Discharge Lasers	00
	5.2.5.4	Emission Methods	00
5.2.6	Atomic	Resonance Absorption Spectroscopy	00
	5.2.6.1	Experimental Methods	00
	5.2.6.2	Calibrations and Applications	00
	5.2.6.3	Shock Tube Impurities	00
5.2.7	Planar I	aser Induced Fluorescence	00
	5.2.7.1	Theory	00
	5.2.7.2	Measurement Strategies	00
5.2.8	Referen	ces	

6 Numerical Methods

by P. Roe

6.1	Introduction		
6.2	Analyt	ical Background	00
	6.2.1	Conservation	00
	6.2.2	Weak Solutions	00
	6.2.3	Physical Solutions — Entropy Conditions	00
	6.2.4	Quasilinear Form, Jacobians	00
	6.2.5	Wave Speeds, Hyperbolicity, Nonlinearity and	
		Convexity	00
	6.2.6	Characteristic Variables, Centered Waves	00
	6.2.7	Riemann Problems	00
6.3	Numerical Background		
	6.3.1	Finite-Volume Methods — The Lax-Wendorff	
		Theorem	00
	6.3.2	Error and Accuracy	00
	6.3.3	The Simplest Hyperbolic Problem	00

		6.3.3.1	Flux Estimation	00
		6.3.3.2		00
		6.3.3.3	Von Neumann Analysis	00
		6.3.3.4	Godunov's Theorem	00
	6.3.4	Time-St	epping Flux Integration,	
		Semi-Di	scretization	00
6.4	One-Di	mensiona	l Methods	00
	6.4.1	The Go	dunov Scheme	00
	6.4.2	A Linea	rized Riemann Solver	00
		6.4.2.1	Choice of Linearization	00
		6.4.2.2	Failings of Linearized Solvers	00
	6.4.3	The Ent	ropy Fix	00
	6.4.4	Positivit	у	00
		6.4.4.1	Dubrocca's Proposal	00
		6.4.4.2	Kinetic Schemes	00
	6.4.5	High Re	solution Schemes	00
		6.4.5.1		00
		6.4.5.2	More Experiments	00
			Hancock's Scheme	00
		6.4.5.4	Flux Limiting, Fluctuation Splitting	00
		6.4.5.5		00
	6.4.6	Essentia	lly Non-Oscillatory (ENO) Schemes	00
	6.4.7	Avoidin	g the Riemann Problem	00
		6.4.7.1	Lax-Friedrichs	00
		6.4.7.2	Nessayhu-Tadmor	00
		6.4.7.3	HLL, HLLE, HLLC	00
		6.4.7.4	Flux-Vector Splitting, CUSP, AUSM	00
		6.4.7.5	Flux-Corrected Transport	00
		6.4.7.6	5	00
		6.4.7.7	Chang	00
6.5	Source	Terms		00
6.6	Multidi	mensiona	l Application	00
	6.6.1	Flux Ca	lculation	00
6.7	Grid Ge	eneration	and Adaptivity	00
6.8		ous Solu		00
6.9	"Genuir	nely" Mu	ltidimensional Methods	00
		Reading		00
	An Exa			00
		ding Rem	arks	00
	Referen			00
6.14	Append	ix A: A S	Simple Code for One-Dimensional	
	Gasdyn	amics		00

PART **2**

Shock Wave Interactions and Propagation

7 One-Dimensional Interactions *by O. Igra*

7.1	Background and Introduction	00
7.2	Head-on Collision between Two Shock Waves	00
7.3	Head-on Collision between a Shock Wave and a	
	Rarefaction Wave	00
7.4	Head-on Collision of a Shock Wave with a Contact	
	Discontinuity	00
7.5	Head-on Collision of a Rarefaction Wave with a	
	Contact Discontinuity	00
7.6	Shock Wave Overtaking Another Shock Wave	00
7.7	Shock Wave Overtaken by a Rarefaction Wave	00
7.8	Shock Wave Overtaking a Rarefaction Wave	00
7.9	The General Riemann Problem (GRP) Solver	00
	7.9.1 Concluding Remarks	00
7.10	Head-on Collision of a Planar Shock Wave with a	
	Non-Rigid Boundary	00
7.11	Summary and Conclusions	00
7.12	References	

8 Two-Dimensional Interactions

8.1	The Reflection of Oblique Shock Waves <i>by G. Ben-Dor</i>				
	8.1.1 8.1.2		ction and Historical Background cal Approaches for Describing Regular	00	
		,	ch Reflections	00	
		8.1.2.1	Two-Shock Theory	00	
		8.1.2.2	Three-Shock Theory	00	
		8.1.2.3	Shock Polars	00	
		8.1.2.4	Suggested RR∩IR Transition Criteria	00	
		8.1.2.5	Dual-Solution Domain	00	
		8.1.2.6	Hysteresis Phenomenon in the $RR \cap IR$		
			Transition	00	
	8.1.3	Steady I	Flows	00	

8.2

	8.1.3.1	Categories of Steady Shock Wave	
		Reflections	00
	8.1.3.2	Hysteresis Phenomena	00
	8.1.3.3	Analytical Prediction of the Mach	
		Reflection Wave Configuration	00
	8.1.3.4	Modification of the Perfect Two- and	
		Three-Shock Theories	00
8.1.4	Pseudo-	Steady Flow	00
	8.1.4.1	Shock Wave Diffraction Process	00
	8.1.4.2	Shock Wave Reflection Phenomena	00
	8.1.4.3	Regular Reflection-RR	00
	8.1.4.4	Single-Mach Reflection-SMR	00
	8.1.4.5	Transitional-Mach Reflection-TMR	00
	8.1.4.6	Double-Mach Reflection-DMR	00
	8.1.4.7	von Neumann Reflection-vNR	00
	8.1.4.8	Triple Point Trajectory Angles	00
	8.1.4.9	Transition Criteria	00
	8.1.4.10	Domains of Different Types of	
		Reflections	00
	8.1.4.11	Modifications of the Two- and	
		Three-Shock Theories	00
8.1.5	Unstead		00
	8.1.5.1	Reflection of Constant Velocity Shock	
		Waves over Non-Straight Surfaces	00
	8.1.5.2	Non-Constant Velocity Shock Wave	
		Reflections over Straight Surfaces	00
	8.1.5.3	Spherical Shock Wave Reflections	
_	_	over Straight and Non-Straight Surfaces	
The Re	fraction o	f Shock Waves	
by L.F. H	Ienderson		
8.2.1	Introduc	ction	
	8.2.2.1	The Wave Systems	00
	8.2.2.2	The Wave Impedance	
	8.2.2.3	Two-Dimensional Refraction	00
	8.2.2.4	Solution of Fast-Slow Refraction $\eta_a > 1$	00
	8.2.2.5		00
	8.2.2.6	• a	
8.2.3		nensional Refraction	00
	8.2.3.1	Two Dimensional Wave Analysis	00
	8.2.3.2	The Wave Impedance of an Oblique	
		Shock	00

			The Refraction Law	00
			The Relative Refractive Index	00
		8.2.3.5	The Shock Polar	00
	8.2.4	Solution	of Fast–Slow Refraction $\eta_a > 1$	00
	8.2.5	Solution	of Slow–Fast Refraction $\eta_a > 1$	00
	8.2.6	The Mir	nimum Time Principle	00
	8.2.7	Reference	ces	
8.3	Shock '	Wave/Bou	undary Layer Interactions	
	by J.M.	Delery		
	8.3.1	Introdu	ction	00
	8.3.2	Properti	es of Shock Induced Interactions	00
		8.3.2.1		00
		8.3.2.2	Interaction Without Boundary Layer	
			Separation	00
		8.3.2.3	Interaction With Boundary Layer	
			Separation	00
		8.3.2.4	Hypersonic Interaction	00
		8.3.2.5	Other Aspects of Shock-Induced	
			Interaction	00
	8.3.3	Interact	ion Control Methods	00
		8.3.3.1	Mechanisms for Control Action	00
		8.3.3.2	Examination of Some Control Actions	00
	8.3.4	Problem	s Raised by Interaction Modeling	00
		8.3.4.1	Numerical Accuracy of the Codes	00
		8.3.4.2	The Physical Modeling	00
	8.3.5	Concluc	ling Remarks	00
	8.3.6	Reference	ces	
Axi-S	Symme	tric Shoc	k Wave Reflections	
	E Milton			
9.1	Introdu	iction		00

J.1	muouo	tetion	00	
9.2	External Reflection over Simple Upstream Facing			
	Cones		00	
	9.2.1	Simple Cones in Steady Supersonic Flows	00	
	9.2.2	Moving Shock Waves	00	
9.3	Genera	lized Solution of Conical Moving Shock Waves	00	
	9.3.1	Formulation for Ray-Shock Calculations in		
		Conical Mach Reflection	00	
	9.3.2	Equations for the Generalized Ray-Shock		
		Solution	00	

	9.3.3	Curved Mach Stems	00
	9.3.4	Solution Procedures for Cases Without	
		Self-Similarity	00
	9.3.5	Post-Reflection Rays Parallel to the Centerline	00
9.4	Some C	Conical Mach Reflection Results from the	
	Ray-Sh	ock Theory	00
	9.4.1	External (Expanding) Flows	00
	9.4.2	Converging (Internal) Cases	00
9.5	Experii	mental Conical Mach Reflection Studies	00
	9.5.1	Validation for External Cases	00
	9.5.2	Mach Reflection within Conical Contractions	00
9.6	Numer	ical Experiments (CFD)	00
	9.6.1	CFD Scheme for Conical Mach Reflection	00
	9.6.2	Comparison of the Ray-Shock Theory CFD	
		Results	00
9.7	Some 7	Theoretical Aspects of Conical Mach Reflection	00
	9.7.1	von Neumann Mach Reflection Effects in	
		Conical Reflections	00
	9.7.2	Self-Similar and Non Self-Similar Axi-	
		Symmetric Mach Reflection	00
	9.7.3	Transition from Regular to Mach Reflection in	
		Conical Problems	00
9.8	Some A	Applications of Axi-Symmetric Calculations	00
	9.8.1	Mach Reflection over a Simple Cone	00
	9.8.2	Axi-Symmetric Shock Wave Focusing	00
9.9	Final D	Discussion	00
9.10	References		

10	The	Propaga	ation of Shock Waves in Channels	
	by W.	Heilig &	O. Igra	
	10.1	Introdu	ction	00
	10.2	Scenario	os of the Shock Wave Propagation in Channels	00
	10.3	Phenon	nenology of the Shock Wave Propagation in	
		Channe	ls	00
		10.3.1	Brief Description of the Conventional Shock	
			Tube	00
		10.3.2	Visualization of ShockWave Propagation in	
			Various Channel Configurations	00
		10.3.3	Comments on the Usefulness of Flow	
			Visualization and its Evaluation	00

10.4	Approx	imate Analytical Methods	00
	10.4.1	The Unsteady Quasi-One-Dimensional Flow	00
	10.4.2	Rudinger's Method	00
	10.4.3	The Chester-Chisnell-Whitham Channel	
		Formula	00
	10.4.4	Whitham's Theory of Shock Dynamics	00
	10.4.5	Analytical Treatment of Shock Propagation	
		Through a Class of Bifurcated Ducts using	
		Whitham's Theory	00
10.5	Numeri	cal Methods	00
	10.5.1	Example Calculations Using Wave Propagation	
		Codes	00
	10.5.2	The GRP (General Riemann Problem) Code	00
	10.5.3	Solving a Quasi One-Dimensional Flow using	
		the Random Choice Method (RCM)	00
10.6	Data Ba	ses	00
10.7	Final R	emarks	00
10.8	Referen	ces	

11	Shock Wave Focusing by F. Higashino				
	11.1 Introduction	00			
	11.2 Theoretical Analyses	00			
	11.2.1 Basic Equations	00			
	11.2.2 Characteristics Method and CCW				
	Approximation	00			
	11.2.3 Similarity Method for Imploding Shock Wave	00			
	11.3 Results and Discussion	00			
	11.3.1 Shock Tube Experiment	00			
	11.3.2 Blast Waves	00			
	11.4 References				
12	Application of Shock Waves in Medicine				
	by A.M. Loske				
	12.1 Introduction	00			
	12.2 Brief Physical Background	00			
	12.2.1 Lithotripsy Pressure Pulses	00			
	12.2.2 Shock Wave Propagation and Interaction with				
	Matter	00			

12.	Extracorporeal Shock Wave Lithotripsy (ESWL)	00
	2.3.1 Electrohydraulic Shock Wave Lithotripters	00
	2.3.2 Electromagnetic Shock Wave Lithotripters	00
	2.3.3 Piezoelectric Shock Wave Lithotripters	00
	2.3.4 Micro-Explosive Lithotripters	00
12.	hock Waves in Orthopaedics	00
12.	hock Waves in Ophthaimology	00
12.	hock Waves in Oncology and Gene Therapy	00
12.	hock Waves as Possible Method for Food Preservation	00
12.	hock Wave Thrombus Ablation	00
12.	leferences	

13	Spherical	Shock	Waves
----	-----------	-------	-------

13.1	Expanding Spherical Shocks (Blast Waves)			
	by J.M. I	Dewey		
	13.1.1	Introduction	00	
	13.1.2	Physical Properties of Expanding Spherical		
		Shock Waves	00	
		13.1.2.1 Physical Properties in Radius-Time		
		(r-t) Plane	00	
		13.1.2.2 Shock Front Properties	00	
		13.1.2.3 The Shape of the Shock Wave	00	
		13.1.2.4 A Compendium of Physical Properties	00	
	13.1.3	Scaling Laws	00	
	13.1.4	Analytical Solutions	00	
	13.1.5	Analytical Solutions	00	
		13.1.5.1 Numerical Modeling	00	
		13.1.5.2 Numerical Reconstruction	00	
	13.1.6	Experimental Measurement Techniques	00	
		13.1.6.1 Introduction	00	
		13.1.6.2 Electronic Methods	00	
		13.1.6.3 Photogrammetric Methods	00	
		13.1.6.4 Passive methods	00	
	13.1.7	Spherical Shock Reflections	00	
		13.1.7.1 Regular and Mach Reflections	00	
		13.1.7.2 Height-Of-Burst Curves	00	
	13.1.8	References		
13.2	General	Attenuation Law for Spherical Shock Wave		
	Propagating in Pure Gases			

by F. Aizik, G. Ben-Dor, T. Elperin & O. Igra

	13.2.2 13.2.3	Introduction Background 13.2.2.1 The Assumptions General Attenuation Law References	00 00 00 00
14 Shoo	k Induc	ed Instabilities of Interfaces	
by D.	Shvarts,	O. Sadot, D. Oron, A. Rikanati and U. Alon	
14.2	The Ray 14.2.1 14.2.2 14.2.3 14.2.4 14.2.5 14.2.6 The Ric	Analysis of the Early Nonlinear Stages The Late Nonlinear Stage (Layzer Model) Density Ratio Dependence Spike Behavior Dimensionality Dependence htmyer-Meshkov Instability mental Studies Experimental Studies of the Single Mode Rayleigh-Taylor Instability	00 00 00 00 00 00 00 00 00
14 5		Instability Initial Conditions	00 00
11.3		Two-Dimensional Statistical Mechanics Model and Late Time Scaling Laws Three-Dimensional Effects on the Late Time	00
	14.5.3	Scaling Laws Shock Wave Experiment to Study the Bubble	00
	1454	Competition Process	00
146	14.5.4	Re-Shock Experiments	00
	Summa Referen		00

15 Shock Wave Propagation in Multi-Phase Media15.1 Shock Wave Propagation in Porous Media

by B. Skews, A. Levy & D. Levi-Hevroni				
15.1.1	Introduction	00		
15.1.2	General Description of the Wave Propagation	00		
15.1.3	The Nature of Porous Foams	00		
15.1.4	Scientific Background	00		
	by B. Ski 15.1.1 15.1.2 15.1.3			

		15.1.4.1 Systems with Flexible Skeletons	00
		15.1.4.2 Systems with Rigid Skeletons	00
		15.1.4.3 Blast Wave Loading	00
		15.1.4.4 Multi-Dimensional Studies	00
		15.1.4.5 Theory and Modeling	00
	15.1.5	Macroscopic Governing Equations	00
		15.1.5.1 The Assumptions	00
		15.1.5.2 The Balance Equations	00
	15.1.6	Case Studies	00
		15.1.6.1 One-Dimensional Shock Wave	
		Interaction with Rigid Porous Material	00
		15.1.6.2 One-Dimensional Shock Wave	
		Interaction with Flexible Porous	
		Material	00
		15.1.6.3 Regular Reflection from a Rigid Porous	
		Surface in Pseudo-Steady Flows	00
	15.1.7	References	
15.2	Weak S	hock Wave Interaction with Inert Granular Media	
		itan & A. Levy	
	-		00
	15.2.1 15.2.2	Introduction Experimental Methods and Materials	00
	15.2.2	2D Packing of Cylinders and Discs	00
	19.2.9	15.2.3.1 Unsteady Flow Pattern	00
		15.2.3.2 Dynamics of the Contact Stress Transfer	00
		15.2.3.3 Role of the Sidewall Friction	00
	15.2.4	3D Packing of Spherical Particles	00
	19.2.4	15.2.4.1 Behavior of the Unsteady End-Wall	00
		Peak	00
		15.2.4.2 Bridging effect and Size of the Pressure	00
		Transducer	00
		15.2.4.3 Packing Density and Gas Filtration	00
		15.2.4.4 Effective Stress Behavior	00
	15.2.5	Dynamics of the Granular Layer Compression	00
	19.2.9	15.2.5.1 Wave Processes	00
		15.2.5.2 Dynamic Young Moduli	00
	15.2.6	Shielding Characteristics of Granular Filters	00
	19.2.0	15.2.6.1 Problem Description	00
		15.2.6.2 Attenuation Performance of the	00
		Granular Bulk	00
	15.2.7	Physical Models and Simulations	00
	15.2.8	Conclusions	00
	15.2.8	References	00
	1.2.9	NULLIULS	

15.3	Shock V	Waves in Inert and Reactive Bubbly Liquids	
	by V. Ke	drinskii	
	15.3.1	Shock Waves in Inert Bubbly Liquids	00
		15.3.1.1 Introduction	00
		15.3.1.2 Plane Shock Waves and Spherical	
		Bubbles	00
		15.3.1.3 Plane Shock Waves and Plane Gas	
		Layers	00
		15.3.1.4 Plane Shock Waves and Bubbly Layers	00
		15.3.1.5 The Iordansky-Kogarko-van-	
		Wijngaarten Non-Equilibruium Two	
		Phase Model of a Bubbly Liquid	00
		15.3.1.6 Amplification, Collision and Focusing	
	1622	of Shock Waves in Bubbly Liquids	00
	15.3.2	Bubbly Detonation Waves in Reactive Bubbly	00
		Liquids 15.3.2.1 Introduction	00 00
		15.3.2.2 Single Bubble Dynamics	00
		15.3.2.3 Single Bubble Dynamics: Chemical	00
		Reaction and the Interface Mass	
		Transfer	00
		15.3.2.4 Shock Waves in Reactive Bubbly	00
		Liquids	00
		15.3.2.5 Initiation, Formation and Collision of	
		Bubbly Detonation Waves: "Hot Spots"	
		Mechanism	00
	15.3.3	References	
15.4	Shock V	Wave Interactions with Liquid-Gas Suspensions	
	by M.E.H	H. van Dongen	
	15.4.1	Introduction	00
	15.4.2	Thermodynamic Properties of a Liquid Gas	
		Suspension	00
	15.4.3	Speeds of Sound	00
		15.4.3.1 Fully Frozen Sound Speed	00
		15.4.3.2 Partly Frozen Sound Speed	00
		15.4.3.3 Equilibrium Sound Speed	00
	15.4.4	Jump Conditions Across a Normal Shock Wave	
		in a Liquid Gas Suspension	00
		15.4.4.1 Approximate Rankine-Hugoniot	
		Relations for Weak Shocks	00
		15.4.4.2 Guha's Exact Analytical Solution for	00
		Specified p_1 , T_1 , T_2 and f_g	00

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

PART 3

Chemical Reactions in Shock Wave

16	Chemical	and	Combustion	Kinetics
----	----------	-----	------------	----------

16.1	Mass S	pectrometric Methods for Chemical Kinetics in Sh	lock	
	Tubes			
	by R.D. Kern, H.J. Singe & Q. Zhang			
	16.1.1	Introduction	00	
	16.1.2	Coupling of a Time-of-Flight Mass Spectrometer		
		to a Shock Tube	00	
	16.1.3	Chemical Kinetics Results from the TOF Shock		
		Tube Technique	00	
	16.1.4	Summary	00	
	16.1.5	References		
16.2	The Ap	plication of Densitometric Methods to the		
	Measurement of Rate Processes in Shock Tubes			
	by J.H. Kiefer			
	16.2.1	Introduction	00	
	16.2.2	Methods for the Observation of Gas Density	00	

		16.2.2.1 Atomic Absorption Methods	00
		16.2.2.2 Rayleigh Scattering	00
		16.2.2.3 Refractive Index Methods	00
	16.2.3	References	
16.3	Atomic	Resonance Absorption Spectrometric with	
	Flash o	r Laser Photolysis in Shock Wave Experiments	
	by J.V. M	lichael & A. Lifshitz	
	16.3.1	Introduction	00
	16.3.2	Atomic Resonance Absorption Spectrometric	
		Detection in Shock Tubes	00
		16.3.2.1 Light Sources	00
		16.3.2.2 Line Absorption Theory	00
		16.3.2.3 Conclusions	00
		16.3.2.4 Calibration Procedures	00
	16.3.3	Flash and/or Laser Photolysis in Shock Tubes	00
		16.3.3.1 Bimolecular Atom-Molecule	
		Reactions	00
		16.3.3.2 Bimolecular Radical-Molecule	
		Reactions	00
		16.3.3.3 Flash and/or Laser-Shock Tubes	
		Results	00
		16.3.3.4 Summary	00
	16.3.4	References	
16.4	Single I	Pulse Shock Tube	
	by W. Ts	ang & A. Lifshitz	
	16.4.1	Introduction	00
	16.4.2	Single Phase Shock Tube	00
		16.4.2.1 Configuration	00
		16.4.2.2 Requirements	00
		16.4.2.3 Limitations	00
		16.4.2.4 Validation	00
	16.4.3	Chemical Kinetics	00
		16.4.3.1 General Considerations	00
		16.4.3.2 Analytical Methods	00
		16.4.3.3 Treatment of Data	00
		16.4.3.4 Experimental Approaches	00
	16.4.4	Complex Reaction Systems	00
		16.4.4.1 Introduction	00
		16.4.4.2 Determination of Reaction Mechanisms	00
		16.4.4.3 Computer Simulation	00
	16.4.5	Single Step Reactions	00

		16.4.5.1 Justification	00
		16.4.5.2 Experimental Configurations	00
		16.4.5.3 Internal Standard and the Comparative	
		Rate Technique	00
	16.4.6	Specific Systems and Generalizations	00
		16.4.6.1 Complex Reactions	00
		16.4.6.2 Single Step Kinetics	00
	16.4.7	Summary and Future Directions	00
	16.4.8	References	00
	16.4.9	Appendix: Summary and Experimental Results	00
		16.4.9.1 Complex Kinetics	00
		16.4.9.2 Single Step Rate Expressions	
16.5	Ignition	Delay Times	
	by A. Lif	shitz	
	16.5.1	Introduction	00
	16.5.2	Basic Concepts	00
	16.5.3	Methodology	00
		16.5.3.1 Experimental Methods	00
		16.5.3.2 Design of an Experiment and Data	
		Processing	00
		16.5.3.3 Modeling Procedures	00
	16.5.4	Kinetic Systems	00
		16.5.4.1 Introductory Remarks	00
		16.5.4.2 Ignition of Small Molecules, "The	
		Loop Concept"	00
		16.5.4.3 Thermal Ignition Without Chain	
		Branching, $N_2O + COS$, $N_2O + CO$	00
		16.5.4.4 The Concept of Energy	
		Branching, $H_2 + CL_2$, $H_2 + F_2$	00
		16.5.4.5 Correlation of Ignition Delay Times	
		with Bond Dissociation Energies. The	
		Role of Initiation vs Chain Branching	00
		16.5.4.6 The Dependence of the Ignition Delay	
		Times on the Fuel Concentration	00
		16.5.4.7 Inhibiting Effects of the Diluent	00
		16.5.4.8 Effect of Additives	00
	16.5.5	Computer Modeling	00
		16.5.5.1 Reaction Scheme	00
		16.5.5.2 Sensitivity Spectrum	00
	16.5.6	Conclusions	00
	16.5.7	References	

16.6	Particulate Formation and Analysis			
	by H. Wang			
	16.6.1 Introduction		00	
	16.6.2	Particle Size Distribution Function	00	
	16.6.3	Particle Analysis Techniques	00	
		16.6.3.1 Laser Light Extinction and Scattering	00	
		16.6.3.2 Complex Refractive Index	00	
		16.6.3.3 Light Emission	00	
		16.6.3.4 Other Detection Techniques	00	
	16.6.4	Soot Formation	00	
		16.6.4.1 Induction Time	00	
		16.6.4.2 Soot Yield	00	
		16.6.4.3 Soot Growth Rate	00	
		16.6.4.4 REM and Tem Studies	00	
	16.6.5	Nano-Particle Synthesis	00	
	16.6.6	Homogeneous Nucleation of Metal Particles	00	
	16.6.7	Summary	00	
	16.6.8	References		

17 Combustion, Detonation and Deflagration

by J. Lee