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Problem Sets

Chapter 1

Problem 1.1

In this chapter we discussed the dominant two-step processes through which
O+ recombines. These reaction sets, along with their corresponding reaction
rates, are:

O+ + O2 → O+
2 + O, k1 = 2.82×10−11 −7.74×10−12(Teff /300) + 1.073

× 10−12(Teff /300)2 − 5.17 × 10−14(Teff /300)3

+ 9.65 × 10−16(Teff /300)4 cm3 s−1

O+
2 + e → O + O, k2 = 1.8 × 10−7(Te/300)−0.55 cm3 s−1

and

O+ + N2 → NO+ + N, k3 = 1.53 × 10−12 − 5.92 × 10−13(Teff /300)

+ 8.6 × 10−14(Teff /300)2 cm3 s−1

NO+ + e → N + O, k4 = 4.3 × 10−7(300/Te)
0.85 cm3 s−1

where Teff = 0.667Ti + 0.333Tn.
Determine how to use the online MSIS-E-90 neutral atmosphere model

(http://modelweb.gsfc.nasa.gov/atmos/msise.html) to obtain the neutral densities
and temperature as a function of altitude for typical equinoctial, midlatitude,
nighttime, and solar minimum conditions.

Ignoring any production,

d[O+]
dt

= −{k1[O2] + k3[N2]}[O+] = −β[O+].

Plot the time constant for recombination, β−1, for 100–500 km using Ti = Tn.
A semilog axis may be appropriate.
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Problem 1.2

Using the formulas in problem 1.1, determine the loss time constants for NO+
and O+

2 at the E region heights of 100 and 120 km in solar maximum using
[O+

2 ] = [NO+] = 0.5[e] = 5×104 cm−3. Use the table in Appendix B to determine
the electron temperature, taking Te = Tn.

Problem 1.3

This problem demonstrates behavior that one might expect in a sporadic E layer.
Suppose that the nighttime E region after sunset is composed of 50% NO+ and
50% Mg+ with an electron density of 2 ×105 cm−3. Let the recombination
coefficients be αNO+ = 5×10−7 cm3 s−1 and αMg+ = 8 × 10−12 cm3 s−1. What
is the initial recombination rate of each ion species? What is the ion compo-
sition after one hour? How long does it take for 99% of the NO+ to disap-
pear? (You may assume that one species goes away quickly and solve for it,
assuming that the other density is constant. Use a numerical integration scheme
or graphical approach. Then, solve for the slow species decay. Or you can
try to solve the coupled equations numerically.) If the initial ion composition
is all NO+, what would be the initial recombination rate? In this case, what
would be the density after one hour? Comment on the two cases of different
composition.

Problem 1.4

Height-integrated quantities are of some importance to a number of iono-
spheric calculations, as we will study in future chapters. Consider the so-called
α-Chapman layer for the nighttime F region:

n(z′) = n0 exp
[

1
2

(
1 − z′ − e−z′)]

.

Assume a constant neutral scale height H and use the fact that z′ = (z − z0)/H
where z0 is the height of the peak. Use a numerical integration scheme for the
following calculations:

1. Show that the height-integrated plasma content, N, also called the total electron
content (TEC), can be written as

N =
∫

n(z′)dz ≈ 4.1n0H.

2. The density-weighted collision frequency is defined as

〈νin〉 = 1
N

∫
n(z′)νin(z′)dz.

Assuming νin(z′) = ν0e−z′
, show that 〈νin〉 ≈ ν0 = νin(z0).
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3. Show that the height-integrated conductivity,
∑

P = ∫
σPdz, can be expressed as∑

P
≈ 4.1HσP(z0).

We introduce the Pedersen conductivity, σP, in the next chapter. Use σP =
(nMνin)/B2 and the form of the collision frequency in part 2.

Problem 1.5

Find the current density implied by the tail’s magnetic field configuration if it is
modeled in the form

Bx = −B0 tanh(z/h)

using ∇ × B = μ0J. For B0 = 10 nT and h = 1Re, find the maximum value of J
in A/m2.

Problem 1.6

If reconnection in the nightside takes place after plasma in the ionosphere con-
vects across the polar cap (≈30◦ of latitude) under the influence of a 50 mV/m
electric field at ionospheric heights, how long is the magnetic tail? Assume that
the shocked solar wind accelerates instantly to a 500 km/s solar wind speed
due to the connection process, and take the ionospheric magnetic field to be
0.5 × 10−4 T.

Chapter 2

Problem 2.1

Derive (2.37b) from (2.34).

Problem 2.2

Show that J × B = −ρνinU in the F region using E = 0. Use the approximation
for σp in (2.40b) and J⊥ = σpE′⊥. Here J × B is referred to as ion drag.

Problem 2.3

Compare the collisionless E × B drift in a 0.5 × 10−4 T magnetic field due to a
10 mV/m electric field to the ion diamagnetic drift caused by a 200 K tempera-
ture change in a plasma with a constant density of 105 cm−3 if the temperature
change takes place over 10 km. If the 10 mV/m field were due to a thermoelectric
effect in which the temperature change was measured in millielectron volts, what
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would the temperature change be in Kelvin over a 10 km distance? This is a very
unrealistic temperature change and shows how large ionospheric electric fields
actually are compared to temperature changes.

Problem 2.4

Suppose that the high-latitude, Northern Hemisphere electric field is southward
with a value of 50 mV/m and that the magnetic field is vertical with a value of
0.5 × 10−4 T. If the E region density is 105 cm−3, find the current density vector
using (2.38) and the fact that σH >> σp. What particles carry the current? Now,
transform to a frame moving with the E × B drift. Show that if you use the
electric field and neutral wind in the new frame, (2.38) gives the same value for
the current vector. What particles carry the current in the new reference frame?

Problem 2.5

In this problem we model the ionosphere as a superposition of a Chapman
layer in the F region and a narrow Gaussian layer in the E region, which
might be typical of nighttime, midlatitude conditions. A Chapman layer is of the
form

nF
(
z′) = nF0 exp

[
1
2

(
1 − z′ − e−z′)]

where z′ = (z − zF0)/H, H is the neutral scale height, and zF0 is the height of
the F peak. Use a peak height of 300 km, a peak density of 4 × 105 cm−3, and
a scale height of 50 km. In the E region, model the layer as a Gaussian with a
characteristic scale of σ = 10 km, a peak height of 105 km, and a peak density
of 105 cm−3. So, the E layer will be of the form

nE(z) = nE0 exp
[
−(z − zE0)2/2σ2

]
.

In the F region, assume there is only atomic oxygen with a neutral density
given by

nO(z) = nO0 exp[−(z − 100)/H]

with a density of 5 × 1011 cm−3 at 100 km. In the E region, take the neutral
density to be constant with a value of 6 × 1012 cm−3. Use B = 0.5 × 10−4 T.
Find the height-integrated conductivity tensor contributions from both layers,
ignoring the Hall term in the F region (explain why this is justified). Be sure to
make use of the simplifications discussed in the chapter.
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Problem 2.6

Solve the single particle equations of motion for an ion in crossed electric and
magnetic fields (assume vacuum conditions).

Problem 2.7

Derive (2.38) and (2.39a–c).

Problem 2.8

A simple pendulum (point mass attached to a massless, stiff string of length l
with no friction) is very slowly shortened. Find the associated adiabatic invariant,
assuming that the angular displacement is small. (Hint: For a photon the energy
equals �ω and � is the invariant quantity. Find the pendulum energy in terms of
θmax and ω for a given length of a pendulum and divide them.) If a 1 m length
pendulum of mass 10 g has a maximum angular displacement of 10◦, find its
maximum angular displacement after an adiabatic shortening to 0.5 m.

Problem 2.9

The action is defined as J = ∫ pdq over a full cycle of a periodic motion, where
p denotes momentum. For a pendulum, p = ml(dθ/dt) with θ = θ0 cos ωt and
ω = √

g/l. Find J and show that it agrees with E/ω in the previous problem to
within a numerical constant.

Problem 2.10

Radial diffusion brings a 50 keV proton from 8 Re to 3 Re in a dipole field.
Find the final energy if initially the 50 keV proton was moving entirely in the
perpendicular direction.

Problem 2.11

The magnetopause current effectively terminates the earth’s magnetic field at the
subsolar point. To effect this, the field (BMB, where MB stands for “magneto-
spheric boundary”) is double that of the dipole field at the same location without
a solar wind. Set the associated magnetic field pressure (B2

MB/2μ0) equal to the
solar wind kinetic pressure, 2ρv2

sw, where ρ is the hydrogen plasma mass density
and vsw is the solar wind speed. Note that we have assumed perfect reflection
to obtain the factor of 2. Find an expression for the magnetopause stand-off
distance and evaluate it for vsw = 400 km/s and n = 2 cm−3. Take the magnetic
field at the surface to be 0.25 × 10−4 T.
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Problem 2.12

A derivative of Poynting’s theorem has been given in this chapter. Show that the
integrated Poynting flux (E × H) into a resistor is equal to I2R. Ignore fringing
effects on the magnetic field and take E to be uniform throughout the resistive
material. A useful formula is R = L/σA where σ is conductivity, L is length, and
A is the cross-sectional area of the resistor.

Problem 2.13

Show that in the magnetic tail the direction of the earth’s magnetic field and of
the interplanetary electric field is such that E×H is inward for a southward inter-
planetary magnetic field. Model the tail as a rectangular solid 20Re × 20Re ×
200Re in size with an average magnetic field strength at the boundary of 15 nT.
(Of course, a cylinder would make a better model, but this will do for an esti-
mate.) Let the magnetic field at the surface of the solid be toward or away from
the sun, depending on the hemisphere, and let the electric field be in the dawn-
to-dusk direction. Let the magnetospheric configuration be static so that the
time rate of change of the magnetospheric magnetic field vanishes. Using the
energy dissipation value at the magnetic storm peak from Fig. B.8 in Appendix
B (≈3×1019 ergs/s) and Poynting’s theorem, find the average electric field at the
surface and the total potential across the system. If half of the energy is dissipated
in the current systems driven by that potential, find the associated current.

Problem 2.14

Use dimensional arguments to show that v = (thermal speed)2/(collision
frequency).

Chapter 3

Problem 3.1

Show that dropping the advective derivative on the left-hand side of Eq. (3.5)
is justified compared to terms involving ∂/∂t, F, and ηũ/ρH2 in Fig. 3.7 for a
diurnal tide with maximum speed of 100 m/s at 300 km. Make sure that your
units are the same when comparing the terms.

Problem 3.2

Using Fig. 3.7, find the steady-state wind at 300 km altitude on the dayside of the
terminator if F is balanced by ion drag via νni. Now suppose that an eastward
electric field due to the prereversal enhancement lifts the ionosphere by one
neutral scale height such that the plasma density is reduced by a factor of 3 at
300 km. Find the new wind speed. Estimate the viscous force for such a wind
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difference across one scale height and compare it to F. This shows that viscosity
would limit the acceleration of the neutral wind “under” the lifted ionosphere.

Problem 3.3

What plasma density corresponds to νni = 4 × 10−4 s−1 at 300 km for solar max
and solar min conditions? Show that νni is independent of neutral density and
derive an expression for it, assuming the ions and neutrals are O+ and O, respec-
tively.

Problem 3.4

In a simple F-layer equatorial dynamo with an eastward neutral wind of mag-
nitude u =150 m/s, which is independent of altitude, find the vertical electric
field if

∑F
P = 5 mho and

∑E
P = 1 mho in each hemisphere, using Eq. (3.11) and

B = 0.25 × 10−4 T. Estimate the gradient of
∑F

P at 450 km using Fig. 3.11, and
find the magnitude and direction of the field-aligned current at the top of the
Northern Hemispheric E region if the electric field is constant with height at the
value found above. Use B = 0.25 × 10−4 T.

Problem 3.5

Make a model for the measured currents in Fig. 3.17a, using a Gaussian form
with z having a characteristic scale of 5 km (i.e., proportional to exp[−(z −
z0)2/2σ2] with σ = 5 km) and a peak value of 9 μA/m2 at 108 km. Let Eeast =
1.0 mV/m. Give an expression for the Cowling conductivity and compare it to
Fig. 3.15. Find the height-integrated current (A/m).

Problem 3.6

Let the current density in Fig. 3.17a also have a Gaussian dependence with lati-
tude with a characteristic scale of σ = 100 km. Model the current locally at any
given latitude as being due to two uniform current sheets, one eastward and equal
to the overhead value and the other a mirror current in the opposite direction
beneath the earth at a depth of 108 km. Find the magnitude and direction of the
magnetic field perturbation at the surface of the earth as a function of distance
from the magnetic equator. (Hint: Use the integral form of Amperes Law per
meter and the height-integrated current found in Problem 3.5.)

Problem 3.7

Compare the various ion horizontal drift velocities 300 km above the magnetic
equator where B0 = 0.25 × 10−4 T. Let Ez = −2 mV/m, Eeast = 0.5 mV/m,
Ti = Te = 1000 K, g = 9 m/s2, and let the density have a characteristic vertically
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upward gradient scale length of 20 km. (Don’t forget the Pedersen drift due
to Eeast and use the sunspot maximum values from Appendix B or MSIS for
equinox, sunspot maximum.)

Problem 3.8

Verify that the rotation matrix R is indeed a rotation of the coordinate system
by I, where I is a rotation angle counterclockwise, looking down the x-axis.

Problem 3.9

Derive the equation set (3.16).

Problem 3.10

Explain why there are two lunar gravitational high tides and two lunar low tides
in the ocean each day (i.e., a semi-diurnal tide). What dominant tidal mode do
you expect from solar heating? Use an argument based on the Fourier series for
a half-wave rectifier to explain why higher-order tides are expected for solar
heating.

Problem 3.11

Compare the magnitude of the lunar and solar gravitational tidal forces. Show
that, for the earth, their ratio is equal to the relative average density of the moon
and the sun. (Hint: Use the fact that the angular size of the sun and moon are
equal as viewed from the earth.) Use this result to estimate the relative tidal
influence of the sun and the moon. (Hint: The mean density of the sun and
moon are different.) How large is Mars’s tidal influence compared to that of the
moon at its closest approach to the earth? What about Jupiter’s?

Problem 3.12

In Fig. 3.17b, panel d, resolve the discrepancy between J/ne and E/B by hy-
pothesizing a zonal neutral wind-driven ion current. Describe the zonal wind
versus altitude. What is the vertical electric field at 98 km in the neutral frame of
reference?

Problem 3.13

What is the charge density at 1800 and 2000 LT, implied by the dashed curve in
Fig. 3.18, if B0 = 0.25 × 10−4 T?

Problem 3.14

Use the slab model in Fig. 3.16 and apply a uniform neutral wind in the eastward
direction without any initial eastward electric field. Set Jz = 0 and find the total
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eastward current, including any polarization electric field. Go into the frame
moving with the wind and show that you get the same value for the current.

Chapter 4

Problem 4.1

A rough model for the center of the quasi-sinusoidal scattering layer in Fig. 4.1
is of the form:

h(t) = {500 − 100(t − 19.33) + 100 sin[2π(t − 19.33)]} km

where t is measured in decimal hours and h in kilometers. Assuming that h(t)
represents the effect of a zonal electric field, take its time derivative and evaluate
the associated eastward electric field for B = 0.25 × 10−4 T. Using L = 20 km,
g = 9 m/s2, and νin(h) = 1e[(300−z)/50] s−1, calculate and plot the two contribu-
tions to the growth rate and the total growth rate γ where

γ = E
BL

+ g
νin(h)L

How many e-folds occur between 1900 and 1945 when the first “apogee”
plume occurs?

Problem 4.2

In Fig. 4.14, estimate the separation distance for the side-plumes on the western
wall of the plasma structure. Show that this side of the structure is unstable to
an eastward neutral wind. Estimate the wind contribution to the linear growth
rate if ueast = 150 m/s, B = 0.25 × 10−4 T, Ez = 3 mV/m, and the bottomside
plasma density scale height is 15 km (use the figure to evaluate the tilt angle).
Compare this contribution to the values found in Fig. 4.11.

Problem 4.3

Use Fig. 3.12b (measurement at 20:25) to determine an average dV/dz. Estimate
the plasma Richardson number in the postsunset bottomside if LN = 15 km.
Using Fig. 3.33, estimate the neutral atmospheric Richardson number at 95 km
if the Brunt-Väisälä period is 3 minutes (use the total horizontal velocity change
over the 90–100 km height range in this figure). Which condition is closer to
instability?

Problem 4.4

Derive (4.14).
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Problem 4.5

Model a plasma plume as two vertical parallel planes with internal density ni and
external density n0. Using current continuity, show that the internal eastward
electric field is

δEi =
(

n0 − ni

ni

)
gB
νin

Estimate δEi/B for the height of 322 km in Fig. 4.16b at 1000 s, taking νin = 2 s−1

and using this formula. Compare this velocity to the height change of the 1.0 Ei
contour in the next 200 seconds.

Problem 4.6

In the text, we discuss two possible explanations for the tilted plumes. One
involves shears in the background plasma flow due to an altitude variation in
the F region dynamo. Let the zonal wind be constant in height, the E region
conductivity be uniform in latitude, and allow for a possible E region dynamo
to exist. Explain how (3.11) could be used to explain a C-shaped pattern with
westward drifts at low altitudes, a peak in the flow in the F region, and a decreas-
ing electric field/plasma flow above the peak. Remember in the slab model that
the z direction in the E region represents latitude as well.

Problem 4.7

A possibility for the tilt of plumes toward the west involves defining an effective
gravity that is not vertical. We know that there is a J × B force on the neutral
gas caused by the currents that flow. By Newton’s Third Law, this force must
act back on the plasma. Show that, for a zonal wind greater than the eastward
E × B drift, the sum of this force and the gravitational force creates an effective
gravity, g′, that is consistent with the tilt of upward bubbles moving antiparallel
to g′.

Problem 4.8

Derive (4.39b) by evaluating the determinant in (4.39a).

Problem 4.9

Derive (4.40a) and (4.40b) using (4.39a) and the assumption γ << ωr and
γ << νin.

Problem 4.10

Ignoring any neutral wind for the moment, Fig. 3.17b indicates that E/B =
400 m/s. For Cs = 360 m/s, νi/�i = 36, νe/�e = 0.01, B = 0.25 × 10−4 T and
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an ion mass of 32 Amu, find γ using (4.40b). Are the waves growing or are they
damped? What is the minimum electric field required for wave growth?

Problem 4.11

Estimate the neutral wind (ui) at 105 km from Fig. 3.17b. Using VDi = uiâx, find
the new growth rate using the two-stream term in (4.48b). Let k = kâx. Are the
waves growing or damped? Repeat the calculation for a westward neutral wind
of 100 m/s. Are the waves growing or damped? What is the necessary magnitude
and direction of the neutral wind for instability?

Problem 4.12

Show that (4.59b) satisfies the differential equation (4.59a).

Chapter 5

Problem 5.1

Consider a hydrogen test ion subject to the electric field in (5.4c) and gravity,
using the oxygen ion mass. Ignoring collisions, find the magnitude and direction
of the acceleration felt by the particle parallel to the field line if I = 45◦.

Problem 5.2

Show that the solution given in (5.17c) satisfies (5.17b), using the definition of
λ given.

Problem 5.3

Show for the solution given in (5.17c) that WD = g/νin everywhere, where WD
is given in (5.13) and νin is evaluated at the F peak.

Problem 5.4

Show that (5.16) is a solution of (5.14) if the loss term vanishes.

Problem 5.5

Show that 〈νin〉 = νin
(
hmax

)
for a Chapman alpha-layer.

Problem 5.6

The spaceship Enterprise is inside the earth’s nightside plasmasphere with
an orbit that would revolve around the sun in 365¼ days. A cloud of low
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temperature xenon plasma is injected by a thruster that is less dense than the
plasmaspheric density. Using a xenon ion as a tracer, describe its subsequent
motion qualitatively.

Problem 5.7

Using a numerical evaluation of (5.24a,b), calculate and plot the altitude of a
Chapman alpha-layer as a function of time if its velocity is given by WD =
(g/ <νin>) sin2 I. Let the layer start at 400 km at midnight and simply fall down
the field lines. Let g = 9 m/s2, I = 45◦, and <νin > = 0.1e(400−z)/50 s−1.

Problem 5.8

Repeat Problem 5.6 including a constant southward wind of 30 m/s. Verify that
the layer reaches the expected equilibrium height.

Problem 5.9

Repeat 5.6 using a meridional wind of the form

us = (30 + 20 cos ωt)m/s

with ω = 2π/3 rad/hr.

Problem 5.10

For the event in Fig. 5.17, let the eastward electric field between 04 LT and 05 LT
be given by 5 sin π(t4) mV/m and zero thereafter. At t = 04, hmax = 450 km.
Find hmax for 04 ≤ t ≤ 08.

Problem 5.11

The ion layer trajectories that reach 90 km around 00:00 LT in Fig. 5.23 repeat
every 24 hours. If this is indeed a diurnal tide, find the implied vertical wavelength
from its phase velocity (ω/kz) by estimating the velocity in the height range
110–140 km, where the descent seems to be at a constant velocity. Does the
corresponding wavelength agree with the spacing between the corresponding
layers in the figure?

Problem 5.12

The four layers on January 5/6 in Fig. 5.23 seem to be a 6-hour tide. Repeat
Problem 5.12 for this case.
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Problem 5.13

The classic diffusion equation for a cylindrical minor constituent of radius r
is r2(t) = 4Dt + r2

0 where D is the diffusion coefficient. The thin traces in
Fig. 5.25b, after 82 seconds, have r = 50 m, whereas the thick region has r =
1000 m. Find D in both cases and compare them to molecular and eddy diffusion
rates at 95 km. Let r0 = 1 m.

Chapter 6

Problem 6.1

Derive the linearized equations (6.2a–d).

Problem 6.2

Derive Eq. (6.3).

Problem 6.3

Find the polarization relationships for δp/p0, v, and w in terms of δρ/ρ0.

Problem 6.4

Show that ω2
b = 0 for an adiabatic temperature lapse rate.

Problem 6.5

Show that the right-hand side of (6.4) is pure real if and only if k
′′
z = 1/2H.

Problem 6.6

Estimate the viscous damping time constant for the two waves in Fig. 6.3 (the set
at 120 km and the higher altitude waves). Assume δρN/ρN = 5δne/ne and use
the results of 6.3 above to find v and w. Compare the damping rate to the wave
period in the earth frame for the low altitude wave using reasonable atmospheric
parameters.

Problem 6.7

As an approximation to Eq. (6.8), we often drop the 1/4H2 term. Show that the
resulting equation is the oscillation frequency of a parcel of air moving adiabat-
ically on a frictionless inclined plane perpendicular to k.
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Problem 6.8

In this problem we will investigate the differential equation of layer formation
for molecular ions in the upper E region.

(a) Write out the equation for this process including transport effects due to ambipolar
diffusion (neglecting gravity and any thermal gradients) and an altitude-dependent
meridional wind as well as an appropriate recombination term.

(b) Assume a wind profile of the form

u(z) = u0
(z − z0)

H
e−(z−z0)/2H2

Plot u(z) for u0 = 100 m/s and H = 5 km and describe qualitatively what will hap-
pen for u0 < 0 and u0 > 0, and also the expected effects of recombination and
diffusion.

(c) Solve the equation derived in (a) numerically using the neutral wind profile from
(b) with an appropriate sign for gathering ions, using I = 45◦, u0 = 100 m/s, H =
5 km, and appropriate ambipolar diffusion and recombination coefficients. Solve the
equation for four cases: neglecting recombination and diffusion, including diffusion
only, including recombination only, and including both recombination and diffusion.
Discuss/compare these results.

Problem 6.9

Ignoring recombination, use the same wind profile as in the previous problem
to find the layer gradient (1/n(dn/dz)−1) in equilibrium for metallic ions. What
value of D∗

A is needed to yield the observed gradients on the order of 1 km?

Problem 6.10

The main source of metastable oxygen atoms excited in the 1D state is the disso-
ciative recombination of O+

2 , which has a rate coefficient of ∼2 × 10−7 cm3 s−1

and a quantum yield close to 1. Assuming that O+
2 is only produced by the

charge exchange reaction of O2 with O+, which has a rate coefficient of
∼10−11 cm3 s−1, relate the O+

2 density to the O+ density, and show that O+ ≈ [e].
Using this approximation, write an expression for the volume emission rate of
O(1D) atoms (the 630.0 nm red-line emission) including quenching by O (rate of
∼8 × 1012 cm3 s−1), O2 (rate of ∼3 × 1011 cm3 s−1), and N2 (rate of ∼2 × 1011

cm3 s−1), and assuming a transition coefficient from the 1D to the 3P state of
10−2 s−1. Assuming a Chapman profile for the electrons, and barometric pro-
files with appropriate scale heights (T = 1000 K) for the neutral species, plot and
discuss the integrated intensities in Rayleighs as a function of the Chapman scale
and hmF2 for a peak electron density of 5 × 105 cm−3 and neutral densities of
[O2] = 3×1010 cm−3, [O] = 8×1010 cm−3, and [N2] = 3×1011 cm−3at 120 km.
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Problem 6.11

Show that the group and phase velocities of internal gravity waves have the
opposite vertical signs. Use (6.8) and ignore the (1/2H)2 term.

Problem 6.12

Solve the differential equation (6.20b) for
∑

(t) if Ex(t) = E0 cos ω t, given E0 =
3 mV/m, B = 0.4 G, H = 50 km, and a Chapman profile for the electrons with
peak density of 105 cm−3 (and a Chapman scale height equal to the neutral scale
height). Show solutions for τ = 2π/ω = 30, 60, and 120 minutes.

Problem 6.13

Suppose a constant 100 m/s westward wind blows on a Gaussian-shaped spo-
radic E layer with a characteristic scale of 2 km and a peak density of 105 cm−3,
which is infinitely elongated in the east-west direction. The layer is at 105 km
and the dip angle is 45◦. Find the magnitude and direction of the polarization
field and the total current, ignoring F region shorting. Repeat the calculation for
a southward-directed wind.

Problem 6.14

Derive Eqs. (6.30a–d).

Chapter 7

Problem 7.1

Use the equations of Chapter 6 (also see Problem 6.2) to relate δu in a gravity
wave to δT. Discuss/evaluate the expression for winter and summer mesospheric
conditions.

Problem 7.2

Derive Eq. (7.2) from the result in Problem 7.1 using the definition of the potential
temperature.

Problem 7.3

Derive Eqs. (7.3) and (7.5).

Problem 7.4

Show that the wave-breaking conditions w > ω/m and u > ω/k are identical. You
may use ∇ · u = 0 for the wave perturbation.
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Problem 7.5

A deep water wave has a 10 m wavelength. At what amplitude (in meters) will
white caps form (deep water wave breaking)? (Hint: The phase velocity for a
deep water wave is given by c = √

g/k.)

Problem 7.6

The deep water wave in the previous problem approaches a shore with δu =
1 m/s. Find the depth at which the wave will break. (Hint: The phase velocity of
a shallow water wave is ω/k = √

gh where h is the depth.)

Problem 7.7

A typical jet stream wind speed is eastward at 100 km/hour. If m = 2π/

1000 km−1, find and plot the wave period as a function of k for all east-
ward propagating waves that will be absorbed. Use the approximation ω2 =
[N2k2/(k2 + m2)] and a Brunt-Väisälä period of 5 minutes.

Problem 7.8

Use the dashed curve in Fig. 7.7b as a representative background electron density
at 85 km and the measured electron density in the bite-out region. Referring to
Reid’s calculations for a production rate of 10 cm−3 s−1 (7.15a,b), which size
particle seems more appropriate? Estimate the number density of such particles
present.

Problem 7.9

A small (b >> a in what follows) isolated 90 amu dust grain is immersed in
a plasma with Te = Ti = T. In the following, neglect any secondary charging
mechanisms.

(a) Write down expressions for the ion and electron currents to the dust grains. For zero
surface potential, would the grain become positively or negatively charged?

(b) Derive expressions for the negative and positive surface potentials.
(c) The formula for the capacity of a vacuum spherical capacitor is given by 4πε0

(ab/b − a) where a(b) is the inner (outer) radius. For Te = 300 K, find the radius
at which Q = e. How does this result depend on the charge number of the
grain?

Problem 7.10

Assuming spherical particles with a mass density of 1 gram/cm−3, calculate the
fall speed versus altitude for 10 and 50 nm radius particles in the 80–90 km
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height range. The equation of motion for a particle of mass m and diameter d,
neglecting winds and assuming non-Brownian particles, can be written as

m
dν

dt
= −3πμdν + mg

where μ is the viscosity coefficient. Assume that the particle has no initial velocity.

Problem 7.11

We wish to model the fair weather electric field as a leaky spherical capacitor
with an exponentially increasing conductivity, σ = σ0exp(z/H), with a constant
current density as a function of z, and with a surface electric field of −E0 V/m. For
this system, find E(z) and the total voltage V between the ground and infinity.
Find the total current, I, to the surface of the earth and the effective resistance,
Reff . Compare your expression to the classical formula for a resistor of length l,
area A, and conductivity σ.

Problem 7.12

The time constant for discharge of charge in a conducting fluid is τ = ε0/σ. Use
this result coupled with the effective resistance found in the previous problem to
determine an expression for the effective capacity of the earth, Ceff . Model the
earth as a spherical capacitor and use the fact that Re >> H. What values for the
inner and outer radius yield the same Ceff just derived?

Problem 7.13

Using H = 6 km, find V , I, Reff , Ceff , and the discharge time constant for the
earth if E0 = 100 V/m and σ0 = 4 × 10−12 mho/m.

Problem 7.14

A lightning strike brings −10 C to earth from a height of 2 km. Using the concept
of image charges, how large is the electrostatic field change at 80 km due to this
charge?

Chapter 8

Problem 8.1

Estimate the length of the x-line (at which dayside connection to the interplane-
tary magnetic field takes place) by comparing the typical cross-polar cap potential
to the dawn-dusk potential across the magnetosphere. Compare the amount of
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power from the solar wind getting into the atmosphere to the Poynting flux times
the area subtended by the earth (without a magnetosphere).

Problem 8.2

Treat the solar wind MHD generator as a voltage source and the polar cap as a
resistive medium with value �−1

P . Compare the power dissipated in the winter
and summer polar caps for which �P is equal to 1 and 8 mhos, respectively.
Which season should have larger region 1 currents in this model? Does this
agree with the measurements?

Problem 8.3

Use the height-integrated conductivities from Problem 2.5 (E region only) and
a Gaussian auroral arc elongated in the zonal direction with a characteristic
Gaussian shape and a scale of 5 km in the meridional direction. Plot the field-
aligned current density and integrate the upward and downward current sheets
if the electric field is constant at 50 mV/m.

Problem 8.4

What is the magnetic field disturbance (magnitude and sign) due to the Hall
current modeled in Problem 8.3 directly below the current and ±50 km north
and south? Assume that the current is infinitely long and can be modeled as a
thin wire. Ignore earth currents and the Pedersen current. The latter is shielded
from detection at the ground.

Problem 8.5

Suppose 1000A flows across the earth’s northern polar cap during a connection
to the solar wind and that this current is closed in a region of the solar wind
10 × 50 Re in size. Let Bz = 5 nT in the solar wind, n = 10 cm−3, and Vsw =
500 km/s. How much does the solar wind slow down in this interaction? (Hint:
The time for connection is 50 Re/500 km/s.)

Problem 8.6

The auroral zone (L = 7) is observed to have a 50 mV/m zonally westward elec-
tric field with B = 0.5G. Find the magnitude and direction of the plasma velocity
in the magnetospheric equatorial plane using (2.48b). Use the dipole approxima-
tion with an equatorial field at the surface of 0.25G. A 1 MeV electron gradient-
drifts from 10 pm LT to 02 am LT. Compare the ∇B drift speed to the E × B
drift. How much energy does the electron gain due to the electric field? (You
may assume the electric field is uniform and dawn to dusk.)
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Problem 8.7

Find the Poynting flux across the front of the magnetosphere using a 20Re ×20Re
area. Compare this to the ionospheric dissipation in the two polar caps if E =
50 mV/m and �P = 7 mho. Use a “square” polar cap with 2000 km on a side.
What is the efficiency of the MHD generator?

Problem 8.8

A satellite magnetometer measures a 100 nT (δBy) step function when crossing
two current sheets in the auroral oval. If the field line-integrated conductivity is
10 mho, find the electric field (δEx) in the E region below. Let δEx = 0 outside
the perturbed zone. Show that the Poynting flux toward the earth is equal to the
Joule heat.

Problem 8.9

From Fig. 8.3b estimate the Poynting flux into the auroral oval and polar cap.
Estimate the average height-integrated Pedersen conductivity from these data.

Problem 8.10

What region 1 current sheets would be needed to support the average polar cap
δB in Fig. 8.3b? Assume an infinite current sheet model at the region 1/region 2
boundary. Using the first term in (8.15), estimate �P for the two reversals of the
electric fields.

Problem 8.11

As plasma flows back toward the sun on closed field lines in Fig. 8.2(b), let E
be constant with a value of 1 mV/m, B be given by 100 nT, and ∇B = B/2Re.
The magnetic field increase causes a perpendicular current that may close the
region 1 and region 2 current systems across B in the magnetosphere. Take �P
in the ionosphere to be 5 mho and the density in the equatorial plane to be 1 cm−3

with a Gaussian thickness along B of 2Re. How large a J|| can be supported at
ionospheric levels for L = 6 (region 2)? Take the latitude range for J|| to be 1◦ at
ionospheric heights and the equatorial current to be constant over 1 Re length
perpendicular to the equatorial plane. The other length dimension scales as L3/2

between the ionosphere and the equatorial plane.

Problem 8.12

Compare analytically δE/δH in an Alfvén wave and a field-aligned current sheet
system. Estimate these ratios for an Alfvén wave at 500 km in the high-latitude
F region with n = 105 cm−3 and compare this with typical E region height-
integrated conductivity (�p) in the E region.
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Problem 8.13

In the lower panel of Fig. 8.8b, model the electric field in the polar cap using
one-half of a sine wave between ±70◦ latitude with B = 0.5 G, and determine the
cross polar cap potential. Using (8.10b) with n = 3 cm−3, ξ = 4, Bsw = 10 nT,
Bz = −5 nT, and Vsw = 400 km/s, find the polar cap conductivity.

Chapter 9

Problem 9.1

Find the escape velocity from a height of 300 km. How long will it take for H+
to be accelerated from 0 m/s to escape velocity in the presence of the ambipolar
electric field, Mg/2qe, where M is the O+ mass? Assume B is parallel to g. For a
temperature of 1500 K, what percentage of O+, He+, and H+ atoms are in the
loss cone (i.e., can escape)?

Problem 9.2

In hydrostatic equilibrium the velocity terms in Eq. (9.3) vanish. Show in this
case that

E = (niMi + njMj)g

2ne

where n is the plasma density.

Problem 9.3

A shaped charge Ba+ beam is observed to accelerate from 4 km/s to 70 km/s
between 3000 and 5000 km altitude in the auroral zone. How much of this
can be explained by conservation of the adiabatic invariant if the average initial
launch angle is 10◦ from the magnetic field direction? Let |B| decrease by a factor
of two. What is the total potential drop? What must the electric potential be to
explain the difference?

Problem 9.4

The trough is collocated with a very large poleward electric field during sub-
storms. If E = 300 mV/m and B = 0.5G, calculate the plasma density decrease
as the plasma flows from midnight to the dusk terminator. Start with an initial
longitudinal profile calculated assuming the F peak is at 300 km and decays as
e−β(300)t. Take n(N2) = 5 × 108 cm−3 and use k1 only.
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Problem 9.5

Model the trough electric field as a Gaussian with characteristic scale of 50 km
and a maximum value of 300 mV/m and assume an initial uniform plasma density
with

∑F
p of 2 mho. Find the field-aligned current pairs. What are the peak values

of J||?

Problem 9.6

Show that the ion Pedersen drift peaks for νi = �i and find its magnitude com-
pared to E/B for this condition. Find the neutral wind acceleration time constant
under these conditions as a function of electron density.

Problem 9.7

In 9.5 find the divergence of the ion Pedersen flow velocity at the height where
that velocity peaks (νi = �i). From the continuity equation, find and plot the
time constant versus distance for plasma density changes at this altitude due to
the ion pump effect.

Problem 9.8

Ignoring the magnetospheric electric field, at what altitude in earth radii would
corotation exceed the Alfvén speed in the equatorial plane? Take n = 100 cm−3,
hydrogen ions to be dominant, and the magnetic field of the form 0.25 R3

E/

(RE + z)3 Gauss. Do the same calculations for Jupiter using its 10 hour rotation
period, the magnetic field at the equator of 4R3

J /(RJ + z)3 Gauss, a density of

104cm−3, and RJ = 71,800 km.

Problem 9.9

Let the topside F region density be of the form n0e−(z−200)/H , where
n0 = 105cm−3 and H = 100 km and consider an upward field-aligned current of
10 μA/cm2 at 200 km. The magnetic field is of the form B(z) = (0.5)[RE/(z +
RE)]3 Gauss. Above 200 km there is no cross-field current, so the current den-
sity decreases in direct proportion to the magnetic field strength squared. For
Te = 10Ti = 5000 K, find the altitudes above which (9.22) and (9.23) are satis-
fied if the ions are stationary and only the thermal electrons carry the current.

Chapter 10

Problem 10.1

Calculate the lifetime for plasma clouds of 1 and 10 km wavelength structures due
to diffusion across the magnetic field. Take D⊥ = 20 m2/s, which corresponds to
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the ion diffusion coefficient. Would these structures survive transport across the
polar cap if E = 50 mV/m and B = 0.5G? Assume the polar cap to be 2000 km
across.

Problem 10.2

In Figure 10.3a, estimate the field-aligned current on each edge of the electric
field structure if

∑E
P is uniform and equal to 1 mho. Take the satellite velocity

to be 8000 m/s. Does this calculation agree with the measurements of J|| plot-
ted? Estimate the magnitude and sign of the charge density on each edge of the
structure.

Problem 10.3

Find the shear frequency in Fig. 10.3 at ionospheric and equatorial altitudes.
Compare the latter to the “pendulum” frequency in the equatorial plane using
an effective gravity for a 50 keV proton at 4 Re(

√
“g”/L). Does the condition

for the Kelvin-Helmholtz instability hold?

Problem 10.4

Estimate the E × B instability growth rate in Figure 10.10a if the electric field
150 km north of Chatanika is eastward and 20 mV/m (B = 0.5 G).

Problem 10.5

Suppose the F peak density at 200 km is 1011 m−3 and falls off linearly until it
reaches 107 m−3 at 1 Re with height and then stays constant. Let the field-aligned
current be carried by the electrons with velocity Vd and be equal to 20 μA/m2 at
200 km. Let Te = 2000 K be constant. Assume Re = 6360 km. Find the height
at which Vd = Vth

e .

Problem 10.6

If J|| = 10μA/m2 and �p = 10 mho, what is the plasma vorticity?

Problem 10.7

Estimate the plasma Richardson number corresponding to Fig. 10.3b where
Rip = (

g/L
)
/(V/L)2.

Problem 10.8

Estimate the field line-integrated conductivity in Fig. 10.18 for the E and F
regions. Find γ for the E′ × B instability if E′

0 = 20 mV/m, L = 50 km, and
B = 0.5 × 10−4 T. Ignore diffusion.


