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5.1 Introduction
Changes in head and pore water pressure cause deformation of the solid matrix that holds
the water, deformation that has a range of impacts including subsidence, fissures, lique-
faction, slope failure, and faulting. Pore pressure changes and matrix deformation are
also key aspects of transient (time-dependent) groundwater flow. The last sections of this
chapter introduce the general equations of transient groundwater flow, which follow from
Darcy’s law, mass balance, and storage concepts. The general equations of flow are the
basis for mathematical models of groundwater flow, which are the subject of subsequent
chapters.

5.2 Effective Stress
When the soil or rock matrix compresses or expands, it does so in response to changes in
something called effective stress. To illustrate what this is, consider the vertical column
shown in Figure 5.1. What is holding this column up? A reasonable assumption is that
there is no net vertical supporting force on the sides of the column; this column does not
support or drag down neighboring columns. The total weight of the column is borne by
its base.

The weight of the column divided by the area of its base is called the total vertical
stress and is given the symbol σvt. The units of stress are force/area, just like the units of
pressure (N/m2 or lb/ft2, for example). In a rock or soil with a uniform wet density ρ,
the total weight of the column at a depth b below the ground surface would be

W = ρgbA (5.1)

where g is gravitational acceleration and A is the cross-sectional area of the column. The
total vertical stress at depth b is the weight per area

σvt = ρgb (5.2)

If the subsurface profile consists of n layers, each with a unique density, the total vertical
stress is given by
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Figure 5.1 Column of
soil supported by its base
(left) and a close-up of
the soil at the base
(right). Two things
support the column:
forces across
grain-to-grain contacts
(effective stress) and
pressure in the pore
water.

σvt = g

n∑
i=1

ρibi (5.3)

where ρi and bi are the density and thickness of the ith layer. The vertical force per area
at the base is σvt.

Imagine drawing a roughly planar surface through the interconnected pore spaces at
the base, as shown by the dotted line in the right side of Figure 5.1. Looking closely at
this surface, we see that the total stress is borne by two types of forces that act across
the surface. One is the force of the pore water pressure, and the other is the force in the
solid matrix. The force of the pore water pressure P acts all across this surface. The
force in the matrix acts through the network of grains in soils and in the matrix of rock.
The matrix forces acting across the base divided by the area of the base is the vertical
effective stress, σve. The vertical effective stress plus the pore water pressure equals the
total vertical stress:

σvt = P + σve (5.4)

The column is held up by two forces: the pore water pressure, and the matrix forces
(effective stress).

In general, effective stress is the force/area acting through the solid matrix. The con-
cept of effective stress was first described by Karl Terzaghi (1925), and it is a key concept
in modern soil mechanics (see Terzaghi et al., 1996, or Lambe and Whitman, 1979).

Example 5.1 Consider a sand that is unsaturated from the ground surface
down to a depth of 4.5 ft, and saturated below that. The total unit weight
of the unsaturated sand is ρg = 112 lb/ft3 and the total unit weight of the
saturated sand is ρg = 125 lb/ft3. Assuming that the distribution of pore
water pressures is hydrostatic, calculate σvt, P , and σve at a depth of 12 ft.

The total stress is given by Eq. 5.3, summing the contributions of the unsatu-
rated and saturated zones:

σvt = (112 lb/ft3)(4.5 ft) + (125 lb/ft3)(7.5 ft)

= 1442 lb/ft2




