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7.1 Introduction
So far we have only examined models of steady-state groundwater flow, where discharges
and heads do not change with time. This is reasonable when long-term average flows
are considered, but unreasonable in many other situations. For example, transient flow
is important when pumping wells start up or shut down, and with natural transients like
drought and storms. Many transient analyses are so complicated that they must be carried
out with the aid of computer programs. Some situations involving radial flow to wells
are simple enough that they can be analyzed with hand calculations based on analytic
solutions. The radial flow solutions are quite useful for analysis of pumping tests and for
predicting drawdown near pumping wells.

7.2 Radial Flow in Aquifers with Uniform Trans-
missivity

7.2.1 The Theis Nonleaky Aquifer Solution

The Theis (1935) solution is commonly applied to analyze problems involving transient
flow to a well. It is a solution to the general flow equation for transient two-dimensional
horizontal flow with homogeneous, isotropic K (Eq. 5.63). The Theis solution assumes
radial flow to a well of constant discharge in an infinite aquifer. Theis derived this solution
by using research in the field of heat flow and noting the direct analogy between heat flow
emanating from a long, straight wire and groundwater flow to a well. The geometry of
the problem solved by Theis is illustrated in Figure 7.1.

We will not delve into how the Theis solution or other solutions presented in this chap-
ter were derived. Suffice it to say that Laplace transforms are employed and the mathe-
matics involved are beyond the scope of this book. Using the principle of superposition,
Theis’s solution can be added to or subtracted from any solution of the
steady-flow general equation h0, and the combined solution h will be a solution of the
transient general equation, Eq. 5.63:

h = h0(x, y) − Q

4πT
W (u) (7.1)
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Figure 7.1 Vertical
cross-section of transient
radial flow to a well. The
head before pumping
starts is some
steady-state distribution
of heads, h0(x, y). The
drawdown after pumping
starts is radially
symmetric about the
pumping well,
[h0 − h](r). For the
solutions presented in
this chapter, the aquifer
T and S (or Sy) are
assumed constant.

where W (u) is known as the well function and u is a dimensionless parameter defined as

u =
r2S

4T (t − t0)
(7.2)

More typically, the Theis solution is written in terms of the drawdown (h0 − h) induced
by the pumping well:

h0 − h =
Q

4πT
W (u) (7.3)

The well function is what mathematicians call the exponential integral E1, which is
written as

W (u) = E1(u)

=
∫∞
u

e−mdm
m

(u < π) (7.4)

There is no closed-form expression for the exponential integral, but it can be closely
approximated using a truncated series expansion as follows (Abramowitz and Stegun,
1972):

E1(u) = −γ − ln u + u − u2

2(2!)
+

u3

3(3!)
− u4

4(4!)
+ · · · (7.5)

where γ = 0.5772157 . . . is Euler’s constant. This function is tabulated in many mathe-
matical handbooks. The curve in Figure 7.2 plots W (u) vs. 1/u and is known as the Theis
or nonequilibrium curve.

The simplifying assumptions of the Theis solution are listed below.

1. The aquifer is infinite in extent, with no constant head boundaries, no-flow bound-
aries, or any other heterogeneity.

2. The aquifer is homogeneous, with constant T and S over its infinite extent.
3. The well does not induce additional leakage or recharge through the top and bottom

of the aquifer.
4. The well fully penetrates the aquifer, and there is only resistance to horizontal flow.




