What is this chapter about?

- **High-speed I/O interfaces**
 - Have been widely used in computer, communication, and consumer electronics systems
 - Are able to transmit and receive data at higher rates with fewer I/O pins

- **Focus on**
 - High-speed I/O architectures
 - I/O interface testing
 - At the Component/subsystem level
 - At the System level
 - Using DFT-assisted Methods

- **New challenges in high-speed I/O and testing**
I. High-Speed I/O Architectures
 - Global Clock I/O Architectures
 - Source Synchronous I/O Architectures
 - Embedded Clock I/O Architectures
 - Basics on Jitter, Noise, and Bit Error Rate (BER)

II. Testing of I/O Interfaces
 - Testing of Global Clock I/O
 - Testing of Source Synchronous I/O
 - Testing of Embedded Clock High-Speed Serial I/O

III. DFT-Assisted Testing
 - AC Loopback Testing
 - High-Speed Serial-Link Loopback Testing
 - Testing the Equalizers

IV. System-Level Interconnect Testing
 - Interconnect Testing with Boundary Scan
 - Interconnect Testing with High-Speed Boundary Scan
 - Interconnect Built-In Self-Test

V. Future Challenges

VI. Concluding Remarks
I. High-Speed I/O Architectures
(a) **Global Clock (GC)**

- Synchronized global clock
- System clock for Tx data driving and Rx data sampling
- Clock skew on board limits its use to < a few 100 Mbps data rate

Reference to external clock source
Tester is programmed to provide clock
(b) **Source Synchronous (SS)**

- Tx sends data along with strobe (another clock)
- Rx uses sent strobe to sample the data
- No clock or strobe skew issue
Some designs use strobe/strobe# to improve timing accuracy
Source Synchronous (SS) (Cont’d)

- Limited by data to data skew due to uneven channels
 - Board layout
 - E-M issues: e.g., coupling, noises
 - Variation in drive among channels
- Achieve up to ~1000 Mbps data rates for wide bus
 - Can improve data rate with splitting into many narrower bus
(c) Embedded Clock (EC)

- Bit clock is **embedded** in the serial data and gets **recovered** at Rx via clock recovery circuit
- Link layer is composed of encoder/decoder
- Physical layer (PHY) is composed of Tx, channel, and Rx
- Jitter is the major limiting factor for EC link architecture
Basics on Jitter, Noise, and Bit Error Rate (BER)
Jitter Components and Terminology

- DJ is bounded, and RJ is unbounded
- RJ is commonly modeled by a Gaussian
Characteristics of Jitter Component PDFs

- ISI: different waveform traces
- DCD: dual peak due to non-ideal reference voltage
- PJ: Saddle shape or Golden Gate suspension bridge
- RJ: Bell shape or Gaussian
Jitter Separation (a): PDF Based

- Tailfit is the industry de facto standard for separating DJ and RJ
- Use RJ Gaussians to model the Tail distributions
- Distance between left and right Gaussian means gives DJ pk-pk
- Average of left and right Gaussian sigmas gives DJ sigma

\[DJ = \mu_L - \mu_R \]
\[\sigma_{RJ} = (\sigma_L + \sigma_R)/2 \]

Keep adjusting \(\sigma \), mean and magnitude until tails obtain best fit with the data
Jitter Separation (a): CDF Based (Cont’d)

- Tailfit the CDFs
- RJ model is an integrated Gaussian
- RJ becomes linear in Q-space
- Same basic concept, transformed data and model

System-on-Chip Test Architectures Ch. 14 – High-Speed I/O Interface - P. 14
Jitter Separation (b): Spectrum Based

- DDJ the estimated in time-domain via average first
- PJ is the spikes in the spectrum
- RJ the background of the spectrum
Jitter, Noise, and BER in 2-Dimension

- Both jitter and noise can cause BER
- Eye and BER contour are 2-dimensional
- No dot should be in the compliance zone to pass
II. Testing of I/O Interfaces
Testing Global Clock (GC) I/O

- Test with an ATE
- Data and clock are generated and by the tester (level, pattern, and timing)
- Setup and hold time is controlled by the tester
- Data output is strobed by the tester
Testing Source Synchronous (SS) I/O

- It is a difficult task to test SS I/O DUT with a deterministic ATE that cannot use an external DUT clock or strobe.
- Strobe may be generated by tester via a linear search that can be time consuming.
- Strobe timing margin is reduced by the tester accuracy/jitter.
Testing Embedded Clock (EC) I/O (a): Tx

- Tx needs to be tested with a compliance clock recovery defining a jitter transfer function (JTF)
- Eye-diagram, jitter PDF, BER CDF manifests JNB test
- TJ is the eye-closure at a BER level (e.g., 10^{-12})
Testing Embedded Clock (EC) I/O (a): Tx (Cont’d)

- JNB within the context of an eye-diagram (2-dimensional)
- TJ and TN defines the compliance zone
- No data sample should fall within the compliance zone (e.g., BER <= 10^{-12})
Testing Embedded Clock (EC) I/O (b): Channel

- Lossy channel is a low-pass filter
- Digital square input waveform becomes slow edge round waveforms due to the loss of high-frequency contents
- Data-dependent jitter (DDJ) and Data-dependent noise (DDN) manifest lossy and intersymbol interference effects
Channel compliance test may be done in terms of S-parameter S_{21}.

- An compliance $|S_{21}|$ curve sets the upper limit for the test.
- This method suffers from phase coverage skipping.
Rx clock recovery (CR) jitter tolerance/tracking test

- The compliance jitter tolerance mask is derived from Rx CR JTF
- The mask sets the lower limit for pass/fail test
- Be able to tolerant/track more lower frequency jitter is a key requirement for Rx CR
Worst case signaling is a Rx subsystem test
- It covers Rx clock recovery, equalization, sensitivity, and internal jitter and noise generation
- Both focused and subsystem test are important, depending on the test goals and needs
Testing Embedded Clock (EC) I/O (c): Rx (Cont’d)

- A generic Rx test functional block diagram
- Capable of providing both focused, worst case signaling, and full coverage Rx tolerance/stress test
- Be able to emulate all jitter components and signal signatures with controllability for magnitude and frequency band are critical
Testing Embedded Clock (EC) I/O (d): Ref Clock

- Period or cycle-to-cycle jitter are not suitable metrics for reference clock in the common clock architecture
- Phase jitter after the reference clock JTF is called for
- Reference clock JTF is a band-pass filter function
- Reference clock JTF is determined by Tx PLL, Rx PLL, and transport delay between them
Phase jitter spectrum before and after the ref clock JTF is applied
- Phase jitter spectrum after JTF is what the Rx sees and related to Rx BER
- Spread spectrum clock (SSC) at ~ 33 KHz is significantly suppressed by the ref clock JTF
BER can be estimated given the Rx input jitter spectrum and CR JTF
CR phase delay can cause the Rx BER to increase (e.g., region 2)
This method enables fast/high-through BER testing in production
Tester Apparatus Considerations

- Front-end bandwidth (BW) needs to be high enough (e.g., 5th harmonic, 2.5X the data rate)
- DJ and RJ floor needs to be small enough to avoid margin loss due to the tester jitter floor (~ps for DJ, and ~ sub-ps RJ at ~ 10 Gbps data rate)
- Clock recovery emulation is critical for Tx testing
- Tolerance and stressing is critical for Rx testing
- Model-assisted method (e.g., Tailfit jitter and BER extrapolation method) speeds-up the throughput of the tester
III. DFT-Assisted Test
AC I/O Loopback Self-Test

Similar circuit as the receiving end! Testing hardware already exists! -- test for both drive/receive -- low overhead

Loop time = Tco (or Tvb) + Tsetup OR Tva+Thold
AC I/O Loopback Test Based Defects

A wider spread of data valid time indicate faults

- Stress to fail by pushing strobes to the data edge (driver or receiver)
- Good buffers distribution
- Faulty buffer

Buffer group should have tight distribution

Wider distribution => local defective buffers
AC I/O Loopback Test Resources and Mechanisms

- A full speed pattern source to generate worst case bus cycles (with worst case noise)
- An accurate, process, temp/Vcc tracking delay element for timing stress
- Correct stressing of Tva, Tvb (using 1st fail only)
- Delayed strobe visible to allow timing calibration technique with a single tester channel

System-on-Chip Test Architectures Ch. 14 – High-Speed I/O Interface - P. 34
High-Speed Serial-Link Loopback Testing (a): an Under-Sampling Method

- Use a reference clock close to the data frequency to strobe the data rather than the recovered clock
- Jitter due to the channel carried in the received data bit timing
High-Speed Serial-Link Loopback Testing (b): Test Setup

- Use the SERDES resources
- Pattern generation and data comparison/jitter analysis at the receiver can be either on-chip or off-chip
High-Speed Serial-Link Loopback Testing (c): Test Equalizers

- DFT resources needed: digital pattern generator, 3 full-swing digital taps for crosstalk canceller, and one shift-register chain
- No access of DFE output for testing DFE
- Suited for production test
IV. System-Level Interconnect Testing
IEEE 1149.1 boundary-scan standard developed for testing board-level manufacture defects
IEEE 1149.1 boundary-scan standard has been extended to IEEE 1149.6 for high-speed boundary-scan test.

IEEE 1149.6 supports AC-coupled differential signaling.

Digital driver logic and digital receiver logic along with the analog test receiver are added to support the high-speed differential signaling, under the control of the 1149.1 TAP controller.

More information about 1149.6 can be found in Chapter 1.

However, its reliability for testing Gbps I/O interfaces remains to be a problem for IEEE 1149.6.
- Built-in reference and programmable Tx and Rx
- Use the reference Tx to test Rx DUT, or use the reference Rx to test Tx DUT
- Various pattern generation support is a key for system-level test
V. Future Challenges
Future Challenges

- Data rate keeps increasing
- Link jitter margin gets smaller, device components and tester have to be more accurate
- Eye-will be closed at the Rx input, reference Tx and Rx will be mandatory for testing
- Advanced signaling/equalizations (Tx, Rx, continuous, discrete, linear, adaptive)
- More complex link system, Tx and Rx subsystems means more complex test requirements
- Femto second (fs) accuracy is coming for 10 Gbps and higher
- Test solution should be optimized for accuracy, throughput, parallelism, fault coverage, and cost requirements (somewhat conflicting), for both on-chip DFT/BIST and off-chip ATE/instruments
- More analog DFT/BIST, adaptive design and test with low power
- Insuring JNB test quality from design characterization to high-volume production with high-confidence and low cost
Concluding Remarks

- Three leading I/O architectures:
 - Global clock (GC), source synchronous (SS), and embedded

- Link architecture determines the relevant test parameters and methods. Key parameters include:
 - Data valid to clock/strobe, setup/hold times for GC and SS; jitter, noise, and BER (JNB) for embedded
 - Clock recovery and equalization must be included in test

- DFE-assisted test methods:
 - Largely rely on loopback: AC loopback, under-sampling loopback, and equalizer testing

- System-level test methods:
 - Boundary scan for testing manufacturing defects
 - BIST for testing Tx and Rx, and link system

- Future challenges:
 - Higher data rate, smaller jitter margin, higher channel counter, better accuracy
 - More complex test requirements and platform, more DFT/BIST to address cost and avoid tester-DUT interface bandwidth bottleneck