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VORTICES AND VORTEX WAKES

Vortex principles provide an alternative way to derive the same laws that underlie
the work and power calculations of Chapter 3. A flying bird leaves tracks in the
air in the form of a vortex wake, and this can be examined and used to deduce
the forces that the wings exerted on the air, and to estimate the work that they
did. Vortex principles are not explicitly used in the Flight programme, but are the
basis of recent and current wind-tunnel investigations on flight mechanics.

Work and power were discussed in Chapter 3 in terms of linear

motions and accelerations in the air, but in the world of real fluids this

is at best an approximation. Any process that involves work being done

on a fluid invariably involves shear (gradients of velocity) and this in

turn results in rotation. Vortices appear on every scale wherever work

is done on a fluid, whether the scenario is a cup of tea stirred by a

spoon, or a hurricane driven by heat from the warm ocean below.

When a bird flies by, it leaves vortices behind it in the air, which persist

for a while. The vortex wake can be observed and measured, and it

carries a record of the work that the bird’s wings have done on the

air. Vortex concepts are not used explicitly in the Flight programme,

but some of the most interesting experiments of recent times have
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approached the same mechanical questions that the programme

addresses from a different direction, by looking at the vortex wake,

rather than at forces on the wings and in the flight muscles.

What exactly is a vortex, and what rules do vortices obey? Those

questions are easily asked, but finding answers that lead to useful

predictions about real flows has taken the best efforts of some of the

most famous mathematicians of the last two centuries. Leonhard Euler,

Daniel Bernoulli, Jean le Rond d’Alembert, Pierre-Simon Laplace, Her-

mann Helmholtz, Lord Kelvin, Wilhelm Kutta, Nikolai Joukowski and

Ludwig Prandtl all made major contributions. The body of theory that

they and others built is not exactly simple, but it is an alternative way

of looking at the flight of birds and aircraft, which has evolved in par-

allel with the more direct approach based on considering the impact

that every air particle has on the pressure and velocity of its neigh-

bours. In mathematicians’ terms, the direct approach amounts to solv-

ing the Navier-Stokes equations, which fully describe what the fluid

does, but are notoriously difficult to solve for particular cases, whereas

vortex concepts are less exact but deliver practically useful results in

terms of entities that can be visualised, and obey simple rules. Follow-

ing the advent of huge computers, it has become practical to solve the

Navier-Stokes equations numerically, but vortex concepts still provide

a useful and compact way to describe many processes.

An authoritative modern account that covers both approaches can

be found in Anderson (1991), and the same author’s History of Aerody-

namics is also highly recommended (Anderson 1997). My objectives in

this chapter are limited to attempting to present the basic vortex

concepts in an essentially pictorial form. This can be seen as an alter-

native view of the principles of flight covered in Chapter 3, and also as

background to modern experiments on the vortex wakes of birds, and

how they relate to calculations of the work done by the wings.

4.1 THE CONCEPT OF THE LINE VORTEX

A line vortex is basically a mathematical abstraction that corresponds,

under the right conditions, to a physical entity with two components, a

vortex filament, which is a thin, rotating thread of fluid particles,

surrounded by an induced flow, which is where the physical effects take

place. The induced flow is the visible, whirling vortex, but despite that, it

is said to be irrotational. This means that although individual particles

of fluid may (or may not) circulate around closed paths, they do not

rotate on their own axes. Only the fluid particles that make up the vortex

filament actually rotate.
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Figure 4.1A is a cross section through a line vortex. In this two-

dimensional view the point in the middle is a point vortex, which is

actually a cross section through the vortex filament. The filament can

be imagined as a line passing through the point, and extending above

and below the page. The filament (only) is where the air is actually

rotating, and it induces the surrounding air to circulate around it, with-

out the individual particles of air themselves rotating. As the radius

from the filament increases, so the tangential speed of the air decreases

in each cylindrical shell of air surrounding the rotating filament, in

inverse proportion to the radius. If the cross section of the vortex fila-

ment were really a point (with zero radius), the speed and the angular

velocity within it would have to be infinite, making what mathemati-

cians call a ‘‘singularity’’, a place where the rules break down. However,

the induced flow looks essentially the same if the vortex filament is

replaced by a spinning core that has a finite radius (Figure 4.1B). The

tangential velocity in the core (grey) is zero at the centre, and increases

linearly with the radius. The outer surface of the core (at radius 2 in this

case) pulls the layer of air in contact with it along, and at larger radii the

tangential speed decreases in the same way as it does in the induced

flow around the one-dimensional vortex filament of Figure 4.1A. Some

of the most useful theoretical results of classical aerodynamics depend

on the assumption that real vortices, such as those shed from the

wing tips of fixed-wing aircraft, conform to the pattern shown in

Figure 4.1B, with a thin core of rotating air surrounded by an irrotational

induced flow.

4.2 VORTEX CONCEPTS APPLIED TO FIXED WINGS

4.2.1 CIRCULATION AND LIFT

The speed along any of the circular paths in Figure 4.1A or B is constant

around the path, and inversely proportional to the radius of the circle.

If we integrate the speed around the circumference of one of the circles,

the result is the same for any circle. The speed is halved for a bigger circle

with twice the circumference, and therefore the integral of speed around

the closed path is the same as before. This integral is called the circulation

and the result is the same forany closedpath, circular or not, so long as the

vortex filament (or the finite core) is entirely contained within it. The

circulation therefore has a fixed and measurable value for a particular

vortex, and is often called the strength of the vortex.

If a cylinder is mounted in a wind tunnel, perpendicular to the wind

(coming from the left in Figure 4.2A) the air divides symmetrically
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FIGURE 4.1 (A) Cross section through a line vortex. The ‘‘vortex filament’’, represented by
the point in the middle, is the only region where particles of air actually rotate on their own
axes. The ‘‘induced flow’’ around the filament is ‘‘irrotational’’, meaning that particles of
air follow circular paths, but do not rotate on their own axes. Each particle moves at a tan-
gential velocity (V ) that is inversely proportional to its radial distance (r) from the filament.
The ‘‘circulation’’ (G) can be found by integrating V cos ’ (where ’ is the angle between
the path and the direction of V ) around any closed path that contains the filament. The
result is the same whether the path is one of the concentric circles shown (where ’ ¼ 0),
or any arbitrary closed path that contains the vortex filament. The value of the circulation
so measured is often called the ‘‘strength’’ of the vortex. (B) The need for infinite angular
velocity in the vortex filament can be avoided by replacing it with a core (grey) whose
diameter is finite. Within the core the velocity increases linearly from zero at the centre
to the core boundary. Outside the core, the velocity decreases in the same way as
the induced flow around the vortex filament in (A). The circulation around any closed path
that completely encloses the core is the same as that around an infinitely thin filament.
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around it and separates from the surface, forming a turbulent wake on

the downwind side (grey). This results in a lot of drag but no lift, since

the airflow is slowed down by the obstruction, but not deflected

upwards or downwards. If we now set the cylinder spinning as in

Figure 4.2B, the effect is to add the circular induced flow of

Figure 4.1B to the steady wind of Figure 4.2A. The turbulent wake is

still there, along with the drag that results from it, but the induced flow

from the vortex that is bound to the spinning cylinder imparts some

downwash to the air leaving the cylinder on the right. This in turn

produces a lift force on the cylinder (perpendicular to the incident

airflow), equal to the rate at which transverse momentum is imparted

to the air (Chapter 3, Section 3.1.1).

Lift results when a vortex is added to the steady flow. This is called the

Magnus Effect when the vortex is due to a spinning cylinder. The amount

of the lift force, per unit length of the cylinder, is directly proportional to

Wind
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FIGURE 4.2 (A) A cylinder (dark grey) in a wind tunnel is a bluff body from which the
flow separates on the downwind side to form a turbulent wake (light grey), resulting in
a large amount of drag. (B) If the cylinder is spinning the induced flow of Figure 4.1B
is added to the steady wind, resulting in the airflow being deflected in a direction perpen-
dicular to the incident flow. This results in a lift force (L), but there is also a large drag
force (D) due to the turbulent wake.
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the circulation, as defined above, and also to the wind speed, and the air

density (Box 4.1). Some asymmetrical shapes develop circulation when

exposed to a steady wind, without needing to spin round, and this also

produces lift according to the same law. The essential characteristic of an

‘‘aerofoil’’ shape, that is, one that can be used as the cross section of a

wing, is that a bound vortex develops around it when it is set at a suitable

angle of attack to the incident flow, and that the lift force due to the

resulting circulation is associated with a much smaller drag force.

BOX 4.1 Lift, circulation and vorticity.

The idea of a vortex
A ‘‘vortex’’ is a construct with properties that may appear somewhat
artificial at first sight. It consists of a ‘‘vortex filament’’, which is a one-
dimensional line that meanders through the fluid, surrounded by a region
of ‘‘induced flow’’. A cross section through the vortex shows the vortex fila-
ment as a point, and it is only in this infinitely small region that particles of
fluid actually rotate. The surrounding induced flow is said to be ‘‘irrota-
tional’’. Particles of fluid may travel in closed paths around the vortex, or
they may stream past, faster on one side than the other, but they do not
actually spin around on their own axes.

Variable definitions for this box
C A constant
L0 Lift per unit span
r Distance from vortex filament
s Distance along integration path
V Local fluid velocity
V1 Free stream fluid velocity
G Circulation
’ Angle between local velocity vector and path of integration
r1 Free stream fluid density

Circulation
‘‘Circulation’’ is a property that is measured in the irrotational flow around
the vortex filament, not in the vortex filament itself. Figure 4.1 shows a
section through an isolated vortex, in which each particle of air (outside
the vortex filament) is moving in a circular path around the filament, at a
speed (V ) which is inversely proportional to the radius (r) from the fila-
ment. In other words,

V ¼ C

r
; ð1Þ

where C is a constant. This distribution of velocity is not as arbitrary as it
looks, as it expresses the condition that the flow is irrotational. We can define
the circulation (G) around any particular circular path that encloses the vor-
tex filament as the integral of the velocity around that path:
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BOX 4.1 Continued.

G ¼ ð"VdsÞ; ð2Þ
where s is distance along the circular path, and the symbol ‘‘"’’ refers to
integration around the closed path. For this case,

G ¼ C

r

� �
� ð2prÞ ¼ 2pC; ð3Þ

in other words, the circulation is the same around any circle, irrespective of
the radius. More generally, for a closed path of any shape that contains the
vortex filament, the component of the local velocity along the path at any
point is V cos ’, where ’ is the angle between the local velocity vector
and the path of integration, and the circulation is:

G ¼ ð"V cos’dsÞ; ð4Þ
The result of the integration is the same (Equation 3) for any closed path
that contains the vortex filament. This is still true if the vortex filament is
inside (or on the surface of) a body of arbitrary shape, such as a wing cross
section, provided that the path of integration encloses the body, and the
flow outside the body is irrotational. The circulation has the dimensions
of length-squared/time (L2T�1), and it is a property of the vortex, often
called its ‘‘strength’’.

Bound vortex on a wing
An aerofoil shape is one which, when immersed in a steady flow of fluid,
and set at a suitable angle of attack to the incident flow, develops a vortex
around it, such that the fluid velocity on one side of the shape is higher than
the free-stream velocity, and that on other side is lower. This vortex is forced
into existence on a wing by the ‘‘Kutta condition’’ (see main text), which
expresses the effect of viscous forces that equalise the speed at which the
fluid leaves the upper and lower surfaces at the trailing edge. Although this
type of flow does not involve particles of air moving in closed curves, but
only differences in speed on the two sides of a wing, it can be seen as the
combination of a free stream whose velocity is V1 and a vortex of strength G.
The lift on the wing, that is, the component of force at right angles to the free
stream can be calculated directly from the Kutta-Joukowski theorem, which
states that:

L0 ¼ r1V1G; ð5Þ
where r1 is the free-stream density. The primed variable L0 stands for the
lift per unit span of the wing. The total lift is obtained by integrating L0

across the span from one wing tip to the other.

Vorticity
Unlike circulation, vorticity is not a property of a vortex. It is a ‘‘field vari-
able’’ like pressure and density, with a continuous distribution that can be
mapped in a region of fluid, and may vary with time. Vorticity is a vector
quantity equal to the ‘‘curl’’ of the velocity, which is itself a function of the
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4.2.2 THE KUTTA CONDITION

How is a bound vortex initiated and maintained around an object like a

wing, which is moving along, but not spinning around? If we consider

an aircraft just starting its take-off run, the flow around a cross section

of the wing first follows a pattern like that in Figure 4.3A. There is a dis-

continuity where the air sliding along the lower surface comes to the

sharp trailing edge, and doubles back on to the upper surface. Then

it doubles back again, to merge with the air coming over the upper sur-

face as the flow leaves the wing along the same line that it followed

when it approached. This pattern would persist if the viscosity of the

air were zero. In the real world, the zigzag path of the air around the

trailing edge results in strong local shear, which in turn produces vis-

cous forces that force the flow to speed up over the upper surface,

and slow down below. This is equivalent to adding circulation to the

steady flow. The circulation around the wing builds up until the air

flowing off the upper surface merges smoothly with that coming from

below (Figure 4.3B). This is the ‘‘Kutta condition’’, and it prescribes

the strength of the bound vortex that forms, and hence also the

BOX 4.1 Continued.

partial derivatives of velocity in the three directions of space. Vorticity can
also be seen as circulation per unit area, as measured in a plane that is
perpendicular to the axes of the vortices. Its dimensions are those of inverse
time (L2T�1/L2). The intuitive meaning of the vorticity at any point in
the measurement plane is that it is twice the angular velocity of a fluid
particle at that point. One of the more arcane properties of a vortex as
defined above is that the vorticity is infinite in the vortex filament, and zero
everywhere else, which is another way of saying that the induced flow is
irrotational.

Where there is shear, viscous effects lead to distributed vorticity that is
not confined to identifiable filaments, and can be mapped. For example,
where air flows over the surface of a wing, the boundary layer can be seen
as a ‘‘vortex sheet’’, a layer of very small vortices with their axes lying along
the wing span, transverse to the flow. At the trailing edge of the wing, the
flow above the wing has an inward component of velocity due to the
reduced pressure there, while that below the wing has an outward compo-
nent of velocity. Where the two layers merge as they leave the trailing edge,
this lateral motion produces a free vortex sheet with its axes aligned back
along the flight path. These vortices are of course the same as the horseshoe
vortices that are shed from the trailing edge (Figure 4.3B), and eventually
roll up (behind a fixed wing) to form a pair of concentrated trailing vortices
(Figure 4.4).
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amount of lift that develops. The physical meaning of the bound vortex

is that the air flows faster past the top surface of the wing than past the

lower surface. Air molecules do not circulate in closed paths around

the wing, because the steady component of the flow is always faster

than the circulating flow due to the vortex.

4.2.3 HELMHOLTZ’S LAWS

To see how this works in a three-dimensional wing, we need a couple of

general properties of line vortices that were discovered by Hermann

Circulation  Γ

A

B

Wind

FIGURE 4.3 (A) A fluid with no viscosity flowing around the lower side of a wing would
double back around the trailing edge and leave from a stagnation point displaced on to
the upper surface, following the same line by which it approached. Although the surface
pressure would vary on different parts of the wing, the variations would cancel one
another, producing no net lift. There would also be no net drag (d’Alembert’s paradox).
(B) In reality, viscous forces in the zone of strong shear around the trailing edge force the
flow over the upper surface to speed up and that on the lower surface to slow down, until
the fluid from both surfaces leaves the trailing edge smoothly at the same speed (the Kutta
condition). This amounts to forcing a circulation (G) to be added to the flow, which causes
upwash in the air approaching the wing, and downwash as it leaves the trailing edge.
This in turn gives rise to the lift. There could be neither circulation nor lift without viscosity.
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Helmholtz in the nineteenth century. The first of Helmholtz’s laws is that

the circulation (strength) of a line vortex, defined as above, is the same

at every cross section along the vortex, however long it is. The second

is that a line vortex cannot end in the fluid. It can end by butting against

a solid surface, or it can bend round and join on to itself as a vortex ring,

but it cannot just end. Helmholtz’s laws imply that a line vortex, once

present, lasts for ever, and conversely, if no vortex already exists, it is

not possible for one to start.

The resolution of this paradox lies in the small print. The conditions

that Helmholtz assumed when he derived his laws included the

assumption of an ‘‘inviscid’’ fluid, which is one whose density is finite,

but whose viscosity is zero. In practice, Helmholtz’s laws describe the

behaviour of vortices in viscous fluids like air or water rather well, so

long as the flow does not contain any regions of strong shear, meaning

regions where the speed changes sharply over a short distance in the

fluid. There is always shear wherever the fluid slides along a solid sur-

face. The layer of fluid in contact with the surface sticks to it without

slip, and viscous forces tend to hold back the layers of fluid sliding

past above. Conversely, the motion of the fluid tends to pull the

surface along with it. For fluids of low viscosity like air and water,

these effects are confined to a thin boundary layer next to the

surface. It is here that rotation is introduced into the fluid, in the

form of a vortex sheet, rolling along the surface. Once a vortex is

carried away from the solid surface by the flow, forces due to viscosity

become negligible, and the vortex behaves (more or less) according to

Helmholtz’s laws.

4.2.4 THE THREE-DIMENSIONAL FIXED WING

Once a bound vortex has formed on a wing of finite span, it is forbid-

den to end in the fluid. It cannot just stop at the wing tips. It bends

round to form a pair of trailing vortices, whose strength is the same

as that of the bound vortex, leading back along the flight path from

the wing tips, to the point on the runway where the lift developed.

There they are joined together by a ‘‘starting vortex’’, which has the

same strength as the bound vortex, but the opposite direction of rota-

tion. A fixed-wing aircraft that flies from one airport to another actually

creates an elongated, rectangular vortex ring, closed at one end by the

starting vortex which is left behind on the departure runway, and at the

other by a ‘‘stopping vortex’’, which is left on the landing runway, when

the bound vortex is shed from the wing on landing.
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When an aircraft is cruising along at a constant speed in level flight,

its weight is balanced by the lift associated with the bound vortex on

the wing. A pair of trailing vortices whose strength is the same as that

of the bound vortex, stretch out behind (Figure 4.4A). The starting vor-

tex has been left far behind, and for practical purposes the trailing

vortices extend backwards to infinity. They grow continuously as the

aircraft moves forwards creating new vortex at the front, and leaving

the existing vortices behind where they persist, convecting slowly

downwards as each vortex is carried down by the induced flow of the

A

B

FIGURE 4.4 (A) A wing (grey) seen from above and behind. The lift per unit span is pro-
portional to the strength of the bound vortex (black line), which cannot end at the wing
tips, and bends back to form two parallel trailing vortices. (B) The number of vortex fila-
ments making up the bound vortex is here shown as highest in the middle, decreasing as
filaments are shed one by one from the trailing edge. In reality a continuous ‘‘vortex
sheet’’ is shed from the trailing edge, but it rolls up a short distance downstream, to form
a pair of trailing vortices of the same strength as in (A) but closer together.
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other and (in the case of large aircraft) creating a hazard to other air-

craft that may happen to fly through them. As the trailing vortices

grow, downward momentum is continuously added to the downwash

zone between them (Figure 4.4A), at a rate which has to account for

the lift force (Chapter 3). At the same time, work is needed to set each

newly created section of the vortex pair spinning. The rate at which this

work has to be done can be calculated from the strength and spacing of

the vortex pair, and the forward speed. It is the same as the induced

power required from the aircraft’s engine, as calculated in a different

way in Chapter 3, Box 3.1. The rates at which momentum and energy

appear in the wake can be measured, and used to deduce the forces

acting on the aircraft, and the power that is being supplied by the

engine. The persisting vortex wake is a kind of ‘‘footprint’’ in the air.

It contains a record of the forces that the aircraft (or bird) has applied

to the air, and the work that has been done by the engine or flapping

wings.

A single ‘‘horseshoe vortex’’ as shown in Figure 4.4A would imply that

the circulation of the bound vortex is the same at every cross section

from one wing tip to the other, which is not usually the case. Typically,

the circulation is strongest in the middle, and tapers off to zero at

the wing tips. As we pass outwards from the wing root towards the wing

tip, the circulation around each cross section gets less, and this

means that a part of the vortex bound to the wing root must have bent

round and left the wing as a trailing vortex. In Figure 4.4B, the bound

vortex near the wing root is made up from five horseshoe vortices, all

of equal strength. Together, they make a ‘‘lifting line’’ along the wing,

whose strength decreases in steps, as the vortex filaments are shed one

by one from the trailing edge. By making the number of vortex filaments

larger, and the strength of each smaller, the strength of the lifting line

can be made to decline smoothly to zero at the wing tip, while the circu-

lation is shed as a continuous vortex sheet from the trailing edge of the

wing. Such a sheet is unstable, and soon rolls up into a concentrated,

tightly wound vortex, whose circulation is the same as that due to the

lifting line at its strongest point. The end result, as far as the cross-

sectional view of the wake is concerned, a short distance behind the

wing, is nearly the same as for a single horseshoe vortex. There are two

trailing vortices, each with the same strength as the strongest part of

the lifting line, but they are a little closer together than they would be

if the lifting line were of constant strength (Figure 4.5). The wake of a

gliding kestrel was measured and analysed by Spedding (1987a), and

found to conform closely to this pattern.
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4.3 LIFTING-LINE THEORY APPLIED
TO FLAPPING WINGS

4.3.1 VORTEX RINGS AND TRAILING VORTICES

IN BIRDS’ WAKES

Prandtl’s lifting-line theory assumes that the vortex sheet, which forms

where the air slides over the surface of the wing, can be regarded as the

combined effect of a large number of vortex filaments which individually

obey Helmholtz’s laws, and which, once shed from the wing, roll up into

the pair of trailing vortices which are actually observed. The theory gives

a good account of the properties of fixed wings, and this indicates

that the flow over such wings does indeed consist of vortex filaments

surrounded by irrotational induced flow, as outlined above. If Helmholtz’s

laws are true in general, then one would expect that the theory could be

extended to cover flappingwings, a notionwith great creativepossibilities,

which has given rise to a minor industry in recent years.

Rayner (1979a,b) postulated a simple type of wake for a pair of

flapping wings, in which the wings are assumed to build up a circulation

during the downstroke, and to be completely unloaded (zero circulation)

Vz

FIGURE 4.5 A cross section through the wake a short distance downstream from the wing
of Figure 4.4B. Each vortex of the pair induces additional downward flow on the near side
of the other, so that the downward velocity (Vz) in the centre is stronger than either vortex
would produce on its own. Also, each vortex makes the other convect downwards at
a velocity Vz/4. The upward velocity on the outside of each vortex is less than it would
be without the other vortex. As the vortex pair grows along the direction of flight, net down-
ward momentum is added at a rate that must balance the aircraft’s weight. The rate at
which work is done (induced power), must account for all of the motion irrespective of its
direction.

4 Vortices and Vortex Wakes 91



during the upstroke. As the wing tips separate at the beginning of the

downstroke, vortices begin to stream from their tips as soon as the circu-

lation becomes established. These join to become a single vortex con-

necting the wing tips, which grows in length as the wing tips move

apart. At the end of the downstroke, the circulation ceases and the two

ends of the vortex are shed from the wings. Being forbidden to end in

the fluid, they join together to form a complete vortex ring, which is left

behind as the wings are repositioned for the next downstroke. Just as an

aircraft creates one long, rectangular vortex ring per flight, so a slow-

flying bird creates one vortex ring per wingbeat, comprising starting

and stopping vortices, connected by very short trailing vortices. The

momentum of the vortex ring, divided by the wingbeat period, gives

the average lift force, which must be equal to the bird’s weight if the

flight path is horizontal on average. Likewise, the energy of the vortex

ring, divided by the wingbeat period, is the induced power.

In the first quantitative study of the wake of a flying bird, Spedding

(1986) trained a jackdaw to fly very slowly through a cloud of tiny

helium-filled soap bubbles, and mapped the motion of the air in three

dimensions by taking stereoscopic multiple-flash photographs. He

observed vortex rings which resembled Rayner’s predictions, but found

that he could only account for about half the momentum needed to

support the jackdaw’s weight (Spedding et al. 1984). The reason for this

‘‘momentum deficit’’ remained a mystery for another twenty years.

Spedding (1987b) also observed a different type of wake, which had

not been predicted, in a kestrel which had been trained to fly through

a bubble cloud at a normal cruising speed. In this case, the circulation

of the bound vortex did not drop to zero during the upstroke, in fact it

did not change at all. As the wing tips moved up and down, they

streamed a pair of continuous vortices of constant strength, as a fixed

wing would do, implying that the lift per unit span did not change.

However, the wing tips moved in during the upstroke, as the bird

reduced its wing span by flexing the elbow and wrist joints, and out to

full span during the downstroke. By varying its wing span in this way,

the bird developed more lift during the downstroke than during the

upstroke, which is necessary to produce a net forward force over the

wingbeat cycle, to balance drag forces. This ‘‘concertina’’ wing motion

is invariably seen in high-speed films of birds in fast flapping flight.

4.3.2 BIRDS DO NOT NEED GAITS

Spedding’s observations were misinterpreted by others to imply that

birds must either use a ‘‘vortex-ring gait’’ at low speeds, or a ‘‘con-

stant-circulation gait’’ at cruising speeds, and must ‘‘shift’’ from one
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to the other as they speed up or slow down, in much the same way that

a horse shifts back and forth between a walk and a trot. Although this

idea has been widely repeated, there is actually no evidence for it,

and there is no known reason why a bird cannot change smoothly from

one type of wake to the other as it speeds up, without any discontinu-

ous shift. In the hypothetical sequence of Figure 4.6, discrete vortex

rings form at very low speeds, because the local airspeed over the wing

during the upstroke is so low that the circulation cannot be main-

tained, and the wing has to be unloaded (Figure 4.6A). Once the bird

accelerates to a modest forward speed, a small amount of circulation

(and lift) can be maintained during the upstroke (Figure 4.6B). A stop-

ping vortex forms to close the ring as the wing is partially unloaded at

the end of the downstroke, but it does not contain the full amount of

circulation that comes off the wing in the form of trailing vortices

during the downstroke. The difference remains in the form of weaker

trailing vortices that continue, closer together, during the upstroke. As

the forward speed continues to increase (Figure 4.6C), the trailing

vortices become stronger during the upstroke, and the ‘‘rungs’’ of the

ladder become weaker until finally they disappear altogether, leaving

a pair of trailing vortices of constant strength, but variable spacing.

No gait shift is required.

4.4 WIND TUNNEL STUDIES OF BIRD WAKES

4.4.1 DPIV EXPERIMENTS

Experimental studies of bird wakes entered a new phase with a series

of papers by Spedding et al. (2003a,b), Rosén et al. (2004) and Heden-

ström et al. (2005) on the wakes of small birds flying in a wind tunnel,

observed by digital particle imaging velocimetry (DPIV). Like the

helium-bubble method, this technique depends on tracking particles

in the air, but in the wind tunnel the bird is stationary and the air

streams past, carrying any vortex structures in the wake along with it.

The particles were tiny liquid droplets introduced into the circulating

air stream by a fog generator, and they were illuminated by a thin light

sheet coming from a pulsed laser. The light sheet illuminated a vertical

plane aligned along the direction of the air flow behind the bird, and

the particles in it were photographed from the side. By statistically

comparing two photographs, separated by a short time interval, varia-

tions of velocity in the plane of the light sheet could be mapped. In

slow flight, when the bird was generating vortex rings, the starting

and stopping vortices of each ring could be identified and measured,

but the structure of the ‘‘trailing’’ parts of the vortex structure had to
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FIGURE 4.6 Schematic bird wakes, seen from behind and slightly above the bird, which
is shown during the upstroke of flapping flight, at three different speeds. A (observed).
In very slow flight the wing is unloaded during the upstroke, shown by separated flight
feathers. The starting vortex formed during the previous downstroke, shown as a bundle
of vortex filaments, is shed from the wing when the lift collapses at the end of the down-
stroke, and its ends join to make a free vortex ring. B (hypothetical). At a moderate for-
ward speed, some lift continues during the upstroke, and some vortex filaments
continue to stream from the wing tips, while others are shed and join up to form a vortex
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be inferred by comparing maps in which the illuminated plane varied

from the centre line to beyond the wing tip.

The experiments of Spedding et al. (2003b) on a thrush nightingale

covered a speed range from well below the thrush nightingale’s esti-

mated minimum power speed (Vmp) to about 2 m s�1 above Vmp, and

the results demonstrated a couple of important points. In the first

place, there was no suggestion of any discontinuous ‘‘shift’’ between

two or more different ‘‘gaits’’ at different speeds. The bird could fly at

any speed between minimum and maximum, adjusting its wake struc-

ture continuously to suit the speed. Secondly, the results at intermedi-

ate speeds did not display a regular ‘‘ladder’’ structure as proposed in

Figure 4.6B. A well-defined starting vortex could be identified at the

beginning of each downstroke, but the stopping vortex was less well

defined, and weaker than expected. When the results were analysed

in terms of vortex filaments and irrotational flow, there was a momen-

tum deficit as observed in the earlier helium-bubble experiments.

Hedenström (2006) has described these experimental wakes, with

diagrams of their inferred structure.

4.4.2 DISTRIBUTED VORTICITY

In the case of a vortex filament, which is the only part of a line vortex

where the air actually rotates, the vorticity can be defined as twice the

angular velocity of the filament. The induced flow surrounding the fila-

ment is irrotational, meaning that its vorticity is everywhere zero. How-

ever, vorticity can also be measured at a point in the fluid as the ‘‘curl’’

of the three-dimensional velocity. This is a vector quantity, derived

from the local gradients of velocity in the three dimensions of space.

Spedding et al. (2003a,b) and Hedenström et al. (2005) used the DPIV

technique to map the magnitude and direction of the vorticity in the

space immediately downstream of the bird, and found that the

vorticity was not wholly confined to well-defined vortex filaments. Start-

ing and stopping vortices could be seen at each wingbeat, but they were

not of equal strength. The flow around them was not irrotational, but

ring. The combined effect is a pair of continuous wing tip vortices, which move out as the
wings are fully extended during the downstroke, and in as they are flexed in the upstroke,
together with a series of transverse vortices circulating alternately in opposite directions.
C (observed). At higher speeds, the transverse starting and stopping vortices dwindle in
strength and eventually disappear, leaving only the trailing vortices, undulating up and
down, and moving in during the upstroke and out during the downstroke. The circulation
of the bound and trailing vortices remains constant. The lift per unit span is therefore also
constant, but the lift is reduced during the upstroke by shortening the wing span.
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contained distributed vorticity that was not concentrated into thin

filaments. When this distributed vorticity was taken into account, the

momentum deficit disappeared.

It seems that real, flapping-flight bird wakes do not necessarily con-

sist of structures made up of vortex filaments obeying Helmholtz’s

laws, as postulated by Rayner (1979a,b,c), or as shown in Figure 4.6.

There are identifiable vortex cores, but the flow around them is not,

in general, irrotational. This means, unfortunately, that it is not practi-

cal to calculate the momentum and energy of the wake by elaborating

Prandtl’s lifting-line theory, as this depends on representing the wake

as an array of line vortices, which individually conform to Helmholtz’s

laws. Although it should be possible in principle to estimate the three

main components of mechanical power (outlined in Chapter 3) from

a quantitative analysis of these wakes, a full accounting of the momen-

tum and energy will have to include distributed vorticity that is not

confined to thin vortex cores. This is difficult, and is a major challenge

for theorists. It may also underlie some of the performance differences

between bird wings and their artificial counterparts, especially their

resistance to boundary-layer separation (below).

4.4.3 IMPLICATIONS OF WAKE STUDIES FOR FLIGHT

PERFORMANCE CALCULATIONS

The power calculation used in Flight, and described in Chapter 3 for

flapping wings, does not explicitly take account of the structure of

the vortex wake. If it were possible to do that, the effects would include

changing the method of calculating the induced power. The present

method depends on the much-derided concept, introduced in

Chapter 3, of an ‘‘actuator disc’’, which is swept out by the pair of flap-

ping wings, and imparts a downward induced velocity to the air pass-

ing through it. The actuator disc is imagined as adding a constant

downward velocity to the whole of a circular tube of air passing

through the disc, whose diameter is the same as the wing span. In this

it resembles a fixed wing with an elliptical spanwise lift distribution

which, according to Prandtl’s lifting-line theory, produces a constant

downwash velocity across the span, from one wing tip to the other.

This case is discussed at length in every aeronautical textbook, together

with the proof that this particular lift distribution results in a lower

induced drag than any other. Despite its somewhat artificial appear-

ance, the actuator disc predicts the same amount of induced power

as a wake like that of Figure 4.7, coming from a fixed wing with an

elliptical spanwise lift distribution. The formula for induced power,
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derived from the actuator disc in Chapter 3, Box 3.1, is exactly the same

as the standard formula for the induced drag of a fixed wing with ellip-

tical lift distribution, if the drag is multiplied by the speed to get the

induced power (Box 4.2).

4.4.4 BETTER ESTIMATES OF THE INDUCED POWER FACTOR

Because an elliptical lift distribution produces the lowest induced drag

that is possible with a fixed wing, corrections to induced drag or

induced power calculations take the form of multiplying the calculated

drag or power by a number that is somewhat greater (but not much

greater) than 1, to account for losses due to deviations from the

assumed constant downwash velocity across the span. In Flight, the

default value for the induced drag factor in gliding flight is 1.1, and that

for the induced power factor in flapping flight is 1.2. These values are

essentially guesses based on aeronautical experience. The power curve

calculation in Flight currently identifies two speeds that characterise a

particular bird, as defined by its mass, wing span and wing area, taking

account of the strength of gravity and the air density. These are the

minimum power speed (Vmp) and the maximum range speed (Vmr)

which define the lower and upper limits of the speed range in which

FIGURE 4.7 A fixed wing (grey) seen from behind. The strength of the bound vortex,
shown by the curve above the wing, is greatest in the middle, declining to zero at the
wing tips. The curve represents the local circulation, and also the lift per unit span, at
each point along the span. If (and only if) this curve is half of an ellipse as shown, then
the downwash velocity immediately behind the wing (arrows), caused by the shedding
of a vortex sheet as in Figure 4.4B, is constant across the span. According to Prandtl’s
lifting-line theory, this ‘‘elliptical lift distribution’’ gives a lower induced drag coefficient
than any other, for a given lift coefficient.
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BOX 4.2 The actuator disc versus vortex wakes.

Variable definitions for this box
B Wing span
CDind Induced drag coefficient
CL Lift coefficient
Dind Induced drag
g Acceleration due to gravity
k Induced drag (or power) factor
m Bird’s all-up mass
Pind Induced power in horizontal flight
Ra Aspect ratio
Vt True airspeed
Swing Wing area
r Air density

Induced drag from lifting-line theory
The induced drag of a fixed wing can be deduced from Prandtl’s classical
lifting-line theory, which begins by representing the circulation around the
wing as a stack of horseshoe vortices as shown in Figure 4.3B. The total cir-
culation at any particular point along the span depends on the number of
vortex filaments still bound to the wing at that point. By specifying where
vortex filaments are shed, the theorist can define a particular ‘‘lift distribu-
tion’’, in which the strength of the circulation is plotted along the wing span,
from one wing tip to the other (Figure 4.6). The same graph also represents
the lift-per-unit-span at each point along the span, since this is proportional
to the circulation. All aeronautical textbooks (such as the excellent one by
Anderson 1991) give a detailed account of the ‘‘elliptical’’ lift distribution,
in which the graph is one half of an ellipse. This particular lift distribution
is ‘‘ideal’’ in the sense that it produces less induced drag than any other,
for a given amount of lift. It also has another (related) characteristic, that
the downwash velocity immediately behind the wing, shown by the vertical
arrows in Figure 4.6, is constant across the span. According to the lifting-line
theory, the coefficient of induced drag (CDind) for this special case depends
only on the lift coefficient (CL) and the aspect ratio (Ra):

CDind ¼ C2
L

pRa
: ð1Þ

The aspect ratio (Chapter 1) is

Ra ¼ B2

Swing
; ð2Þ

where B is the wing span, and Swing is the wing area. For a fixed-wing aircraft
in level flight, the lift force must balance the weight (mg), and the lift coeffi-
cient is therefore

CL ¼ 2mg

ðrV 2
t SwingÞ ; ð3Þ
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BOX 4.2 Continued.

where r is the air density, and Vt is the true airspeed. Substituting this
expression for CL in Equation (1) makes the induced drag coefficient

CDind ¼ 4ðmgÞ2
ðpr2B2V 4

t SwingÞ : ð4Þ

The induced drag itself (Dind) is

Dind ¼ CDindrV 2
t Swing

2

¼ 2ðmgÞ2
ðprB2V 2

t Þ
ð5Þ

Since the induced drag for an elliptical lift distribution, given by Equation (5),
is the lowest that is possible, the induced drag of a real wing has to be multi-
plied by an induced drag factor (k), which is a number that is never less than 1,
to account for any deviations from the ideal lift distribution, and from
constant downwash velocity along the span:

Dind ¼ 2kðmgÞ2
ðprB2V 2

t Þ
: ð6Þ

This formula is used when calculating a bird’s glide polar in Flight
(Chapter 10, Box 10.1) to find the induced drag. The default value assigned
to k in gliding is 1.1.

Induced power from the actuator disc
The starting point for calculating the induced power in flapping flight comes
from helicopter theory rather than fixed-wing theory. A helicopter rotor
sweeps out a circular disc, which can be approximated as an ‘‘actuator disc’’,
whose theoretical property is that the air pressure increases in a stepwise
manner as the air passes through the disc. This pressure step imparts a
downward induced velocity to a tube of air that flows through the disc.
The cross-sectional area of this tube is assumed to be that of a circle, whose
diameter is the same as the rotor diameter in the case of a helicopter, or the
wing span in the case of a bird (even though the wings do not sweep out the
full area of the disc). The derivation of the induced power (Pind) needed to
support the weight (mg) is given in Chapter 3, Box 3.1, and the result is

Pind ¼ 2ðmgÞ2
ðVtpB2rÞ : ð7Þ

This is for an ‘‘ideal’’ actuator disc which produces a constant induced
velocity from edge to edge of its circular area, which is also the condition
for minimum induced power to support a given weight. In practice, varia-
tions of induced velocity across the disc require an ‘‘induced power factor’’
(k), which is a number whose value is never less than 1. The default value
of k in Flight is 1.2 for flapping flight, and the formula used for induced
power in the power curve calculation is
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most birds fly most of the time, and for which the calculations are

reasonably robust. Speeds lower than Vmp are reserved for unsteady

activities, such as landing, taking off and hawking for flying insects,

while speeds higher than Vmr may be used, if they are used at all, by

predatory birds such as falcons and skuas for pursuing other birds.

Improved understanding of the vortex wakes may make it possible to

identify these characteristic speeds with particular types of wake struc-

ture, which can themselves be associated with particular values of a

BOX 4.2 Continued.

Pind ¼ 2kðmgÞ2
ðVtpB2rÞ : ð8Þ

The reader who believes that it is more ‘‘realistic’’ to calculate induced
power from the vortex wake than from an actuator disc should notice that
the induced drag for a fixed wing with an elliptical lift distribution
(from Equation 5), when multiplied by the speed to get the corresponding
power, gives exactly the same result as the induced power from Equation (8).
The lifting line and actuator disc calculations are actually different views of
the same theory. The basic assumption in both cases is that the downwash
velocity is constant across the wing span.

The ‘‘ bow-tie’’ fallacy
The advantage of the actuator disc approach for flapping flight is that it
requires no information about the wings except the wing span. It does not
require that the airspeed ‘‘seen’’ by a point on the wing is the same as the for-
ward speed of the whole aircraft or bird, or that the local airspeed has to be
constant across the span, and this permits a massive simplification in consid-
ering rotary or flapping wings. The calculation does not even require the angle
through which the wings are flapped to be specified, although it does require
the ‘‘disc area’’, through which air passes as it is accelerated downwards. If a
bird or insect flaps its wings through an angle that is less than the full 180�

available to each wing, then the wings sweep out a double sector shaped like
a bow tie, and some authors have assumed that this ‘‘swept area’’ should be
used instead of the area of the full circle, when calculating the induced power.
If this were so, the argument of Chapter 3 Box 3.1 would require that the
induced velocity would have to be inversely proportional to the swept area.
Extending this line of thought to a fixed wing, in which no area is swept at
all, the induced velocity would have to be infinite. However, we know from
the lifting-line theory, which has been part of the bedrock of theory for gen-
erations of aeronautical engineers, that the induced velocity for a fixed
(non-flapping) wing is not infinite, but the same as that for a circular actuator
disc,whosediameter is the sameas thewing span.Commonsense ismisleading
in this case. The ‘‘bow-tie’’ concept is wrong.
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variable such as the reduced frequency (Box 4.3) that summarises the

wing motion in a single number. If this proves to be feasible, then it

may be possible to go further, and predict a value for the induced

power factor (k) from the reduced frequency. When Flight calculates

a power curve, it would then calculate the reduced frequency at each

speed, and recalculate k, instead of using a fixed value for k at all

speeds, as it does at present.

BOX 4.3 Reduced frequency and Strouhal number.

Wind-tunnel experimenters tend to describe different wake geometries in
terms of the forward speed at which they are observed, but obviously the
same wake pattern, if it is seen in different species, is not likely to occur
at the same speed. To achieve a more general description, wake patterns will
need to be connected with some variable that involves the ratio of the
wingbeat frequency to the speed. To make such a variable dimensionless,
a reference length is also required. Two dimensionless variables, the red-
uced frequency and the Strouhal number, which involve different
reference lengths, have been introduced by theorists for various purposes.

Variable definitions for this box
A Wingtip amplitude
cm Mean chord
f Wingbeat frequency
fred Reduced frequency
St Strouhal number
Vt True airspeed

The ‘‘reduced frequency’’ (fred) is defined by Spedding (1992) as

fred ¼ pfcm
Vt

; ð1Þ

where f is the wingbeat frequency, cm is the mean chord (ratio of wing area
to wing span) and Vt is the true airspeed. It characterises the wake geometry,
being equal to the ratio of the distance that the bird travels forwards in one
wingbeat cycle to the mean chord. High values of the reduced frequency
(high frequency, low speed) indicate rapid changes of flow geometry
through the wingbeat cycle, and the likelihood that unsteady aerodynamic
effects will need to be considered, whereas a low reduced frequency (low
frequency, high speed) indicates that quasi-steady aerodynamics may give
a satisfactory account of the flow.
‘‘Strouhal number’’ (St) is a related dimensionless variable. A version of it

used by Nudds et al. (2004) is:

St ¼ fA

Vt
; ð2Þ
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4.5 FEATHERED WINGS

There are two possible reasons why bird wakes might have different

characteristics from those of fixed wings. The differences might be

inherent in the flapping motion, and in that case one would expect

bats to show similar wakes, with distributed vorticity and ill-defined

vortex structures. Another possibility is that the feathered surface of

birds’ wings and bodies is responsible, and if that were the case, the

wakes of birds and bats would differ. It has been noted elsewhere in

this book that the boundary layer appears to remain attached far more

tenaciously over a living bird’s body, than over the same body at the

same Reynolds number when dead and frozen, or over a smooth-

surfaced model of similar shape (Chapter 15, Box 15.4). It appears from

the DPIV studies that the wings of small birds are also more resistant to

flow separation than model aircraft wings at a similar scale, but not

much is known about the proneness or otherwise of bat wings and

BOX 4.3 Continued.

where A is the wingtip amplitude, defined as the vertical linear excursion of
the wing tip above and below its position with wings level. This is the same
as Equation (1), except that A is substituted for pcm. Some care is needed
with the term ‘‘amplitude’’. The traditional mathematical usage refers to a
sine wave, in which the value of some quantity swings in each cycle from
zero to þA, then down to �A, before returning to zero. A is the amplitude,
and on this definition, the difference between the positive and negative
peaks (the ‘‘peak-to-peak swing’’) is 2A. However, some authors define the
‘‘amplitude’’ as the peak-to-peak swing, and others neglect to mention what
exactly they mean by the term.
The Strouhal number gives an indication of the angle with which the wing

tip moves up and down, relative to the flight path, whereas the reduced fre-
quency does not, and this could be seen as an advantage for describing
wake geometries. The practical difficulty with the Strouhal number is that
the wingtip amplitude is difficult to measure. Bird wing tips are thin and
pointed, and are apt to disappear in photographs when seen edge-on.
Measuring wingtip amplitude is challenging in the wind tunnel, and
impractical in the field, where the observer has no control over the camera
geometry. The reader should not be unduly impressed by papers in which
large numbers of Strouhal numbers have been calculated from published
observations, whose original authors were not paying special attention to
measuring wingtip amplitudes, and were not measuring them in a standard
way. The reduced frequency is less susceptible to such uncertainties, as it
depends on the wingbeat frequency, which is easy to measure from video,
and on the standard morphological variables defined in Chapter 1.
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bodies to boundary-layer separation. Hedenström et al. (2007) have

recently studied the wakes of a small nectar-feeding bat by the DPIV

technique (above), but their measurements were limited to speeds

from the minimum power speed downwards, which were said to be

the normal speed range for the species. It may be that Microchiroptera

generally are specialised for manoeuvrable flight in the unstable speed

range below Vmp, and that they differ in that respect from the majority

of birds. This would complicate comparisons between bird and bat

wakes, but be that as it may, two interesting possibilities have been

raised. Birds (but not bats) may be able to suppress boundary-layer

separation by exploiting some property of the feathered surface, or

alternatively, both birds and bats may be able to do this in some way

that does not depend on feathers. Either way, new aerodynamic

principles are likely to be involved.

4 Vortices and Vortex Wakes 103


