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Using a Spreadsheet for Numerical Methods

Several of the numerical methods discussed Chapter 7 can be implemented easily using
an electronic spreadsheet program. Only a few of the spreadsheet program’s facilities are
needed. We refer to them in the text with a capital letter. If you are not familiar with
these facilities, use the Help screens to find them and learn about their properties. Some
information about Excel r is included. Modifications for different spreadsheets, if necessary
at all, will be straightforward.

Recalculate. Calculates all the formulas in the spreadsheet. Options may include Mode
(Automatic/Manual), Number of iterations, Order (Natural/ Column-wise/Row-wise) and
others. Not all spreadsheet programs have all options. In Manual mode, recalculation takes
place when you press the Recalculation key (typically F9). Excel: Starting from the standard
toolbar, select Tools – Options and the Calculation tab. Select Calculation-Manual. Check
Iteration, and fill in Maximum Iterations 25, Maximum Change 0.001. (You can change
these at any time.)

Copy. Copies a formula (or value) from a specified cell to other cells. Excel: Enter the
desired formula or value in a cell. Select that cell. Place the cursor in the solid square in the
lower right; it becomes a +. Drag to adjacent cells to fill them.

To copy to a whole block: copy first to a column (or row). Drag the + to adjacent rows
(or columns).

Fill. Fills a specified block of cells with a sequence of numbers. The user specifies the
starting number and the step. Excel: Enter the desired values in two adjacent cells. Select
the two cells. Place the cursor in the solid square in the lower right; it becomes a +. Drag
to adjacent cells. You can also use CTRL + C and CTRL + V.

1. Boundary value problems.

Suggested Layout
Use row 1 to register values of the independent variable x.
Use row 2 for values of and formulas for the approximate solution.
Use row 3 to store any constants necessary, such as ∆x or n.
Use column A for labels.

Preparation
Set the Recalculation Mode to Manual, and Iterations to 25.

Setting up the Equations

• Fill a string of cells in row 1 with values of xi for i = 0, · · · , n.

• Write out the generic replacement equation at xi, and solve it (on paper) algebraically
for ui.

• Insert the equivalent formula, using cell addresses, into a cell of row 2.
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• Copy that formula into the cells of row 2 that correspond to the unknowns u2, · · · , un−1.

• Insert appropriate boundary conditions:

For conditions specifying values, such as u(0) = T or
u(1) = U , where T and U are numbers, insert the num-
bers T or U into the appropriate cells.
For conditions involving the derivative at 0 or 1, the re-
placement of the boundary condition becomes the equa-
tion for a cell outside the x-range.

Example 1.1. Find an approximate solution, with n = 5, of the problem (see Eqs. (1) to
(7) in Section 7.1)

u′′ − 12xu = −1, 0 < x < 1,

u(0) = 1, u(1) = −1.

First, follow the instructions for Preparation, setting the Recalculation Mode to Manual
and Iterations to 25.

We are solving with n = 5, ∆x = 0.2. Therefore, in row 1, fill cells B1 to G1 with the
values 0, 0.2, 0.4, 0.6, 0,8, 1.0. The easiest way to do this is to use the Fill command with
initial value 0 and step 0.2 in cells B1..G1. The spreadsheet looks like this:

A B C D E F G H I

1 0 0.2 0.4 0.6 0.8 1.0

2

3

The generic replacement equation is given in Eq. (3) of Section 7.1. With ∆x = 0.2, it
becomes

25 (ui+1 − 2ui + ui−1) − 12xiui = −1 (1)

for i = 1, · · · , n − 1. When this equation is solved algebraically for ui we find

ui = (1 + 25(ui+1 + ui−1))/(50 + 12xi). (2)

Now, we record appropriate translations of this equation in the spreadsheet. Cells B2..G2
are going to carry values u0, · · · , u5, so cell C2 carries the value u1 (just below cell C1, which
carries x1). Equation (2), with i = 1, is u1 = (1 + 25(u2 + u0))/(50 + 12x1). Cells D2 and
B2 carry u1+1 = u2 and u1−1 = u0, respectively. Thus, we record this formula in cell C2:

C2 := (1 + 25 ∗ (D2 + B2))/(50 + 12 ∗C1).

Now Copy the formula from C2 to the block C2..F2. Because the spreadsheet uses relative
addresses, it interprets B2 as “the contents of the cell to the left” and C1 as “the contents of
the cell above,” so it puts the correct formula into each cell. For instance, cell D2 acquires
the formula

(1 + 25 ∗ (E2 + C2))/(50 + 12 ∗ D1).
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Next, insert the boundary conditions: set cell B2 to value 1 and cell G2 to value −1.

The last step is to perform the calculations. Press the Recalculation key. The numbers
in the cells can be seen changing while the 25 iterations are being calculated. Press the
Recalculation key again. If you see any changes, press it again. When no more changes
occur, the numbers in row 2 satisfy the replacement equations. The spreadsheet looks like
this:

A B C D E F G H I

1 0 0.2 0.4 0.6 0.8 1.0

2 1 0.634 0.290 -0.039 -0.419 -1

3

The numbers in row 2 can be used with the graphing facility to produce a graph of the
approximate solution. �

Example 1.2. Solve the problem consisting of the same differential equation and the same
boundary condition at x = 0, but with the boundary condition u′(1) = −1.

The replacement equation for the differential equation remains the same as the foregoing,
but now it applies for i = n as well. The second boundary condition is replaced by

(un+1 − un−1) /2∆x = −1. (3)

Simplifying and using n = 5 and ∆x = 0.2, we obtain the condition u6 = u4 − 0.4.
Now, in the spreadsheet, the replacement equation that applies to cells C2..F2 must be

copied into cell G2 as well. That equation will contain a reference to the contents of cell H2,
which corresponds to un+1 (that is, u6, since n = 5). The boundary condition requires that
u6 = u4 − 0.4. Thus the formula for cell H2 is

H2 := F2 − 0.4.

(Remember that the spreadsheet program interprets an entry beginning with a letter as
being a label. The leading equal sign tells the program that F2 means a cell address.)

We are ready to calculate the solution of the replacement equations. Simply press the
Recalculation key several times, until no changes are seen in the numbers in the cells. The
solution is shown in the following. Of course, we are interested only in the values in cells
B2..G2.

A B C D E F G H I

1 0 0.2 0.4 0.6 0.8 1.0

2 1 0.720 0.468 -0.267 0.103 -0.062 -0.297

3
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2. One-dimensional heat problems.

Suggested Layout
Use row 1 to register values of the independent variable x.
Use row 2 for the initial values, u(xi, 0).
Use column A for values of the independent variable t.

Preparation
Set the Recalculation Mode to Automatic.

Setting up the Equations

• Fill a string of cells in row 1 with values of xi.

• Fill a string of cells in column A with the values of tm.

• Apply appropriate boundary conditions.

For conditions specifying values, such as u(0, t) = T (t) or u(1, t) = U(t),
where U , T are given functions of t, fill the column under x = 0 or x = 1
with the appropriate formula. Because values of t appear in column A,
the formulas will be easy to write.
For conditions involving the derivative at 0 or 1, find the replacement
for the boundary condition. Solve algebraically for u−1(m) or un+1(m)
and use as the replacement equation for the corresponding cell.

• Apply the initial condition u(x, 0) = f(x), by filling the first row of u’s with the formula
for f(x), appropriately translated to spreadsheet formulas.

• Write out the generic replacement equation and solve it (on paper) for ui(m + 1).

• Insert the equivalent formula, using cell addresses, into a cell of row 3.

• Copy the formula to the cells corresponding to unknown values of u1(m).

Example 2.1. Find a numerical solution of the heat problem

∂2u

∂x2
=

∂u

∂t
, 0 < x < 1, 0 < t (1)

u(0, t) = 0, u(1, t) = 0, 0 < t (2)
u(x, 0) = x, 0 < x < 1 (3)

(Eqs. (4) to (7), Section 7.2). Use ∆x = 1/4 and r = 1/2.
First, follow the instructions for Preparation. Next, Fill cells C1..G1 with the x-values

0, 0.25, 0.5, 0.75, 1, and Fill some cells in column A (say, A2..A30) with t-values. Because
∆t = r(∆x)2, we must have ∆t = 1/32 = 0.03125. When these steps are completed, the top
of the spreadsheet looks like this:
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A B C D E F G H

1 0 0.25 0.5 0.75 1

2 0

3 0.03125

4 0.0625

5 0.09375

6 0.125

Next, fill in the initial condition, u(x, 0) = x, in cells C2..G2, and the boundary condi-
tions, u(0, t) = 0, u(1, t) = 0 in cells C3..C30 and G3..G30. Note that we have made the
initial condition override the boundary condition. Now the spreadsheet looks like this:

A B C D E F G H I

1 0 0.25 0.5 0.75 1

2 0 0 0.25 0.5 0.75 1

3 0.03125 0 0

4 0.0625 0 0

5 0.09375 0 0

6 0.125 0 0

The generic replacement equation for the simple heat equation is Eq. (8), Section 7.2.
With r = 0.5, it becomes

ui(m + 1) = 0.5(ui−1(m) + ui+1(m)).

In words, the value of u in any cell is the average of the values of u to the left and right in
the row above it. Thus, we put in cell D3 the formula

D3 := 0.5 ∗ (C2 + E2) (5)

and copy this into cells D3..F30. The calculations are carried out automatically. The
spreadsheet is filled with approximations to the solution of the original problem. The first
few lines are the same as Table 4 of Section 7.2.
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A B C D E F G H I

1 0 0.25 0.5 0.75 1

2 0 0 0.25 0.5 0.75 1

3 0.03125 0 0.25 0.5 0.25 0

4 0.0625 0 0.25 0.25 0.25 0

5 0.09375 0 0.125 0.25 0.125 0

6 0.125 0 0.125 0.125 0.125 0

Example 2.2. Find a numerical solution of the heat problem

∂2u

∂x2
=

∂u

∂t
, 0 < x < 1, 0 < t (6)

u(0, t) = 100t,
∂u

∂x
(1, t) = 0, 0 < t (7)

u(x, 0) = 0, 0 < x < 1. (8)

Let us choose ∆x = 1/4 and r = 1/2. We follow the same procedure as in the first
example for filling in x’s in the first row and t’s in the first column. In row 2, we record the
initial values of 0. In column C, record the left boundary condition u(0, tm) = 100tm. This
can be done in several ways, but the one closest to the spirit of the problem is to treat t as
a function of t (which it certainly is) by inserting in cell C2 the formula C2 := 100 ∗A2 and
Copying to the block C2..C30. The top of the spreadsheet now looks like this:

A B C D E F G H I

1 0 0.25 0.5 0.75 1

2 0 0 0 0 0 0

3 0.03125 3.125

4 0.0625 6.25

5 0.09375 9.375

6 0.125 12.5

7 0.15625 15.625

The right-hand boundary condition requires zero gradient at x = 1. The replacement equa-
tion for this condition is

(un+1(m) − un−1(m))/2∆x = 0, (9)

or u5(m) = u3(m), because n = 4 here. Therefore, in cell H2 we place the formula H2 := F2,
and Copy it down column H .
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Finally, the replacement equation is the same as in previous cases,

ui(m + 1) = 0.5(ui−1(m) + ui+1(m)). (10)

The equivalent of this equation is inserted into, say, cell D3 (see Eq. (5)) and Copied to all
relevant cells in columns D through G. Numbers appear immediately throughout the block
containing the formulas. The resulting spreadsheet looks like this (only two decimals are
shown).

A B C D E F G H I

1 0 0.25 0.5 0.75 1

2 0 0 0 0 0 0 0

3 0.03125 3.125 0 0 0 0 0

4 0.0625 6.25 1.56 0 0 0 0

5 0.09375 9.375 3.13 0.78 0 0 0

6 0.125 12.5 5.08 1.56 0.39 0 0.39

7 0.15625 15.625 7.03 2.73 0.78 0.39 0.78

3. One-dimensional wave problems.

Suggested Layout
Use row 1 to register values of the independent variable x.
Use rows 2 and 3 for the initial values, u(xi, 0), u(xi, t1).
Use column A for values of the independent variable t.

Preparation
Set the Recalculation Mode to Automatic.

Setting up the Equations

• Fill a string of cells in row 1 with values of xi.

• Fill a string of cells in column A with the values of tm.

• Fill row 2 with the initial condition, ui(0) = f(xi).

• Fill row 3 using the starting equation (see Eq. (7), Section 7.3).

• Insert appropriate boundary conditions.
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For conditions specifying boundary values, such as
u(0, t) = T (t) or u(1, t) = U(t), fill the column under
x = 0 or x = 1 with the appropriate formula. Because
values of t appear in column A, the formulas will be
easy to write.
For conditions involving the derivative at 0 or 1, find
the replacement for the boundary condition. Solve al-
gebraically for u−1(m) or un+1(m) and use as the re-
placement equation for the corresponding cell.

• Write out the generic running equation. Insert the equivalent formula, using cell ad-
dresses, into a cell of row 4. Copy the formula to the cells corresponding to unknown
values of ui(m).

Example 3.1. Find a numerical solution of this wave problem

∂2u

∂x2
=

∂2u

∂t2
, 0 < x < 1, 0 < t (1)

u(0, t) = 0, u(1, t) = 0, 0 < t, (2)

u(x, 0) = 1 − |2x− 1|, ∂u(x, 0)
∂x

= 0, 0 < x < 1. (3)

(See Eqs. (1) to (3), Section 7.3.) Use ∆x = ∆t = 1/4.
First, follow the instructions for Preparation. Next, Fill cells C1..G1 with the x-values

0, 0.25, 0.5, 0.75, 1, and Fill cells A2..A30 with t-values. When these steps are completed,
the top of the spreadsheet looks like this:

A B C D E F G H I

1 0 0.25 0.5 0.75 1

2 0

3 0.25

4 0.5

5 0.75

Next, fill in the initial condition in cells C2..G2, and the boundary conditions, u(0, t) = 0,
u(1, t) = 0 in cells C3..C30 and G3..G30. Note that there is no conflict between initial and
boundary conditions. Now the spreadsheet looks like this:
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A B C D E F G H I

1 0 0.25 0.5 0.75 1

2 0 0 0.5 1 0.5 0

3 0.25 0 0

4 0.5 0 0

5 0.75 0 0

The starting equation, Eq. (7) of Section 7.3, with g(x) = 0, and ρ = 1 becomes

ui(1) = 0.5(f(xi−1) + f(xi+1)). (4)

We can put the equivalent equation into cell D2,

D2 := 0.5 ∗ (C1 + E1) (5)

and Copy it to cells D2..F2. Calculation takes place immediately, and the top of the spread-
sheet is

A B C D E F G H I

1 0 0.25 0.5 0.75 1

2 0 0 0.5 1 0.5 0

3 0.25 0 0.5 0.5 0.5 0

4 0.5 0 0

5 0.75 0 0

The general running equation for ρ = 1 is given by Eq. (9), Section 7.3,

ui(m + 1) = ui−1(m) + ui+1(m) − ui(m − 1). (6)

Thus, we put in cell D4 the formula

D4 := C3 + E3− D2 (7)

and Copy this into cells D4..F30. The calculations are carried out automatically, and the
spreadsheet is filled with approximations to the solution of the original problem. The first
few lines are the same as Table 6.
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A B C D E F G H I

1 0 0.25 0.5 0.75 1

2 0 0 0.5 1 0.5 0

3 0.25 0 0.5 0.5 0.5 0

4 0.5 0 0 0 0 0

5 0.75 0 -0.5 -0.5 -0.5 0

6 1.0 0 -0.5 -1 -0.5 0

7 1.25 0 -0.5 -0.5 -0.5 0

Example 3.2. Obtain a numerical solution of the following problem for t up to 4 using
∆x = ∆t = 1/5.

∂2u

∂x2
=

∂2u

∂t2
, 0 < x < 1, 0 < t (8)

u(0, t) = sin(πt), u(1, t) = 0, 0 < t (9)

u(x, 0) = 0,
∂u(x, 0)

∂t
= 0, 0 < x < 1. (10)

As ∆x and ∆t are both 0.2, we must construct anew the top row and left column of the
spreadsheet. The boundary condition on the right, u(1, t) = 0, is satisfied by putting 0’s
into column H . To satisfy the boundary condition on the left, we insert this formula into
cell C2,

C2 := sin(PI() ∗ A2), (11)

and Copy it into cells C2..C22. The constant π is generated as a function with no argument.
Because both initial conditions are 0, the starting equation provides zero values for time

t1. Thus, cells D2..G2 and D3..G3 are filled with 0’s. The top of the spreadsheet is

A B C D E F G H I

1 0 0.2 0.4 0.6 0.8 1

2 0 0 0 0 0 0 0

3 0.2 0.588 0 0 0 0 0

4 0.4 0.951 0

5 0.6 0.951 0

6 0.8 0.588 0

7 1 0 0

8 1.2 -0.588 0
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Finally, the block D3..G22 must be filled with the running equation. Because ∆x = ∆t,
the running equation is the same as in Example 1. (See Eq. (7).) When the block receives
the correct formulas, calculation takes place immediately, and the first few rows of the
spreadsheet are:

A B C D E F G H I

1 0 0.2 0.4 0.6 0.8 1

2 0 0 0 0 0 0 0

3 0.2 0.588 0 0 0 0 0

4 0.4 0.951 0.588 0 0 0 0

5 0.6 0.951 0.951 0.588 0 0 0

6 0.8 0.588 0.951 0.951 0.588 0 0

7 1 0 0.588 0.951 0.951 0.588 0

8 1.2 -0.588 0 0.588 0.951 0.951 0

9 1.4 -951 -0.588 0 0.588 0.363 0

10 1.6 -.951 -.951 -0.588 0 -0.363 0

Inspection of a longer piece of the spreadsheet clearly shows that the function u grows
steadily in amplitude. Figure 1 shows calculated values of u(0.4, t) for 0 ≤ t ≤ 6.

4. Potential problems.

Solving the potential equation and other related equations in two-dimensional regions is
one of the most satisfying applications of spreadsheets to numerical methods. The problem
can be set up in a simple natural way, and the numerical solution is displayed within the
region where the problem is to be solved.

For simplicity, we start with problems on a rectangle. Then it will be easy to modify our
procedures for nonrectangular regions.

Suggested layout
Use row 1 and column 1 to register values of the coordinates x and y.
Use a rectangular region for values of and formulas for the approximate solution.

Preparation
Set the Default Recalculation Mode to Manual and Iterations to 25.

Setting up



12

Figure 1: Approximate values of u(0.4, t), solution of Eqs. (8) to (10).

• Fill strings of cells in row 1 and column 1 with values of the independent variables xi

and yj . These define a rectangular block that will contain the approximate solution.

• Write out the generic replacement equation and solve it algebraically (on paper) for
the unknown ui,j .

• Insert the equivalent formula, using cell addresses, into a cell of the region and Copy
it into the rest of the cells of the region.

• Fill in boundary conditions:

For Dirichlet conditions (values of u given at boundary
points) simply fill the appropriate cells with the given
values.
For conditions involving the normal derivative at
boundary points, the replacement of the boundary con-
dition becomes the equation for a cell outside the region.

Example 4.1. Solve this potential equation in the square numerically, using ∆x = ∆y =
1/4. (See Eqs. (3) to (6), Section 7.4.)

∂2u

∂x2
+

∂2u

∂x2
= 0, 0 < x < 1, 0 < y < 1 (1)

u(0, y) = 0, u(1, y) = 0, 0 < y < 1 (2)
u(x, 0) = f(x), u(x, 1) = f(x), 0 < x < 1 (3)
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where f(x) = 1− |2x− 1|. (This function’s graph is an isosceles triangle.)
First, follow the instructions for Preparation. Next, place values of the independent

variables into row 1 and column 1. It is convenient to leave some empty space around the
block that will contain the solution. Thus let us specify cell C3 (you might prefer D4) as the
upper left corner of the region. Thus, we put the x-values into row 1 starting with cell C1
and y-values into column 1, starting with cell A3. Because ∆x = ∆y = 1/4, the spreadsheet
now looks like this:

A B C D E F G H I

1 0 0.25 0.5 0.75 1

2

3 1

4 0.75

5 0.5

6 0.25

7 0

Now we fill in columns C and G with the zero boundary conditions. In rows 3 and 7, we
fill in the nonzero boundary conditions. In cell C3 place the formula

C3 := 1 − ABS(2 ∗ C$1 − 1)

and copy it to cells C3..G3, then to cells C7..G7. The form of address C$1 means that the
column is a relative address, but the row is an absolute address. Thus, when this formula is
copied, cell D3 contains the formula

D3 := 1 − ABS(2 ∗ D$1− 1)

and cell D7 contains exactly the same formula. Computation of values takes place immedi-
ately and the spreadsheet looks like this.

A B C D E F G H I

1 0 0.25 0.5 0.75 1

2

3 1 0 0.5 1 0.5 0

4 0.75 0 0

5 0.5 0 0

6 0.25 0 0

7 0 0 0.5 1 0.5 0
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Finally, the generic replacement for the potential equation is

uN + uS + uE + uW − 4ui = 0 (4)

(See Eq. (7), Section 7.4.) Solved algebraically for ui it becomes

ui = (uN + uS + uE + uW )/4. (5)

The equation must be translated into an equivalent, using cell addresses. We insert into cell
D4 the formula

D4 := 0.25 ∗ (D3 + D5 + C4 + E4)

and copy this into the entire block D4..F6. Numbers appear immediately. Press the Re-
calculation key. In this case, the correct approximate solution appears after one cycle of
recalculations. The spreadsheet looks like this (compare Fig. 5):

A B C D E F G

1 0 0.25 0.5 0.75 1

2

3 1 0 0.5 1 0.5 0

4 0.75 0 0.3125 0.5 0.3125 0

5 0.5 0 0.25 0.375 0.25 0

6 0.25 0 0.3125 0.5 0.3125 0

7 0 0 0.5 1 0.5 0

8

Example 4.2. Solve the problem made from the one in Example 4.1 by changing the
boundary condition at y = 0 to

∂u(x, 0)
∂y

= 0, 0 < x < 1.

The same setup can be reused with two changes. First, the replacement for the potential
equation must be applied to cells D7..F7, which comprise the bottom boundary of the region.
Second, we must find and apply the replacement of the boundary condition. If point number
i is a point on the bottom boundary, then the boundary condition there is

(uN − uS)/2∆x = 0, or uN = uS (6)

Thus, we put into cell D8 the formula D8 := D6 and Copy it into cells D8..F8. (Recall that
a formula must not begin with a letter, so we use the leading plus sign to indicate that the
letter D is a cell address.)

Numbers appear (or change) immediately in the rectangle of unknowns. After a few
Recalculation cycles, these numbers stabilize to the correct approximate solution, and the
spreadsheet looks like this (only three decimals are shown here):
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A B C D E F G H I

1 0 0.25 0.5 0.75 1

2

3 1 0 0.5 1 0.5 0

4 0.75 0 0.268 0.436 0.268 0

5 0.5 0 0.138 0.206 0.138 0

6 0.25 0 0.077 0.112 0.077 0

7 0 0 0.060 0.086 0.060 0

8 0.077 0.112 0.077

The numbers in cells D8..F8 have no interpretation in terms of the original problem.

Example 4.3. Torsion stresses in a prismatic beam can be found from the solution of
Poisson’s equation, ∇2u = −H , on a region that is the cross section of the beam. The
boundary condition is u = 0 on the boundary. (The region must be simply connected.
Stresses are partial derivatives of u.) Appropriate scaling allows us to replace the constant
H by 1 or by any other convenient constant. To find torsion stresses in a beam whose cross
section is a particular L-shaped region R, we would solve this problem

∂2u

∂x2
+

∂2u

∂x2
= −H in R (7)

u(x, y) = 0 for points (x, y) on the boundary. (8)

Assume that the L-shaped region is a 1 × 1 square from which a 1/2 × 1/2 corner has been
removed. Solve numerically with ∆x = ∆y = 1/10.

It will be convenient for us to assume that the constant H is 100. It turns out that the
values of u will lie between 0 and 10. Thus the display will not contain many leading 0’s.
The replacement for the partial differential equation is

(uN + uS + uE + uW − 4ui)/(∆x)2 = −100. (9)

Solved for ui, this equation becomes

ui = (100(∆x)2 + uN + uS + uE + uW )/4, or

ui = (1 + uN + uS + uE + uW )/4.
(10)

Here, we have used the fact that ∆x = 1/10 and 100(∆x)2 = 1.
In the spreadsheet, set up values of x and y in row 1 and column 1. We will assume that

the removed quarter of the region is in the lower right corner.
The jobs to be done are: set the boundary conditions and fill internal cells with the

equivalent of Eq. (10). Of course there are many ways to accomplish these, but the shape
of the region suggests these steps.
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A B C D E F G H I J K L M

1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

2

3 0 0 0 0 0 0 0 0 0 0 0 0

4 0.1 0 1.08 1.66 1.94 2.03 2.00 1.90 1.74 1.46 0.96 0

5 0.2 0 1.66 2.62 3.07 3.18 3.07 2.87 2.59 2.14 1.37 0

6 0.3 0 1.94 3.07 3.56 3.54 3.23 2.93 2.61 2.15 1.37 0

7 0.4 0 2.03 3.18 3.54 3.20 2.36 2.02 1.77 1.47 0.96 0

8 0.5 0 2.00 3.07 3.23 2.36 0 0 0 0 0 0

9 0.6 0 1.90 2.87 2.93 2.02 0 0 0 0 0 0

10 0.7 0 1.74 2.59 2.61 1.77 0 0 0 0 0 0

11 0.8 0 1.46 2.14 2.15 1.47 0 0 0 0 0 0

12 0.9 0 0.96 1.37 1.37 0.96 0 0 0 0 0 0

13 1 0 0 0 0 0 0 0 0 0 0 0

14

15

(1) Fill the block C3..M13 with 0’s.
(2) Put the equivalent of Eq. (10) into cell D4, the upper left cell of the interior of the

L-shaped region. The formula is

D4 := 0.25 ∗ (1 + D3 + D5 + C4 + E4).

(3) Copy this formula into the block D4..L12. At this point, we are ready to find the
numerical solution of the Poisson equation in a square.

(4) Fill the “removed corner,” H8..M13, with 0’s.
Now the spreadsheet is ready for the computation. After a few Recalculation cycles, the

spreadsheet contains the values of the approximate solution, as shown below. The graph in
Fig. 2 was made from this solution.
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Figure 2: Numerical solution of Poisson equation on an L-shaped region.

Exercises

1. A current-carrying wire is exposed in its middle section to convection but is encased
by ceramic insulation near its ends. (See Fig. 3.) The temperature u(x) in the wire is
governed by different differential equations in different parts of the wire:

Figure 3: Current-carrying wire exposed to convection in the middle, with ceramic insulators
at the ends.

d2u

dx2
= −H, 0 < x < aL,

d2u

dx2
= −H − b2(T − u), aL < x < (1− a)L

d2u

dx2
= −H, (1− a)L < x < L.
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Note that u′′ jumps in value at aL and (1 − a)L, but u and u′ are continuous there.

In these equations, H is a constant that represents resistance heating, b2 contains
a heat transfer coefficient and geometric parameters, and a is the fraction of the wire
that is covered at each end by the ceramic insulation. For boundary conditions, we
will assume that the temperature at the endpoints of the wire is the same as that of
the surrounding air,

u(0) = T, u(L) = T.

Because of the obvious symmetry with respect to the midpoint x
= 1/2L, we can simplify the problem to

d2u

dx2
= −H, 0 < x < aL,

d2u

dx2
= −H − b2(T − u), aL < x < 1

2L

u(0) = T,
du(1

2L)
dx

= 0.

Now, remove the dimensions by defining X = x/L, K = b2L2, U = (u − T )(b2/H),
and the problem becomes

d2U

dX2
= −K, 0 < X ≤ a,

d2U

dX2
= −K(1− U), a < X < 0.5

U(0) = 0,
dU(0.5)

dX
= 0.

Solve this problem numerically, taking ∆X = 1/20, a = 0.125, and K = 0.25/∆X2.
Graph the solution. Other interesting values for K are 0.5∆X2 and 0.1∆X2.

2. In Chapter 0, we derived the following nonlinear problem as a model of the displacement
of a hanging cable loaded by its own weight.

d2u

dx2
= (w/T )

√
1 +

(
du

dx

)2

, 0 < x < a

u(0) = h0, u(a) = h1.

Remove the dimensions by changing variables to X = x/a, U = (u− h0)/a. Then the
problem becomes

d2u

dx2
= K

√
1 +

(
du

dx

)2

, 0 < x < 1,

U(0) = 0, U(1) = H,

where K = wa/T and H = (h1 − h0)/a. Set up the replacement equations for the
numerical solution of this problem.
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3. Use a spreadsheet program to solve numerically the problem in Exercise 2. Take n = 10,
K = 1 and H = 0. Compare the numerical solution to the exact solution found in
Exercises 4 and 5 of Chapter 0, Section 3.

4. Problems in cylindrical coordinates often present difficulties even when it is possible
to write out the solution in terms of Bessel functions. One such problem describes the
steady-state temperature U(r) in an annulus:

1
r

d

dr

(
r
dU

dr

)
− k2(U − T ) = 0, a < r < b

U(a) = T0, U(b) = T1.

(Compare Chapter 5, Section 5, Exercise 9.)

Introduce dimensionless variables x = (r − a)/(b− a) and u = (U − T )/M , where
M is the largest of the three quantities T0 − T , T1 − T , T1 − T0. Then the problem
becomes

1
s + x

d

dx

(
(s + x)

du

dx

)
− AU = 0, 0 < x < 1

u(0) = h0, u(1) = h1

where A = k2(b− a)2, and s = a/(b− a) is a shape parameter.

a. If M = 0, what is the solution of the dimensional problem?

b. If M 6= 0, find h0 and h1 in terms of other parameters, and show that they are both
between −1 and 1.

5. Obtain a numerical solution of the problem in Exercise 4 using ∆x = 1/10, A = 20,
h0 = 1, h1 = 0. Try the two values s = 0.1 and s = 1.0; sketch annuli for these shape
parameters.

6. A problem of diffusion in a material with variable properties may be expressed as

D(x)
∂2u

∂x2
=

∂u

∂t
, 0 < x < 1, 0 < t

u(0, t) = 0, u(1, t) = 0, 0 < t

u(x, 0) = 100, 0 < x < 1

with D(x) = 1 + αx. If α = 0, this problem can be solved analytically as in Chapter
2, Section 3. An important question is this: if α 6= 0, how different in the solution? In
particular, how noticeable is the induced asymmetry?

Study these questions by solving numerically with α = 0, 0.5, 1. Use ∆x = 1/10,
∆t = 1/400 (r = 1/4).

7. Miscellaneous Exercises 18 to 20 of Chapter 3 give equations that model the phe-
nomenon of water hammer. Initially, water is flowing steadily through a pipe from a
large reservoir to open air. At time 0, a valve is closed suddenly at the end of the
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pipe, causing violent changes in pressure and velocity in the water. If the equations
are combined, we can obtain this problem for dimensionless pressure:

∂2p

∂x2
=

∂2p

∂t2
, 0 < x < 1, 0 < t

p(0, t) = 0,
∂p

∂x
(1, t) = 0, 0 < t,

p(x, 0) = −x,
∂p

∂t
(x, 0) = 0, 0 < x < 1.

Solve this problem numerically using ∆x = ∆t = 1/10 for time 0 to 2.

8. Find the steady-state temperature in a square plate that is insulated along the lower
half of each vertical side and has controlled temperature on the remaining parts of its
sides, as shown in Fig. 4. Because of symmetry, we can solve the problem in just
one-half of the plate and use the symmetry condition

∂u

∂x
(1, y) = 0

along the center line. The full problem is

∂2u

∂x2
+

∂2u

∂y2
= 0, 0 < x < 2, 0 < y < 2,

u(x, 2) = 100, u(x, 0) = 0, 0 < x < 2,

u(0, y) = 100, u(2, y) = 100, 1 ≤ y < 2,

∂u

∂x
(0, y) = 0,

∂u

∂x
(2, y) = 0, 0 < y < 1.

Figure 4: Partially insulated plate.
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Figure 5: Beam sections.

9. Part of a certain structure is a beam subjected to torsion. The engineer designing the
structure must choose one of the two cross sections shown in Fig. 5. The criterion is
to be torsional rigidity, which is proportional to the integral over the cross section of
the function u that satisfies Poisson’s equation ∇2 = −1 in the cross section and u = 0
on the boundary.

For each cross section: (1) solve the Poisson equation numerically using ∆x = ∆y =
1/4; (2) approximate the required integral as ∆x∆y times the sum of the values of u.

Which section gives greater rigidity?


