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Targeting NR2B for Memory Improvement 

Joe Z. Tsien 

The NMDA receptor is the central molecular device for controlling synaptic plasticity 

and memory function, and so understanding the control and action of the NMDA receptor at 

central synapses may provide clues to therapeutic strategies for treating memory disorders (Li & 

Tsien, 2009). 

The creation of Doogie mice has demonstrated that it is possible to manipulate a single 

NMDA receptor subunit for a broad range of learning and memory enhancement (Tang et al., 

1999; Tsien, 2000; Tang et al., 2001; White & Youngentob, 2004; Cao et al., 2007). Since then, 

scientists have further generated NR2B transgenic rats, nicknamed Hobbie-J, which also 

exhibited larger LTP and similar enhancement in learning and memory (Wang et al., 2009). This 

cross-species validation adds to the notion that NR2B may act as a universal key switch for 

gating memory enhancement in various mammalian brains. On the other hand, conditional 

knockout of NR2B in the mouse forebrain or hippocampus results in decreased NMDA receptor–

mediated charge transfer, reduced cellular LTP, and impaired spatial performance (von 

Engelhardt et al., 2008). 

Proteomics analysis suggests that the core NMDA receptor tetramer associates with a 

multiprotein complex that includes more than 70 associated proteins, many of which influence 

trafficking, stability, subunit composition, or function of NMDARs (Husi et al., 2000; Sanz-

Clemente et al., 2010). Studies so far have shown that facilitating transport of NR2B to synapses 

or slowing down the degradation of NR2B at synapses can also be a quite effective means to 

elevate synaptic NR2B levels and subsequently improve memory function. For example, 

transgenic mice with the overexpression of KIF-17, a kinesin motor protein involved in 
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transporting NR2B protein from soma to dendrites, showed a higher NR2B expression at 

synapses, and these mice possessed superior memory (Wong et al., 2002). Another study reports 

a significant role for tissue plasminogen activator (tPA) in regulating NR2B trafficking and 

NMDA receptor complex stability in the hippocampus (Norris & Strickland, 2007). Transgenic 

mice overexpressing tPA also had better performances in spatial orientation learning tasks 

(Madani et al., 1999). 

In addition, recent studies suggest that the degradation of NMDA receptors is regulated 

by the Ca2+-dependent protease calpain by rapidly cleaving NMDAR subunits and resulting in a 

decrease in the number of functional NMDA receptors in the postsynaptic density (Simpkins et 

al. 2003). This calpain-dependent proteolysis of NR2B is regulated by cyclin-dependent kinase 5 

(Cdk5) (Hawasli et al., 2007). A recent study reports that conditional knockout of Cdk5 in the 

adult mouse brain reduces NR2B degradation, which causes elevation in total surface and 

synaptic NR2B subunit levels and stronger LTP. These Cdk5 knockout mice also showed better 

contextual fear conditioning memory, faster fear extinction, and more flexible learning in the 

reversal water maze task (Hawasli et al., 2007). It is also noteworthy that silencing Cdk 5, a 

major kinase associated with tau hyperphosphorylation in Alzheimer’s disease (AD), has been 

reported to reduce neurofibrillary tangles in transgenic Alzheimer’s mice (Piedrahita et al., 

2010). 

Interestingly, another transgenic mouse that overexpresses tau-tubulin kinase-1 (TTBK1), 

another kinase for tau, had increased tau phosphorylation, a higher level of p25 and p35 (both are 

Cdk5 activators), enhanced calpain I activity, and reduced levels of hippocampal NR2B subunit 

(Sato et al., 2008). Therefore, it seems that NR2B is also a target for AD-associated changes via 

calpain, Cdk 5 and tau pathways. On this note, a recent study provided a suggestive association 
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between a polymorphism in the NR2B promoter region, reduced NR2B expression levels and 

increased risk of Alzheimer’s disease (Jiang & Jia, 2009). 

More recently, researchers identified another synaptic transmembrane protein associated 

with NMDAR protein, Neto1. Neto1 is an interesting molecule because its intracellular domain 

binds a PSD-95 that is known to directly interact with NMDAR, and its extracellular domain 

interacts with NR2A and NR2B (Ng et al., 2009). Neto1 knockout mice had diminished synaptic 

NR2A (but not NR2B) in the hippocampus. Interestingly, administering the ampakine CX546, an 

AMPA receptor agonist, leads to secondary increase of NMDA currents by relieving the Mg2+ 

blockade of the NR2B-containing NMDARs, subsequently rescuing both LTP deficits and 

spatial learning deficits in the mutant mice. This was the first report of a pharmacological rescue 

of inherited plasticity defects and restoration of memory functions by pharmacologically 

enhancing NR2B-containing NMDA receptor. 

Other researchers are actively exploring additional strategies to boost NR2B-containing 

NMDA receptor functions, such as by transcriptional modification of NR2B/NR2A ratio (Jian et 

al., 2010) or via optimizing a proper Mg2+ in the CSF by supplemental diet (Slutsky et al., 2010). 

The latter approach can be interesting since the majority of American adults consume less than 

the estimated average requirement of magnesium, a deficiency in which may have a detrimental 

effect on memory function. 

All together, the above several examples represent current ongoing translational efforts 

that may one day provide a much-needed solution for treating AD and memory impairments. 

However, because memory processing is vastly more complicated in the human brain and 

memory disorders often have diverse causes, much work and many challenges may lie ahead. 
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