RAT

A general-purpose computer program for RAdiative Transfer

Version 1.0

User Manual

John C. Chai
Nanyang Technological University
Singapore

Preface

At the invitation of Professor Michael F. Modest, I have started writing this version of the manual for a general-purpose computer program for radiative transfer problems. This version of the program is meant to serve as a starting point for you to further develop the finite-volume method for your own application.

This version of the computer code is the result of my work at the University of Minnesota. Special thanks go to Prof. Suhas V. Patankar for his valuable training, guidance and patience. His direct participation in the writing of this manual would definitely have made it more comprehensive and enlightening. Although he is not involved with the detail writing, his influence can be seen throughout this manual. I have followed the format of his latest book (Computation of Conduction and Duct Flow Heat Transfer, Taylor \& Francis, 1991) in writing this manual.

Thanks also go to Dr. HaeOk S. Lee, who introduced me to the fascinating field of radiation heat transfer and for her guidance, especially during the initial part of my work in radiation heat transfer. I thank Prof. Roy. S. Amano for introducing me to computational fluid dynamics, which opened doors for me to pursue my knowledge in the field. I am indebt to Prof. Ephraim M. Sparrow. His support has resulted in this work on radiation heat transfer. I have benefited from numerous discussions with Dr. J. P. Moder over the years.

I would like to thank Mr. Prasenjit Rath for writing and typing the narration to some of the example problems. Lastly, but certain not least, I am grateful to my wife for her support and patience throughout the years.

Singapore
December 2002

INTRODUCTION

1.1 Purpose of the Manual

This manual provides examples on how to use a two-dimensional general-purpose computer program for RAdiative Transfer; called RAT hereafter. Although RAT can be used to model a variety of radiative transfer problems in two-dimensional framework, three examples are shown in this version of the manual.

1.2 Capabilities and Limitations of RAT

This version of RAT is written to solve the steady-state form of the radiative transfer equation using the finite-volume method of Chai et al. (1994a) and Chai and Patankar (2000). It is designed for Cartesian coordinates. Irregular geometries with vertical or horizontal surfaces can be handled using the procedure proposed by Chai et al. (1994b). For this class of irregular geometries, the irregularities are captured exactly and no additional approximations are introduced by using the current version of RAT. Irregular geometries with inclined surfaces (this includes geometries with curved surfaces) can also be modeled using the procedure of Chai et al. (1994b). The inclined surfaces are however, approximated using staircase-like irregular geometries consist of vertical and horizontal surfaces. As a result, additional approximations are introduced in the modeling of inclined or curved surfaces. These types of irregular geometries can be modeled more accurately using a more advanced approach (Chai et. al., 1995). This will however, makes RAT more difficult to understand and use. As a result, a simpler version of RAT is included here.

Other than the above mentioned restriction, RAT is quite general. It can handle absorbing-emitting and scattering medium. Isotropic and anisotropic scattering can be modeled. Selected mie-scattering phase functions are incorporated into RAT. Black and diffusely reflecting walls can be modeled. Symmetry boundary condition is incorporated in RAT. Inhomogeneous medium and radiative equilibrium condition can be modeled. Both SI or English units can be used with RAT, as long as a consistent set of units is used. For ease of use, the current version of RAT sets the Stefan-Boltzmann constant, σ to $W / m^{2}-K^{4}$. As a result, by default the length, mass and time must be in $m, \mathrm{~kg}$, and sec . Other units can be used by changing the value (and thus the units) of σ.

1.3 Structure of RAT

There are two main modules in RAT. These are the invariant portion and the adaptation part. As the name implies, you should not have to change the invariant portion of the program for almost all of your problems which fall within the general capabilities of RAT. This part contains the solution procedure (using the FV method). The adaptation part of RAT is where you provide the problem-specific information; such as geometry, optical properties, boundary conditions, phase functions, output etc. This manual provides three example adaptations for you to get started on using RAT.

RAT is written using FORTRAN 77. Some newer features of FORTRAN are not exploited in this version of RAT. This is done intentionally so that RAT can be run using almost all compilers and computers without modifications.

1.4 How to run RAT

Four modules are needed to run RAT. These are PARAM.FOR, COMMON.FOR, RAT.FOR and ADAPT.FOR. In this nomenclature, RAT.FOR and ADAPT.FOR are the invariant part and the adaptation portion of the program. COMMON.FOR contains all the common block related variables. PARAM.FOR contains the parameters for the program.

For case-sensitive compilers and/or operating systems, the first two files, namely, PARAM.FOR and COMMON.FOR must be stored in upper-case. The other two modules can be in either upper or lower case. You must compile and link both RAT.FOR and ADAPT.FOR to create an executable file. The results can then be obtained by running the executable file. Note that since RAT.FOR does not change from problem-to-problem, you will need to compile it once. However, you should recompile ADAPT.FOR every time you make changes to it.

It is important that the parameters in PARAM.FOR are set properly. The meanings of the parameters are given in the nomenclature (Appendix B).

SAMPLE PROBLEMS

2.1 Black, Square Enclosure with Absorbing and Isothermal Medium (Example 1)

2.1-1 Problem Description

The problem under consideration is a steady-state radiation in participating hot medium surrounded by a black enclosure of square shape as shown in Fig. 2.1.1. The hot medium (at T_{g}) is assumed absorbing, emitting but non-scattering. The boundaries are at a prescribed temperature T_{w}. The medium has an uniform absorptivity κ. For the present problem the following values are used.

$$
\begin{equation*}
T_{w}=0 \mathrm{~K}, \quad \varepsilon_{w}=1, \quad \quad \kappa=10 m^{-1}, \quad T_{g}=\left(\frac{1}{\sigma}\right)^{1 / 4} \tag{2.1.1}
\end{equation*}
$$

Fig. 2.1.1 Radiation in an absorbing and isothermal medium.
where σ is Stefan-Boltzmann constant. Our aim is to calculate the total irradiation and boundary radiative heat flux distribution.

2.1-2 Design of ADAPT

GRID. The title of the field printout is set to 'G' through TITLE (1). The output file (PROB1.DAT) is then specified via OPEN. By default, the angular domains are $0 \leq \theta \leq \pi$ and 0 $\leq \phi \leq 2 \pi$. These are specified in DEFLT using the variables TL and PL respectively. Two control angles represented by NCVLT $=2$ are taken in the θ-direction and 4 control angles represented by NCVLP $=4$ are taken in the ϕ-direction respectively. The default values of POWERT $=1$ and POWERP $=1$ are used to generate angular grids with uniform $\Delta \theta$ and $\Delta \phi$. The boundaries of the control angles are calculated by calling QUAD. The spatial domains are 0 $\leq x \leq 1$ and $0 \leq y \leq 1$ which are specified through XL and YL respectively. Ten control volumes are used in the x and y directions which are represented by NCVLX $=10$ and NCVLY $=10$ respectively. The default values of POWERX $=1$ and POWERY $=1$ are used. As a result, an uniform spatial grid is created by calling EZGRID.

START. Numerical values of all boundary conditions as given in Eq. (2.1.1) are set here. The maximum number of iterations for the present problem are set as LAST $=20$. The value of absorption coefficient is taken as ALPHA $=10$. Then we fill $\mathrm{T}(\mathrm{I}, \mathrm{J})$ array by TEM, which serves as the temperature of hot gases at all interior control volumes. Boundary temperature is kept at the default value as all boundaries are at absolute zero temperature for the present problem.

LC. Inhomogeneous medium is set here. The present problem is homogeneous as absorption coefficient of the medium is constant here. The homogeneous absorption coefficient was specified in START.

OUTPUT. For each iteration (ITER) the value of an actual intensity, F (I, J , L , M) at the center of the enclosure is printed and maximum difference in magnitude of the intensity from previous iteration, DMAX (which is printed as DIFF-MAX) over all control volumes and control angles is printed for verifying the convergence of the solution. The default value of $E R O R=1 . E-6$ is used in this example for satisfying the convergence criteria. When the maximum number of iterations has been reached (ITER $=$ LAST), or when the maximum change of the radiative intensities between two successive iterations falls below the prescribed value (KSTOP $=1$), the boundary heat fluxes and incident radiation energy are calculated by calling HFLUX. Then incident radiation energy, $G(I, J)$ is nondimensionalised at all control volume nodes by dividing it by 4 . All grid related variables and non-dimensional incident radiation energy at control volume nodes are printed by calling PRINT. QTOP represents the net radiative heat flux at the top boundary and QBOT represents the net radiative heat flux at the bottom boundary. $X(I)$ represents the value of X at grid location I. Magnitude of QTOP and magnitude of QBOT are printed here for different $X(I)$. QLEFT represents the net radiative heat flux at the left boundary and QRITE represents the net radiative heat flux at the right boundary. $\mathrm{Y}(\mathrm{J})$ represents the value of Y at grid location J. Magnitude of QLEFT and magnitude of QRITE are printed here for different $Y(J)$.

GAMSOR. Irregular geometries and radiative equilibrium conditions are set here. Since in our present problem geometry of the enclosure is not irregular and it is in non-radiative equilibrium condition, hence no operation is performed here.

2.1-3 Additional Fortran Names

DMAX maximum of $\left|\left(I-I_{O L D}\right) / I\right|$ calculated over all control volumes and control angles
LAST maximum number of iterations

ALPHA absorption coefficient
STFAN Stefan-Boltzmann constant
$G(I, J) \quad$ incident radiation
TEM non-dimensional gas temperature inside the enclosure
QTOP net radiative heat flux at top boundary
QBOT net radiative heat flux at bottom boundary
QLEFT net radiative heat flux at left boundary
QRITE net radiative heat flux at right boundary

2.1-4 Listing of ADAPT for Example 1

```
C********************************************************************
    SUBROUTINE ADAPT
C********************************************************************
    INCLUDE 'PARAM.FOR'
    INCLUDE 'COMMON.FOR'
C********************************************************************
C PROBLEM 1: BLACK, SQUARE ENCLOSURE WITH ABSORBING
C AND ISOTHERMAL MEDIUM
C*******************************************************************
    ENTRY GRID
C
    TITLE(1)=' G '
    OPEN(7,FILE='PROB1.DAT')
C
    NCVLP=4
    NCVLT=2
C
    CALL QUAD
C
    NCVLX=10
    NCVLY=10
C
    XL=1.
    YL=1.
C
c
    CALL EZGRID
    RETURN
C*******************************************************************
    ENTRY START
C
    LAST=20
    ALPHA=10.
C
    TEM=(1./STFAN)**(1./4.)
```

```
C
    DO 110 J=2,M2
        DO 111 I=2,L2
        T(I,J)=TEM
    CONTINUE
1 1 1
110
    CONTINUE
    RETURN
C*******************************************************************
    ENTRY LC
C
    RETURN
C*******************************************************************
    ENTRY OUTPUT
C
    IF(ITER.EQ.0) WRITE (6,500)
    WRITE(6,501) ITER, F(L1/2,M1/2, 2, 2) ,DMAX
    IF(ITER.EQ.0) WRITE (7,500)
    WRITE (7, 501) ITER, F(L1/2,M1/2, 2, 2) , DMAX
C
    IF(KSTOP.EQ.1.OR.ITER.EQ.LAST) THEN
        PAUSE
        CALL HFLUX
C
        DO 521 J=1,M1
            DO 522 I=1,L1
                G(I, J)=G(I, J)/4 .
                CONTINUE
522
521
    CONTINUE
C
        CALL PRINT
        PAUSE
C
            WRITE (6,502)
            WRITE(7,502)
C
        DO 510 I=2,L2
                WRITE (6,503) X(I),ABS(QPY(I,M1)-QMY (I,M1)),
                                    ABS(QPY(I,1)-QMY (I,1))
                            WRITE(7,503) X(I),ABS(QPY(I,M1)-QMY (I,M1)),
1
510 CONTINUE
C
        WRITE (6,504)
        WRITE(7,504)
C
    DO 511 J=2,M2
                WRITE (6,503) Y(J),ABS(QPX(1,J)-QMX (1,J)),
                                    ABS(QPX(L1,J)-QMX(L1,J))
                                    WRITE (7,503) Y(J),ABS (QPX (1,J)-QMX (1,J)),
            CONTINUE
    ENDIF
C
    500 FORMAT(/3X,'ITER',8X,'F',12X,'DIFF-MAX'/1X,48('*'))
    501 FORMAT(3X,I3,2(3X,1PE12.3))
    502 FORMAT(/8X,'X',10X,'QTOP',7X,'QBOT'/1X,39('*'))
    503 FORMAT(1X,3(1PE12.3))
    504 FORMAT(/8X,'Y',9X,'QLEFT',7X,'QRITE'/1X,39('*'))
C
    RETURN
C************************************************************************
    ENTRY GAMSOR
```

C
RETURN
END

2.1-5 Results for Example 1

$\mathrm{I}=$	8	9	10	11	12
J					
12	$4.97 \mathrm{E}-01$	$4.91 \mathrm{E}-01$	$4.72 \mathrm{E}-01$	$4.17 \mathrm{E}-01$	$0.00 \mathrm{E}+00$
11	$8.29 \mathrm{E}-01$	$8.21 \mathrm{E}-01$	$7.95 \mathrm{E}-01$	$7.08 \mathrm{E}-01$	$4.17 \mathrm{E}-01$
10	$9.40 \mathrm{E}-01$	$9.30 \mathrm{E}-01$	$8.98 \mathrm{E}-01$	$7.95 \mathrm{E}-01$	$4.72 \mathrm{E}-01$
9	$9.76 \mathrm{E}-01$	$9.65 \mathrm{E}-01$	$9.30 \mathrm{E}-01$	$8.21 \mathrm{E}-01$	$4.91 \mathrm{E}-01$
8	$9.88 \mathrm{E}-01$	$9.76 \mathrm{E}-01$	$9.40 \mathrm{E}-01$	$8.29 \mathrm{E}-01$	$4.97 \mathrm{E}-01$
7	$9.91 \mathrm{E}-01$	$9.79 \mathrm{E}-01$	$9.43 \mathrm{E}-01$	$8.32 \mathrm{E}-01$	$4.99 \mathrm{E}-01$
6	$9.91 \mathrm{E}-01$	$9.79 \mathrm{E}-01$	$9.43 \mathrm{E}-01$	$8.32 \mathrm{E}-01$	$4.99 \mathrm{E}-01$
5	$9.88 \mathrm{E}-01$	$9.76 \mathrm{E}-01$	$9.40 \mathrm{E}-01$	$8.29 \mathrm{E}-01$	$4.97 \mathrm{E}-01$
4	$9.76 \mathrm{E}-01$	$9.65 \mathrm{E}-01$	$9.30 \mathrm{E}-01$	$8.21 \mathrm{E}-01$	$4.91 \mathrm{E}-01$

```
3 9.40E-01 9.30E-01 8.98E-01 7.95E-01 4.72E-01
2 8.29E-01 8.21E-01 7.95E-01 7.08E-01 4.17E-01
```

X	QTOP	QBOT
$* ~$		
$5.000 \mathrm{E}-02$	$8.333 \mathrm{E}-01$	$8.333 \mathrm{E}-01$
$1.500 \mathrm{E}-01$	$9.444 \mathrm{E}-01$	$9.444 \mathrm{E}-01$
$2.500 \mathrm{E}-01$	$9.814 \mathrm{E}-01$	$9.814 \mathrm{E}-01$
$3.500 \mathrm{E}-01$	$9.936 \mathrm{E}-01$	$9.936 \mathrm{E}-01$
$4.500 \mathrm{E}-01$	$9.972 \mathrm{E}-01$	$9.972 \mathrm{E}-01$
$5.500 \mathrm{E}-01$	$9.972 \mathrm{E}-01$	$9.972 \mathrm{E}-01$
$6.500 \mathrm{E}-01$	$9.936 \mathrm{E}-01$	$9.936 \mathrm{E}-01$
$7.500 \mathrm{E}-01$	$9.814 \mathrm{E}-01$	$9.814 \mathrm{E}-01$
$8.500 \mathrm{E}-01$	$9.444 \mathrm{E}-01$	$9.444 \mathrm{E}-01$
$9.500 \mathrm{E}-01$	$8.333 \mathrm{E}-01$	$8.333 \mathrm{E}-01$
Y		
$* *$		
$5.000 \mathrm{E}-02$	$8.333 \mathrm{E}-01$	$8.333 \mathrm{E}-01$
$1.500 \mathrm{E}-01$	$9.444 \mathrm{E}-01$	$9.444 \mathrm{E}-01$
$2.500 \mathrm{E}-01$	$9.814 \mathrm{E}-01$	$9.814 \mathrm{E}-01$
$3.500 \mathrm{E}-01$	$9.936 \mathrm{E}-01$	$9.936 \mathrm{E}-01$
$4.500 \mathrm{E}-01$	$9.972 \mathrm{E}-01$	$9.972 \mathrm{E}-01$
$5.500 \mathrm{E}-01$	$9.972 \mathrm{E}-01$	$9.972 \mathrm{E}-01$
$6.500 \mathrm{E}-01$	$9.936 \mathrm{E}-01$	$9.936 \mathrm{E}-01$
$7.500 \mathrm{E}-01$	$9.814 \mathrm{E}-01$	$9.814 \mathrm{E}-01$
$8.500 \mathrm{E}-01$	$9.444 \mathrm{E}-01$	$9.444 \mathrm{E}-01$
$9.500 \mathrm{E}-01$	$8.333 \mathrm{E}-01$	$8.333 \mathrm{E}-01$

2.1-6 Discussion of Results

It can be seen that the solution is converged in one iteration. This is because the medium is nonscattering and the walls are non-reflecting walls. In the result lists for the present problem, along x-direction $\mathrm{X}(\mathrm{I})$ and $\mathrm{XU}(\mathrm{I})$ represents the value of X at grid location I and the value of X for the corresponding control volume face. Similarly, along y-direction $Y(J)$ and $Y V(J)$ represents the value of Y at grid location J and value of Y for the corresponding control volume face. Angular grid contains grid related information in θ and ϕ-directions respectively. In the θ direction $\mathrm{TH}(\mathrm{L})$ represents the value of θ at the grid location L and in the ϕ-direction $\mathrm{PH}(\mathrm{M})$ represents the value of ϕ at the grid location M. The final field printout of incident radiation energy shows that the effect of hot gases inside the enclosure is to create a maximum irradiation (incident radiation energy), $G(I, J)$ at the center of the enclosure whose non-dimensional value is numerically evaluated by finite-volume method as 0.995 . The distribution of irradiation inside the medium is plotted as shown in Fig. 2.1.2 for absorption coefficients, $\kappa=10 \mathrm{~m}^{-1}$ and κ $=1 \mathrm{~m}^{-1}$. As we move towards the boundary from the center of the enclosure the magnitude of irradiation decreases and we get minimum irradiation at the boundaries. It was also noted that the irradiation is symmetrical about the vertical and horizontal centerlines of the enclosure. From Fig. 2.1.2 it is seen that as the value of absorption coefficient, κ decreases the magnitude of the incident radiation energy decreases. It is because the magnitude of intensity decreases along the path of travel as absorption coefficient decreases. The field printout of boundary heat fluxes shows that the net radiative heat fluxes are maximum at the center of each boundary and are symmetrical about the center of the boundaries.

$$
\kappa=10 \mathrm{~m}^{-1}
$$

$$
\kappa=1 \mathrm{~m}^{-1}
$$

Fig. 2.1.2 Distribution of incident radiation energy for absorption coefficients, $\kappa=10 \mathrm{~m}^{-1}$ and $\kappa=1 \mathrm{~m}^{-1}$.

2.1-7 Final Remarks

The distribution of incident radiation energy and wall heat fluxes in a square enclosure are presented in this section. The medium inside the enclosure is absorbing and emitting. It was noted that the solution converged well after one iteration since the walls are non-reflecting and temperature of all the four walls are known. Effect of imposing the symmetry condition at the boundaries can also be studied for this present problem which is discussed in the next example.

2.2 Black, Square Enclosure with Absorbing and Isothermal Medium with Symmetry Condition at Right and Bottom Boundaries (Example 2)

2.2-1 Problem Description

The problem under consideration is same as Example 1. Due to symmetries, one-quarter of the domain in Example 1 is simulated. It is a steady-state radiation problem in participating hot medium surrounded by a black enclosure of square shape as shown in Fig. 2.2.1. The medium is assumed absorbing, emitting but non-scattering. Left and top walls are at a prescribed temperature T_{w}. The medium has an uniform absorptivity κ. For the present problem the following values are used.

$$
\begin{equation*}
T_{w}=0 \mathrm{~K}, \quad \quad \varepsilon_{w}=1, \quad \quad \kappa=10 m^{-1}, \quad T_{g}=\left(\frac{1}{\sigma}\right)^{1 / 4} \tag{2.2.1}
\end{equation*}
$$

Fig. 2.2.1 Radiation in an absorbing and isothermal medium.
where σ is Stefan-Boltzmann constant. Our aim is to calculate the total irradiation and boundary radiative heat flux distribution.

2.2-2 Design of ADAPT

GRID. The title of the field printout is set to ' G ' through TITLE (1). The output file (PROB2 . DAT) is then specified via OPEN. By default, the angular domains are $0 \leq \theta \leq \pi$ and 0 $\leq \phi \leq 2 \pi$. These are specified in DEFLT using the variables TL and PL respectively. Two control angles represented by NCVLT $=2$ are taken in the θ-direction and 4 control angles represented by NCVLP $=4$ are taken in the ϕ-direction respectively. The default value of POWERT $=1$ and POWERP $=1$ are used to generate angular grids with uniform $\Delta \theta$ and $\Delta \phi$. The boundaries of the control angles are calculated by calling QUAD. The spatial domains are 0 $\leq x \leq 0.5$ and $0 \leq y \leq 0.5$ which are specified through XL and YL respectively. Five control volumes are used in the x and y directions which are represented by NCVLX $=5$ and NCVLY $=5$ respectively. The default values of POWERX $=1$ and POWERY $=1$ are used. As a result, an uniform spatial grid is created by calling EZGRID.

START. Numerical values of all boundary conditions as given in Eq. (2.2.1) are set here. The maximum number of iterations for the present problem are set as LAST $=20$. The value of absorption coefficient is taken as ALPHA $=10$. Then we fill $\mathrm{T}(\mathrm{I}, \mathrm{J})$ array by TEM, which serves as the temperature of hot gases at all interior control volumes. $\operatorname{KBCL1}(J)=2$ and KBCJ1 (I) $=2$ are set for symmetry along east (KBCL1) and south (KBCJ1) boundaries respectively. Boundary temperature is kept at the default value as west and north boundaries are at absolute zero temperature for the present problem.

LC. Inhomogeneous medium is set here. The present problem is homogeneous as absorption coefficient of the medium is constant here. The homogeneous absorption coefficient was specified in START.

OUTPUT. For each iteration (ITER) the value of an actual intensity, F (I, J, L, M) at the center of the enclosure is printed and maximum difference in magnitude of the intensity from previous iteration, DMAX (which is printed as DIFF-MAX) over all control volumes and control angles is printed for verifying the convergence of the solution. The default value of $E R O R=1 . E-6$ is used in this example for satisfying the convergence criteria. When the maximum number of iterations has been reached (ITER $=$ LAST), or when the maximum change of the radiative intensities between two successive iterations falls below the prescribed value (KSTOP = 1), the boundary heat fluxes and incident radiation energy are calculated by calling HFLUX. Then incident radiation energy, $G(I, J)$ is nondimensionalised at all control volume nodes by dividing it by 4 . All grid related variables and non-dimensional incident radiation energy at control volume nodes are printed by calling PRINT. QTOP represents the net radiative heat flux at the top boundary and QBOT represents the net radiative heat flux at the bottom boundary. $\mathrm{X}(\mathrm{I})$ represents the value of X at grid location I. Magnitude of QTOP and magnitude of QBOT are printed here for different $X(I)$. QLEFT represents the net radiative heat flux at the left boundary and QRITE represents the net radiative heat flux at the right boundary. $\mathrm{Y}(\mathrm{J})$ represents the value of Y at grid location J. Magnitude of QLEFT and magnitude of QRITE are printed here for different $Y(J)$.

GAMSOR. Irregular geometries and radiative equilibrium conditions are set here. Since in our present problem geometry of the enclosure is not irregular and it is in non-radiative equilibrium condition, hence no operation is performed here.

2.2-3 Additional Fortran Names

DMAX maximum of $\left|\left(I-I_{O L D}\right) / I\right|$ calculated over all control volumes and control angles
LAST maximum number of iterations
KBCL1(J) set for type of boundary condition along east boundary
KBCJ1 (I) set for type of boundary condition along south boundary
ALPHA absorption coefficient
STFAN Stefan-Boltzmann constant
G(I, J) incident radiation
TEM non-dimensional gas temperature inside the enclosure
QTOP net radiative heat flux at top boundary
QBOT net radiative heat flux at bottom boundary
QLEFT net radiative heat flux at left boundary
QRITE net radiative heat flux at right boundary

2.2-4 Listing of ADAPT for Example 2

```
C********************************************************************
    SUBROUTINE ADAPT
C********************************************************************
    INCLUDE 'PARAM.FOR'
    INCLUDE 'COMMON.FOR'
C********************************************************************
C PROBLEM 2: BLACK, SQUARE ENCLOSURE WITH ABSORBING
C AND ISOTHERMAL MEDIUM WITH SYMMETRIES
C AT THE RIGHT AND BOTTOM BOUNDARIES
C**********************************************************************
C
    ENTRY GRID
C
    TITLE(1)=' G '
    OPEN(7,FILE='PROB2.DAT')
C
    NCVLP=4
    NCVLT=2
C
C
    NCVLX=5
    NCVLY=5
C
    XL=0.5
    YL=0.5
C
C
    RETURN
C****************************************************************************
    ENTRY START
C
    LAST=20
    ALPHA=10.
C
C
    DO 110 J=2,M2
        DO 111 I=2,L2
            T(I,J)=TEM
            KBCL1(J)=2
            KBCJ1(I)=2
        CONTINUE
111
110 CONTINUE
C
    RETURN
C***************************************************************************
ENTRY LC
C
    RETURN
C*******************************************************************
    ENTRY OUTPUT
C
    IF(ITER.EQ.0) WRITE (6,500)
    WRITE (6,501) ITER, F(L1/2,M1/2, 2, 2) , DMAX
    IF(ITER.EQ.0) WRITE(7,500)
    WRITE (7,501) ITER, F(L1/2,M1/2, 2, 2) ,DMAX
C
    IF(KSTOP.EQ.1.OR.ITER.EQ.LAST) THEN
            PAUSE
            CALL HFLUX
```

```
C
        DO 521 J=1,M1
            DO 522 I=1,L1
                G(I,J)=G(I, J)/4 .
522 CONTINUE
5 2 1 ~ C O N T I N U E
C
                CALL PRINT
                PAUSE
C
                WRITE (6,502)
                WRITE(7,502)
C
                DO 510 I=2,L2
                            WRITE (6,503) X(I),ABS(QPY(I,M1)-QMY(I M1)),
                    1
                        ABS(QPY'(I,1)-QMY (I,1))
            WRITE(7,503) X(I),ABS(QPY(I,M1)-QMY (I,M1)),
                1 ABS(QPY(I,1)-QMY (I,1))
510 CONTINUE
C
                WRITE (6,504)
                WRITE(7,504)
C
                DO 511 J=2,M2
        WRITE (6,503) Y(J),ABS (QPX (1,J)-QMX (1,J)),
1
                    WRITE (7,503) Y(J),ABS (QPX (1,J)-QMX (1, J)),
                ABS(QPX(L1, J)-QMX(L1,J))
1
            CONTINUE
C
            ENDIF
C
    500 FORMAT(/3X,'ITER',8X,'F',12X,'DIFF-MAX'/1X,48('*'))
    501 FORMAT(3X,I3, 2(3X,1PE12.3))
    502 FORMAT(/8X,'X',10X,'QTOP',7X,'QBOT'/1X,39('*'))
    503 FORMAT(1X,3(1PE12.3))
    504 FORMAT(/8X,'Y',9X,'QLEFT',7X,'QRITE'/1X,39('*'))
C
    RETURN
C*****************************************************************************
                    ENTRY GAMSOR
C
    RETURN
    END
C*******************************************************************
```


2.2-5 Results for Example 2

2.2-6 Discussion of Results

It can be seen that the solution is not converged in one iteration. This is because of the fact that due to the unknown temperature of right and bottom boundaries, intensities are unknown in these boundaries. Hence, iteration procedure starts by guessing intensity in the boundaries where temperature is unknown. In the result lists for the present problem, along x-direction $\mathrm{X}(\mathrm{I})$ and $X U(I)$ represents the value of X at grid location I and the value of X for the corresponding control volume face. Similarly, along y-direction $Y(J)$ and $Y V(J)$ represents the value of Y at grid location J and value of Y for the corresponding control volume face. Angular grid contains grid related information in θ and ϕ-directions respectively. In the θ direction $\operatorname{TH}(\mathrm{L})$ represents the value of θ at the grid location L and in the ϕ-direction $\mathrm{PH}(\mathrm{M})$ represents the value of ϕ at the grid location M. The final field printout of incident radiation energy shows that the effect of hot gases inside the enclosure is to create a maximum irradiation (incident radiation energy), $G(I, J)$ along east and south walls of the enclosure whose maximum value is 0.995 which is same as we got from example 1. This is because the present problem is same as previous example, but we are solving only the one-forth of the previous example. The distribution of irradiation inside the medium is plotted as shown in Fig. 2.2.2 for absorption coefficients, $\kappa=10 \mathrm{~m}^{-1}$ and $\kappa=1 \mathrm{~m}^{-1}$. As we move towards north-west boundary from south-east boundary of the enclosure the magnitude of irradiation decreases and we get minimum irradiation in north and west boundaries. From Fig. 2.2.2 it is seen that as the value of absorption coefficient, κ decreases the magnitude incident radiation energy decreases. It is
because the magnitude of the intensity decreases along the path of travel as absorption coefficient decreases. The field printout of boundary heat fluxes shows that the net radiative heat fluxes are maximum at the top and left boundaries and minimum at bottom and right boundaries. This is because the bottom and right boundaries are hot. Hence, heat flux due to its own boundary temperature is existing which is nullifying the heat flux reaching to that boundary from all other boundaries. Therefore, the absolute value of net radiative heat flux decreases.

Fig. 2.2.2 Distribution of incident radiation energy for absorption coefficients, $\kappa=10 \mathrm{~m}^{-1}$ and $\kappa=1 \mathrm{~m}^{-1}$.

2.2-7 Final Remarks

Effect of imposing the symmetry boundary condition on distribution of incident radiation energy and wall heat fluxes has been studied in this example problem. Here, the solution is not converged in one iteration as intensity at the symmetry boundaries are unknown due to unknown temperature on these boundaries. Till now, the examples we have discussed where medium is assumed non-scattering. Effect of imposing the scattering medium is also studied which is discussed in the next example.

2.3 Black, Square Enclosure with Absorbing and Anisotropically Scattering Medium and Hot Bottom Wall (Example 3)

2.3-1 Problem Description

The problem under consideration is steady-state radiation in an absorbing and anisotropically scattering medium surrounded by a black enclosure of square shape as shown in Fig. 2.3.1. The bottom wall is kept hot and other three walls are kept at absolute zero temperature. The medium has an uniform absorptivity κ and scattering coefficient σ_{s}. For the present problem the following values are used.

$$
\begin{equation*}
T_{\text {bottom }}=\left(\frac{1}{\sigma}\right)^{1 / 4}, T_{\text {top }}=T_{\text {left }}=T_{\text {right }}=0 \mathrm{~K}, T_{g}=0 \mathrm{~K}, \varepsilon_{w}=1, \kappa=0.5 \mathrm{~m}^{-1}, \quad \sigma_{s}=0.5 \mathrm{~m}^{-1} \tag{2.3.1}
\end{equation*}
$$

Fig. 2.3.1 Radiation in an absorbing and anisotropically scattering medium.
where σ is Stefan-Boltzmann constant. Our aim is to calculate the total irradiation and boundary radiative heat flux distribution.

2.3-2 Design of ADAPT

GRID. The title of the field printout is set to ' G ' through TITLE (1). The output file (PROB3.DAT) is then specified via OPEN. By default, the angular domains are $0 \leq \theta \leq \pi$ and 0 $\leq \phi \leq 2 \pi$. These are specified in DEFLT using the variables TL and PL respectively. Two control angles represented by NCVLT $=2$ are taken in the θ-direction and 8 control angles represented by NCVLP $=8$ are taken in the ϕ-direction respectively. The default value of POWERT $=1$ and POWERP $=1$ are used to generate angular grids with uniform $\Delta \theta$ and $\Delta \phi$. The boundaries of the control angles are calculated by calling QUAD. The spatial domains are 0 $\leq x \leq 1$ and $0 \leq y \leq 1$ which are specified through XL and YL respectively. Five control volumes are used in the x and y directions which are represented by NCVLX $=5$ and NCVLY $=5$ respectively. The default values of POWERX $=1$ and POWERY $=1$ are used. As a result, an uniform spatial grid is created by calling EZGRID.

START. Numerical values of all boundary conditions as given in Eq. (2.3.1) are set here. The maximum number of iterations for the present problem are set as LAST $=20$. Anisotropic scattering medium is set as KISO $=0$. Back scattering is specified by KPHASE $=$ 7. The value of absorption coefficient and scattering coefficient are taken as ALPHA $=0.5$ and $S I G=0.5$ respectively. Then we fill $T(I, 1)$ array by TEM, which serves as the temperature of hot bottom wall. Other boundary temperatures are kept at the default value as all
the boundaries except the bottom boundary are at absolute zero temperature for the present problem.

LC. Inhomogeneous medium is set here. The present problem is homogeneous as absorption coefficient and scattering coefficient of the medium is constant here. The homogeneous absorption coefficient and scattering coefficient was specified in START.

OUTPUT. For each iteration (ITER) the value of an actual intensity, F (I, J, L, M) at the center of the enclosure is printed and maximum difference in magnitude of the intensity from previous iteration, DMAX (which is printed as DIFF-MAX) over all control volumes and control angles is printed for verifying the convergence of the solution. The default value of $E R O R=1 . E-6$ is used in this example for satisfying the convergence criteria. When the maximum number of iterations has been reached (ITER $=$ LAST), or when the maximum change of the radiative intensities between two successive iterations falls below the prescribed value (KSTOP = 1), the boundary heat fluxes and incident radiation energy are calculated by calling HFLUX. All grid related variables and incident radiation energy at control volume nodes are printed by calling PRINT. QTOP represents the net radiative heat flux at the top boundary and QBOT represents the net radiative heat flux at the bottom boundary. X(I) represents the value of X at grid location I. Magnitude of QTOP and magnitude of QBOT are printed here for different $X(I)$. QLEFT represents the net radiative heat flux at the left boundary and QRITE represents the net radiative heat flux at the right boundary. $\mathrm{Y}(\mathrm{J})$ represents the value of Y at grid location J. Magnitude of QLEFT and magnitude of QRITE are printed here for different $Y(J)$.

GAMSOR. Irregular geometries and radiative equilibrium conditions are set here. Since in our present problem geometry of the enclosure is not irregular and it is in non-radiative equilibrium condition, hence no operation is performed here.

2.3-3 Additional Fortran Names

DMAX	maximum of $\left\|\left(I_{O L D}\right) / I\right\|$ calculated over all control volumes and control angles
LAST	maximum number of iterations
ALPHA	absorption coefficient
SIG	scattering coefficient
KISO	set for type of scattering
KPHASE	set for back scattering
STFAN	Stefan-Boltzmann constant
G(I, J)	incident radiation energy
TEM	non-dimensional temperature of bottom wall
QTOP	net radiative heat flux at top boundary
QBOT	net radiative heat flux at bottom boundary
QLEFT	net radiative heat flux at left boundary
QRITE	net radiative heat flux at right boundary

2.3-4 Listing of ADAPT for Example 3

```
C****************************************************************************
    SUBROUTINE ADAPT
C*******************************************************************
    INCLUDE 'PARAM.FOR'
    INCLUDE 'COMMON.FOR'
C********************************************************************
C PROBLEM 3: BLACK, SQUARE ENCLOSURE WITH PARTICIPATING MEDIUM
C AND HOT BOTTOM WALL
C*******************************************************************
C
    ENTRY GRID
C
    TITLE(1)=' G '
    OPEN(7,FILE='PROB3.DAT')
C
    NCVLP=8
    NCVLT=2
C
C
    NCVLX=5
    NCVLY=5
C
    XL=1.
    YL=1.
C
C
    RETURN
C****************************************************************************
    ENTRY START
C
    LAST=20
    KISO=0
    KPHASE=7
    ALPHA=0.5
    SIG=0.5
C
C
    DO 11 I=2,L1-1
        T(I,1)=TEM
11 CONTINUE
C
    RETURN
C******************************************************************************
C
    ENTRY LC
    RETURN
C****************************************************************************
    ENTRY OUTPUT
C
    IF(ITER.EQ.0) WRITE (6,500)
    WRITE (6,501) ITER, F(L1/2,M1/2 , 2, 2), DMAX
    IF(ITER.EQ.0) WRITE (7,500)
    WRITE (7,501) ITER, F(L1/2,M1/2, 2, 2),DMAX
C
    IF(KSTOP.EQ.1.OR.ITER.EQ.LAST) THEN
            CALL HFLUX
            CALL PRINT
C
```

```
WRITE(6,502)
WRITE(7,502)
C
        DO 510 I=2,L2
        WRITE (6,503) X(I),ABS(QPY (I,M1)-QMY (I,M1)),
                ABS(QPY (I,1)-QMY (I,1))
    WRITE(7,503) X(I),ABS(QPY(I,M1)-QMY(I,M1)),
CONTINUE
WRITE (6,504)
WRITE(7,504)
C
DO 511 J=2,M2
    WRITE (6,503) Y(J),ABS(QPX (1,J) - QMX (1,J)),
    WRITE (7,503) Y(J),ABS(QPX(1,J)-QMX (1,J)),
CONTINUE
        ENDIF
C
    500 FORMAT(/3X,'ITER',8X,'F',12X,'DIFF-MAX'/1X,48('*'))
    501 FORMAT(3X,I3,2(3X,1PE12.3))
    502 FORMAT(/8X,'X',10X,'QTOP',7X,'QBOT'/1X,39('*'))
    503 FORMAT(1X,3(1PE12.3))
    504 FORMAT(/8X,'Y',9X,'QLEFT',7X,'QRITE'/1X,39('*'))
C
```


RETURN

```
C*******************************************************************
C
ENTRY GAMSOR
C
RETURN
END
```


2.3-5 Results for Example 3

$\mathrm{L}=$	$\begin{array}{c}1 \\ \mathrm{TH}= \\ 0.00 \mathrm{E}+00\end{array}$	$7.85 \mathrm{E}-01$	$2.36 \mathrm{E}+00$
	$3.14 \mathrm{E}+00$		

M $\mathrm{PH}=$		2	3	4	5	6	7
	$0.00 \mathrm{E}+00$	$3.93 \mathrm{E}-01$	$1.18 \mathrm{E}+00$	$1.96 \mathrm{E}+00$	$2.75 \mathrm{E}+00$	$3.53 \mathrm{E}+00$	$4.32 \mathrm{E}+00$
	$\mathrm{M}=$	9	10				
$\mathrm{PH}=5.11 \mathrm{E}+00$		$5.89 \mathrm{E}+00$	$6.28 \mathrm{E}+00$				
******		G	\%*****				
I	1	2	3	4	5	6	7
7	$0.00 \mathrm{E}+00$	$2.24 \mathrm{E}-01$	$2.65 \mathrm{E}-01$	2.81E-01	2.65E-01	$2.24 \mathrm{E}-01$	$0.00 \mathrm{E}+00$
6	$1.89 \mathrm{E}-01$	$2.43 \mathrm{E}-01$	$2.90 \mathrm{E}-01$	3.07E-01	$12.90 \mathrm{E}-01$	$2.43 \mathrm{E}-01$	$1.89 \mathrm{E}-01$
5	$2.68 \mathrm{E}-01$	3.58E-01	$4.29 \mathrm{E}-01$	$4.54 \mathrm{E}-01$	4.29E-01	$3.58 \mathrm{E}-01$	$2.68 \mathrm{E}-01$
4	3.82E-01	5.32E-01	6.34E-01	6.66E-01	16.34E-01	5.32E-01	3.82E-01
3	$5.52 \mathrm{E}-01$	8.12E-01	9.54E-01	9.94E-01	9.54E-01	$8.12 \mathrm{E}-01$	$5.52 \mathrm{E}-01$
2	$8.05 \mathrm{E}-01$	$1.30 \mathrm{E}+00$	1.47E+00	$1.52 \mathrm{E}+00$	1.47E+00	$1.30 \mathrm{E}+00$	8.05E-01
1	$0.00 \mathrm{E}+00$	$2.15 \mathrm{E}+00$	$2.19 \mathrm{E}+00$	$2.20 \mathrm{E}+00$	2.19E+00	$2.15 \mathrm{E}+00$	$0.00 \mathrm{E}+00$

x	QTOP	QBOT
$* *$		
$1.000 \mathrm{E}-01$	$1.463 \mathrm{E}-01$	$9.214 \mathrm{E}-01$
$3.000 \mathrm{E}-01$	$1.754 \mathrm{E}-01$	$9.022 \mathrm{E}-01$
$5.000 \mathrm{E}-01$	$1.866 \mathrm{E}-01$	$8.966 \mathrm{E}-01$
$7.000 \mathrm{E}-01$	$1.754 \mathrm{E}-01$	$9.022 \mathrm{E}-01$
$9.000 \mathrm{E}-01$	$1.463 \mathrm{E}-01$	$9.214 \mathrm{E}-01$

Y	QLEFT	QRITE
$* *$		
$1.000 \mathrm{E}-01$	$3.829 \mathrm{E}-01$	$3.829 \mathrm{E}-01$
$3.000 \mathrm{E}-01$	$2.453 \mathrm{E}-01$	$2.453 \mathrm{E}-01$
$5.000 \mathrm{E}-01$	$1.577 \mathrm{E}-01$	$1.577 \mathrm{E}-01$
$7.000 \mathrm{E}-01$	$1.033 \mathrm{E}-01$	$1.033 \mathrm{E}-01$
$9.000 \mathrm{E}-01$	$6.834 \mathrm{E}-02$	$6.834 \mathrm{E}-02$

2.3-6 Discussion of Results

It can be seen that the solution is not converged in one iteration. This is because the medium is scattering. Hence, at each node source function is unknown. Therefore, at the beginning we are guessing the source function. On the basis of guess value of source function intensity is calculated at the next iteration and it is compared with intensity calculated from previous iteration. This iterative process will continue till the maximum difference in intensity between two successive iterations will be less than or equal to EROR. Here it is seen that after twelve iterations solution is converged. In the result lists for the present problem, along x direction $\mathrm{X}(\mathrm{I})$ and $X U(I)$ represents the value of X at grid location I and the value of X for the corresponding control volume face. Similarly, along y direction $Y(J)$ and $Y V(J)$ represents the value of Y at grid location J and value of Y for the corresponding control volume face. Angular grid contains grid related information in θ and ϕ-directions respectively. In the θ direction $\mathrm{TH}(\mathrm{L})$ represents the value of θ at the grid location L and in the ϕ-direction $\mathrm{PH}(\mathrm{M})$ represents the value of ϕ at the grid location M. The final field printout of incident radiation energy shows that the effect of hot bottom wall is to create maximum irradiation (incident radiation energy), $G(I, J)$ at the bottom of the enclosure which is numerically evaluated by finite volume method as 2.2. The distribution of irradiation inside the medium is plotted for backward and forward scattering as shown in Fig. 2.3.2 for absorption coefficient, $\kappa=0.5 \mathrm{~m}^{-1}$
and scattering coefficient, $\sigma_{s}=0.5 \mathrm{~m}^{-1}$. As we go away from the bottom boundary of the enclosure towards the top, the magnitude of irradiation decreases and we get minimum irradiation at the top boundary. It is also seen that backward scattering gives more irradiation at the bottom wall compared to forward scattering. The field printout of boundary heat fluxes shows that the net radiative heat flux at the bottom wall is maximum and is symmetrical about the center of the bottom boundary. Net radiative heat fluxes at left and right boundaries are same and increases along these walls as we come closer to the hot bottom wall.

Fig. 2.3.2 Distribution of incident radiation energy for backward and forward scattering with absorption coefficient, $\kappa=0.5 \mathrm{~m}^{-1}$ and scattering coefficient, $\sigma_{s}=0.5 \mathrm{~m}^{-1}$.

2.3-7 Final Remarks

Effect of scattering (forward and backward) on incident radiation energy and wall heat fluxes are discussed here. It was noted that the intensity is not converged after one iteration unlike Example 1. This is because of the fact that the source function due to in-scattering is unknown at each control volume nodes.

2.4 Black, Square Enclosure with Inhomogeneous Absorbing and Anisotropically Scattering Medium and Hot Bottom Wall (Example 4)

2.4-1 Problem Description

The problem under consideration is steady-state radiation in an inhomogeneous absorbing and anisotropically scattering medium surrounded by a black enclosure of square shape as shown in Fig. 2.4.1. The bottom wall is kept hot and other three walls are kept at absolute zero temperature. The absorption coefficients κ_{1} and κ_{2} and scattering coefficients $\sigma_{s, 1}$ and $\sigma_{s, 2}$ are shown in Fig. 2.4.1. For the present problem the following values are used.

$$
\begin{aligned}
& T_{\text {bottom }}=\left(\frac{1}{\sigma}\right)^{1 / 4}, T_{\text {top }}=T_{\text {left }}=T_{\text {right }}=0 \mathrm{~K}, \quad T_{g}=0 \mathrm{~K}, \quad \varepsilon_{w}=1 \\
& \kappa_{1}=0.5 \mathrm{~m}^{-1}, \quad \sigma_{s, 1}=0.5 \mathrm{~m}^{-1} \quad \kappa_{2}=10 \kappa_{1} \quad \sigma_{s, 2}=10 \sigma_{s, 2}
\end{aligned}
$$

Fig. 2.4.1 Radiation in an inhomogeneous absorbing and anisotropically scattering medium.
where σ is Stefan-Boltzmann constant. Our aim is to calculate the total irradiation and boundary radiative heat flux distribution.

2.4-2 Design of ADAPT

GRID. The title of the field printout is set to ' G ' through TITLE (1). The output file (PROB4.DAT) is then specified via OPEN. By default, the angular domains are $0 \leq \theta \leq \pi$ and 0 $\leq \phi \leq 2 \pi$. These are specified in DEFLT using the variables TL and PL respectively. Four control angles represented by NCVLT $=4$ are taken in the θ-direction and 8 control angles represented by NCVLP $=8$ are taken in the ϕ-direction respectively. The default value of POWERT $=1$ and POWERP $=1$ are used to generate angular grids with uniform $\Delta \theta$ and $\Delta \phi$. The boundaries of the control angles are calculated by calling QUAD. The spatial domains are 0 $\leq x \leq 1$ and $0 \leq y \leq 1$ which are specified through XL and YL respectively. Ten control volumes are used in the x and y directions which are represented by NCVLX $=10$ and NCVLY $=10$ respectively. The default values of POWERX $=1$ and POWERY $=1$ are used. As a result, an uniform spatial grid is created by calling EZGRID.

START. Numerical values of all boundary conditions as given in Eqs. (2.4.1) and (2.4.2) are set here. The maximum number of iterations for the present problem are set as LAST $=30$. Anisotropic scattering medium is set as KISO $=0$. Forward scattering (F 1 phase function) is specified by KPHASE $=2$. The value of absorption coefficient κ_{1} and scattering coefficient $\sigma_{s, 1}$ are taken as ALPHA $=0.5$ and SIG $=0.5$ respectively. Then we fill $T(I, 1)$ array by TEM, which serves as the temperature of hot bottom wall. Other boundary temperatures are kept at the default value as all the boundaries except the bottom boundary are at absolute zero temperature for the present problem.

LC. Inhomogeneous medium is set here. For $0.3 \leq x \leq 0.7$ and $0.3 \leq y \leq 0.7$, the absorption coefficient κ_{2} and scattering coefficient $\sigma_{s, 2}$ are specified by modifying the CAPPA (I,J) and SIGMA (I,J) arrays respectively. The absorption coefficient and
scattering coefficient for the remainder of the domain remain unchanged and are equal to κ_{1} and $\sigma_{s, 1}$ respectively.

OUTPUT. For each iteration (ITER) the value of an actual intensity, F (I, J, L, M) at the center of the enclosure is printed and maximum difference in magnitude of the intensity from previous iteration, DMAX (which is printed as DIFF-MAX) over all control volumes and control angles is printed for verifying the convergence of the solution. The default value of $E R O R=1 . \mathrm{E}-6$ is used in this example for satisfying the convergence criteria. When the maximum number of iterations has been reached (ITER $=$ LAST), or when the maximum change of the radiative intensities between two successive iterations falls below the prescribed value (KSTOP = 1), the boundary heat fluxes and incident radiation energy are calculated by calling HFLUX. All grid-related variables and incident radiation energy at control volume nodes are printed by calling PRINT. QTOP represents the net radiative heat flux at the top boundary and QBOT represents the net radiative heat flux at the bottom boundary. X(I) represents the value of X at grid location I. Magnitude of QTOP and magnitude of QBOT are printed here for different $X(I)$. QLEFT represents the net radiative heat flux at the left boundary and QRITE represents the net radiative heat flux at the right boundary. $\mathrm{Y}(\mathrm{J})$ represents the value of Y at grid location J. Magnitude of QLEFT and magnitude of QRITE are printed here for different $Y(J)$.

GAMSOR. Irregular geometries and radiative equilibrium conditions are set here. Since in our present problem geometry of the enclosure is not irregular and it is in non-radiative equilibrium condition, hence no operation is performed here.

2.4-3 Additional Fortran Names

DMAX maximum of $\left|\left(I-I_{O L D}\right) / I\right|$ calculated over all control volumes and control angles
LAST maximum number of iterations
ALPHA absorption coefficient
SIG
KISO scattering coefficient
set for type of scattering
KPHASE set for back scattering
STFAN Stefan-Boltzmann constant
$G(I, J) \quad$ incident radiation energy
TEM non-dimensional temperature of bottom wall
QTOP net radiative heat flux at top boundary
QBOT net radiative heat flux at bottom boundary
QLEFT net radiative heat flux at left boundary
QRITE net radiative heat flux at right boundary

2.4-4 Listing of ADAPT for Example 4

```
C*******************************************************************
    SUBROUTINE USER
C********************************************************************
    INCLUDE 'PARAM.FOR'
```

INCLUDE 'COMMON.FOR'

C PROBLEM 4: BLACK, SQUARE ENCLOSURE WITH INHOMOGENOUS MEDIUM
C AND HOT BOTTOM WALL
C***
C
ENTRY GRID
C
TITLE (1)=' G '
OPEN(7,FILE='PROB4.DAT')
C
NCVLP=8
NCVLT=4
C
C
CALL QUAD
NCVLX=10
NCVLY=10
C
$X L=1$.
$Y \mathrm{~L}=1$.
C
CALL EZGRID
C

RETURN

C
ENTRY START
C
LAST=30
KISO=0
KPHASE=2
ALPHA=0.5
SIG=0.5
C

C
TEM $=(1 . / S T F A N) * *(1 . / 4$.
DO $11 \mathrm{I}=2, \mathrm{~L} 1-1$ $T(I, 1)=T E M$
11 CONTINUE
C
RETURN
C***
C

C
DO $100 \mathrm{~J}=1, \mathrm{M} 1$
DO 101 I=1,L1
1
IF (X(I).GT.0.3.AND. X (I). LT.0.7.AND. Y(J).GT.0.3.AND.Y(J).LT.0.7) THEN CAPPA (I, J) $=10 *$ ALPHA SIGMA (I, J) $=10 *$ SIG
ENDIF
CONTINUE CONTINUE

RETURN

C***
C
ENTRY OUTPUT
C
IF (ITER.EQ.0) WRITE $(6,500)$
WRITE $(6,501)$ ITER, $F(L 1 / 2, M 1 / 2,2,2)$, DMAX
IF (ITER.EQ.0) WRITE $(7,500)$

```
    WRITE(7, 501) ITER, F(L1/2,M1/2, 2, 2) ,DMAX
C
    IF(KSTOP.EQ.1.OR.ITER.EQ.LAST) THEN
        CALL HFLUX
        CALL PRINT
C
        WRITE (6,502)
        WRITE(7,502)
C
        DO 510 I=2,L2
        WRITE(6,503) X(I),ABS(QPY(I,M1)-QMY(I,M1)),
                                ABS(QPY(I,1)-QMY(I,1))
            WRITE(7,503) X(I),ABS(QPY(I,M1)-QMY(I,M1)),
                                ABS(QPY(I,1)-QMY(I,1))
    CONTINUE
        WRITE (6,504)
        WRITE(7,504)
C
    DO 511 J=2,M2
        WRITE (6,503) Y(J),ABS (QPX (1,J)-QMX (1,J)),
        ABS(QPX(L1,J)-QMX(L1,J))
C
        WRITE (7,503) Y(J),ABS (QPX (1,J)-QMX (1, J)),
        ABS(QPX(L1,J)-QMX(L1,J))
            CONTINUE
C
    ENDIF
C
    500 FORMAT(/3X,'ITER',8X,'F',12X,'DIFF-MAX'/1X,48('*'))
    501 FORMAT(3X,I3,2(3X,1PE12.3))
    502 FORMAT(/8X,'X',10X,'QTOP',7X,'QBOT'/1X,39('*'))
    503 FORMAT(1X,3(1PE12.3))
    505 FORMAT(1X, 2(F10.5))
    504 FORMAT(/8X,'Y',9X,'QLEFT',7X,'QRITE'/1X,39('*'))
C
    RETURN
C*******************************************************************
    ENTRY GAMSOR
C
    RETURN
    END
```


2.4-5 Results for Example 4

ITER	F	DIFF-MAX
$* ~$		
0	$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$
1	$1.724 \mathrm{E}-03$	$1.000 \mathrm{E}+00$
2	$8.829 \mathrm{E}-03$	$1.000 \mathrm{E}+00$
3	$1.191 \mathrm{E}-02$	$5.533 \mathrm{E}-01$
4	$1.282 \mathrm{E}-02$	$2.462 \mathrm{E}-01$
5	$1.307 \mathrm{E}-02$	$9.393 \mathrm{E}-02$
6	$1.314 \mathrm{E}-02$	$3.203 \mathrm{E}-02$
7	$1.316 \mathrm{E}-02$	$1.018 \mathrm{E}-02$
8	$1.316 \mathrm{E}-02$	$3.085 \mathrm{E}-03$
9	$1.316 \mathrm{E}-02$	$9.060 \mathrm{E}-04$
10	$1.316 \mathrm{E}-02$	$2.606 \mathrm{E}-04$
11	$1.316 \mathrm{E}-02$	$7.393 \mathrm{E}-05$
12	$1.316 \mathrm{E}-02$	$2.086 \mathrm{E}-05$
13	$1.316 \mathrm{E}-02$	$5.856 \mathrm{E}-06$

X	QTOP	QBOT
$* *$		
$5.000 \mathrm{E}-02$	$1.147 \mathrm{E}-01$	$9.871 \mathrm{E}-01$
$1.500 \mathrm{E}-01$	$1.045 \mathrm{E}-01$	$9.852 \mathrm{E}-01$
$2.500 \mathrm{E}-01$	$1.003 \mathrm{E}-01$	$9.838 \mathrm{E}-01$
$3.500 \mathrm{E}-01$	$8.282 \mathrm{E}-02$	$9.825 \mathrm{E}-01$
$4.500 \mathrm{E}-01$	$7.765 \mathrm{E}-02$	$9.819 \mathrm{E}-01$
$5.500 \mathrm{E}-01$	$7.765 \mathrm{E}-02$	$9.819 \mathrm{E}-01$
$6.500 \mathrm{E}-01$	$8.282 \mathrm{E}-02$	$9.825 \mathrm{E}-01$
$7.500 \mathrm{E}-01$	$1.003 \mathrm{E}-01$	$9.838 \mathrm{E}-01$
$8.500 \mathrm{E}-01$	$1.045 \mathrm{E}-01$	$9.852 \mathrm{E}-01$
$9.500 \mathrm{E}-01$	$1.147 \mathrm{E}-01$	$9.871 \mathrm{E}-01$
Y	QLEFT	QRITE
$* *$		
$5.000 \mathrm{E}-02$	$4.433 \mathrm{E}-01$	$4.433 \mathrm{E}-01$
$1.500 \mathrm{E}-01$	$3.683 \mathrm{E}-01$	$3.683 \mathrm{E}-01$
$2.500 \mathrm{E}-01$	$2.985 \mathrm{E}-01$	$2.985 \mathrm{E}-01$
$3.500 \mathrm{E}-01$	$2.263 \mathrm{E}-01$	$2.263 \mathrm{E}-01$
$4.500 \mathrm{E}-01$	$1.669 \mathrm{E}-01$	$1.669 \mathrm{E}-01$
$5.500 \mathrm{E}-01$	$1.248 \mathrm{E}-01$	$1.248 \mathrm{E}-01$
$6.500 \mathrm{E}-01$	$9.582 \mathrm{E}-02$	$9.582 \mathrm{E}-02$
$7.500 \mathrm{E}-01$	$7.571 \mathrm{E}-02$	$7.571 \mathrm{E}-02$
$8.500 \mathrm{E}-01$	$6.096 \mathrm{E}-02$	$6.096 \mathrm{E}-02$
$9.500 \mathrm{E}-01$	$4.945 \mathrm{E}-02$	$4.945 \mathrm{E}-02$

2.4-6 Discussion of Results

It can be seen that the solution is not converged in one iteration. This is because the medium scatters energy. Hence, at each node source function is unknown. Therefore, at the beginning we are guessing the source function. On the basis of guess value of source function intensity is calculated at the next iteration and it is compared with intensity calculated from previous iteration. This iterative process will continue till the maximum difference in intensity between two successive iterations will be less than or equal to EROR. Here it is seen that after fifteen iterations solution is converged. In the result lists for the present problem, along x direction X (I) and $\mathrm{XU}(\mathrm{I})$ represents the value of X at grid location I and the value of X for the corresponding control volume face. Similarly, along y direction $Y(J)$ and $Y V(J)$ represents the value of Y at grid location J and value of Y for the corresponding control volume face. Angular grid contains grid related information in θ and ϕ-directions respectively. In the θ direction $\operatorname{TH}(\mathrm{L})$ represents the value of θ at the grid location L and in the ϕ-direction $\mathrm{PH}(\mathrm{M})$ represents the value of ϕ at the grid location M. The final field printout of incident radiation energy shows that the effect of hot bottom wall is to create maximum irradiation (incident radiation energy), $G(I, J)$ at the bottom of the enclosure which is numerically evaluated by finite volume method as 2.05. The distributions of irradiation inside the medium for homogeneous and inhomogeneous media are shown for a forward scattering phase function (F1) in Fig. 2.4.2. Due to the large absorption coefficient in the middle of the inhomogeneous medium, there is a sharp decrease in the incident radiation. It should be noted that the incident radiation for the homogeneous medium with F1 scattering phase function shown in Figs. 2.3.2 and 2.4.2 are different. This is due to the different spatial and angular grids employed in the two examples. The field printout of boundary heat fluxes shows that the net radiative heat flux at the bottom wall is maximum and is symmetrical about the center of the bottom boundary. Net radiative heat fluxes at left and right boundaries are same and increases along these walls as we come closer to the hot bottom wall.

Fig. 2.4.2 Distributions of incident radiation energy

2.4-7 Final Remarks

Effect of inhomogeneous optical properties on incident radiation energy and wall heat fluxes are discussed here.

2.5 Black, Square Enclosure with Absorbing-Emitting Medium with a radiative source (Example 5)

2.5-1 Problem Description

The problem under consideration is steady-state radiation in an absorbing-emitting medium with a radiative source. In this example, the radiative source is specified as $q_{g e n}=5 \mathrm{~kW} / \mathrm{m}^{3}$. The medium intensity can be calculated from
$\nabla \cdot q=q_{\text {gen }}=\kappa\left(4 \pi I_{b}-G\right)$
Once the blackbody intensity is obtained from Eq. (2.5.1), the gas temperature can be calculated using
$E_{b}=\pi I_{b}=\sigma T_{g}^{4}$
The boundary conditions are specified as

$$
\begin{array}{ll}
y=0 & T=1200 \mathrm{~K} \\
y=1 m & T=400 \mathrm{~K}
\end{array}
$$

Others

$$
\begin{equation*}
T=800 \mathrm{~K} \tag{2.5.3c}
\end{equation*}
$$

Our aim is to calculate the temperature of the medium.

2.5-2 Design of ADAPT

GRID. The title of the field printout is set to ' G ' through TITLE (1). The output file (PROB5.DAT) is then specified via OPEN. By default, the angular domains are $0 \leq \theta \leq \pi$ and 0 $\leq \phi \leq 2 \pi$. These are specified in DEFLT using the variables TL and PL respectively. Four control angles represented by NCVLT $=4$ are taken in the θ-direction and 8 control angles represented by NCVLP $=8$ are taken in the ϕ-direction respectively. The default value of POWERT $=1$ and POWERP $=1$ are used to generate angular grids with uniform $\Delta \theta$ and $\Delta \phi$. The boundaries of the control angles are calculated by calling QUAD. The spatial domains are 0 $\leq x \leq 1$ and $0 \leq y \leq 1$ which are specified through XL and YL respectively. Ten control volumes are used in the x and y directions which are represented by NCVLX $=10$ and NCVLY $=10$ respectively. The default values of POWERX $=1$ and POWERY $=1$ are used. As a result, an uniform spatial grid is created by calling EZGRID.

START. Numerical values of all boundary conditions as given in Eq. (2.5.3) are set here. The maximum number of iterations for the present problem are set as LAST $=30$. The value of absorption coefficient κ is taken as ALPHA $=0.5$. The radiative heat source is specified as QGEN. Then we fill the boundary temperatures according to Eq. (2.5.3).

LC. Since the medium is homogeneous, no addition treatment is done here.
OUTPUT. For each iteration (ITER) the temperature of the medium is calculated using Eq. (2.5.2). The value of the temperature, $T(I, J)$ at the center of the enclosure and maximum difference in magnitude of the intensity from previous iteration, DMAX (which is printed as DIFF-MAX) over all control volumes and control angles are printed for verifying the convergence of the solution. The default value of EROR $=1 . E-6$ is used in this example for satisfying the convergence criteria. When the maximum number of iterations has been reached (ITER $=$ LAST), or when the maximum change of the radiative intensities between two successive iterations falls below the prescribed value (KSTOP = 1), the boundary heat fluxes and incident radiation energy are calculated by calling HFLUX. All grid-related variables and incident radiation energy at control volume nodes are printed by calling PRINT. The user is of course free to use the temperature as the convergence monitoring variable. You will need to write this algorithm yourself in ENTRY OUTPUT.

GAMSOR. The effect of the radiative source given by Eq. (2.5.1) is incorporated in here. The incident radiation G is calculated by calling HFLUX. The intensities of all internal control volumes are then calculated according to Eq. (2.5.1). Radiative equilibrium is a degenerate case of this example with $q_{\text {gen }}=0$.

2.5-3 Additional Fortran Names

DMAX maximum of $\left|\left(I-I_{O L D}\right) / I\right|$ calculated over all control volumes and control angles
LAST maximum number of iterations
ALPHA absorption coefficient
STFAN Stefan-Boltzmann constant
G(I,J) incident radiation energy
QGEN radiative heat source

2.5-4 Listing of ADAPT for Example 5

```
C****************************************************************************
    SUBROUTINE USER
C***************************************************************************
    INCLUDE 'PARAM.FOR'
    INCLUDE 'COMMON.FOR'
C*******************************************************************
C PROBLEM 5: BLACK, SQUARE ENCLOSURE WITH THE MEDIUM
C SUBJECTED TO A RADIATIVE HEAT SOURCE
C************************************************************************
C
    ENTRY GRID
C
    TITLE(1)=' G '
    OPEN(7,FILE='PROB5.DAT')
C
    NCVLP=8
    NCVLT=4
C
C
    CALL QUAD
    NCVLX=10
    NCVLY=10
C
    XL=1.
    YL=1.
C
C
CALL EZGRID
RETURN
```



```
C
ENTRY START
C
LAST=30
ALPHA=0.5
QGEN=5000
C
DO \(100 \mathrm{~J}=2, \mathrm{M} 2\)
\(T(1, J)=800\) \(T(L 1, J)=800\)
100 CONTINUE
C
DO \(101 \mathrm{I}=2, \mathrm{~L} 2\)
\(T(I, 1)=1200\)
\(T(I, M 1)=400\)
101 CONTINUE
C
RETURN
C*******************************************************************
C
```

ENTRY LC
C
RETURN

C
ENTRY OUTPUT
C
DO 200 J=2,M2 DO 201 I=2, L2 $T(I, J)=(P I * R I B(I, J) / S T F A N) * * 0.25$ CONTINUE CONTINUE
200
IF (ITER.EQ.0) WRITE $(6,500)$
WRITE $(6,501)$ ITER, T(L1/2,M1/2), DMAX
IF (ITER.EQ.0) WRITE $(7,500)$
WRITE $(7,501)$ ITER, T(L1/2,M1/2), DMAX
C
IF(KSTOP.EQ.1.OR.ITER.EQ.LAST) THEN
CALL HFLUX
CALL PRINT
ENDIF
C
500 FORMAT (/3X,'ITER', 8X,'T',12X,'DIFF-MAX'/1X,48('*'))
501 FORMAT(3X,I3,2(3X,1PE12.3))
C
RETURN

ENTRY GAMSOR
C
CALL HFLUX
C
DO 300 J=2,M2
DO $301 \mathrm{I}=2, \mathrm{~L} 2$ $\operatorname{RIB}(I, J)=(Q G E N / C A P P A(I, J)+G(I, J)) /(4 . * P I)$
CONTINUE
301
300 CONTINUE
C
RETURN
END

2.5-5 Results for Example 5

ITER	T	DIFF-MAX
$* *$		
0	$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$
1	$4.582 \mathrm{E}+02$	$1.000 \mathrm{E}+00$
2	$8.733 \mathrm{E}+02$	$9.055 \mathrm{E}-01$
3	$9.327 \mathrm{E}+02$	$2.185 \mathrm{E}-01$
4	$9.481 \mathrm{E}+02$	$6.207 \mathrm{E}-02$
5	$9.523 \mathrm{E}+02$	$1.768 \mathrm{E}-02$
6	$9.534 \mathrm{E}+02$	$4.985 \mathrm{E}-03$
7	$9.537 \mathrm{E}+02$	$1.394 \mathrm{E}-03$
8	$9.538 \mathrm{E}+02$	$3.882 \mathrm{E}-04$
9	$9.539 \mathrm{E}+02$	$1.079 \mathrm{E}-04$
10	$9.539 \mathrm{E}+02$	$2.996 \mathrm{E}-05$
11	$9.539 \mathrm{E}+02$	$8.328 \mathrm{E}-06$
12	$9.539 \mathrm{E}+02$	$2.460 \mathrm{E}-06$
13	$9.539 \mathrm{E}+02$	$8.153 \mathrm{E}-07$

```
I = 
XU= 0.00E+00 0.00E+00 1.00E-01 2.00E-01 3.00E-01 4.00E-01 5.00E-01
```

$\begin{array}{lccccc}\mathrm{I}= & 8 & 9 & 10 & 11 & 12 \\ \mathrm{X}=6.50 \mathrm{E}-01 & 7.50 \mathrm{E}-01 & 8.50 \mathrm{E}-01 & 9.50 \mathrm{E}-01 & 1.00 \mathrm{E}+00 \\ \mathrm{XU}=6.00 \mathrm{E}-01 & 7.00 \mathrm{E}-01 & 8.00 \mathrm{E}-01 & 9.00 \mathrm{E}-01 & 1.00 \mathrm{E}+00\end{array}$
$\begin{array}{lccccccc}J= & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ Y= & 0.00 \mathrm{E}+00 & 5.00 \mathrm{E}-02 & 1.50 \mathrm{E}-01 & 2.50 \mathrm{E}-01 & 3.50 \mathrm{E}-01 & 4.50 \mathrm{E}-01 & 5.50 \mathrm{E}-01\end{array}$
$\mathrm{YV}=0.00 \mathrm{E}+000.00 \mathrm{E}+001.00 \mathrm{E}-012.00 \mathrm{E}-013.00 \mathrm{E}-014.00 \mathrm{E}-015.00 \mathrm{E}-01$
$\begin{array}{lccccc}\mathrm{J}= & { }^{8} & 9 & { }^{9} & 10 & { }^{11} \\ \mathrm{Y}= & 6.50 \mathrm{E}-01 & 7.50 \mathrm{E}-01 & 8.50 \mathrm{E}-01 & 9.50 \mathrm{E}-01 & 1.00 \mathrm{E}+00\end{array}$
$\mathrm{YV}=6.00 \mathrm{E}-017.00 \mathrm{E}-018.00 \mathrm{E}-019.00 \mathrm{E}-011.00 \mathrm{E}+00$

| M | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$\mathrm{PH}=0.00 \mathrm{E}+003.93 \mathrm{E}-011.18 \mathrm{E}+001.96 \mathrm{E}+002.75 \mathrm{E}+003.53 \mathrm{E}+004.32 \mathrm{E}+00$

$\mathrm{M}=$	8	9	10
$\mathrm{PH}=$	$5.11 \mathrm{E}+00$	$5.89 \mathrm{E}+00$	$6.28 \mathrm{E}+00$

G $\% * * * * *$							
$\mathrm{I}=$	1	2	3	4	5	6	7
J							
12	$0.00 \mathrm{E}+00$	8.17E+04	8.44E+04	8.82E+04	9.18E+04	9.39E+04	9.39E+04
11	$1.05 \mathrm{E}+05$	$9.63 \mathrm{E}+04$	9.51E+04	9.72E+04	$1.00 \mathrm{E}+05$	$1.02 \mathrm{E}+05$	$1.02 \mathrm{E}+05$
10	1.11E+05	$1.09 \mathrm{E}+05$	$1.09 \mathrm{E}+05$	$1.12 \mathrm{E}+05$	$1.16 \mathrm{E}+05$	$1.18 \mathrm{E}+05$	$1.18 \mathrm{E}+05$
9	$1.19 \mathrm{E}+05$	$1.19 \mathrm{E}+05$	$1.22 \mathrm{E}+05$	$1.26 \mathrm{E}+05$	1.31E+05	$1.33 \mathrm{E}+05$	$1.33 \mathrm{E}+05$
8	1.26E+05	$1.30 \mathrm{E}+05$	$1.35 \mathrm{E}+05$	$1.41 \mathrm{E}+05$	$1.45 \mathrm{E}+05$	$1.48 \mathrm{E}+05$	$1.48 \mathrm{E}+05$
7	1.35E+05	$1.41 \mathrm{E}+05$	$1.48 \mathrm{E}+05$	$1.55 \mathrm{E}+05$	1. $60 \mathrm{E}+05$	$1.62 \mathrm{E}+05$	$1.62 \mathrm{E}+05$
6	$1.45 \mathrm{E}+05$	$1.54 \mathrm{E}+05$	$1.64 \mathrm{E}+05$	$1.71 \mathrm{E}+05$	$1.76 \mathrm{E}+05$	$1.78 \mathrm{E}+05$	$1.78 \mathrm{E}+05$
5	$1.55 \mathrm{E}+05$	$1.69 \mathrm{E}+05$	$1.82 \mathrm{E}+05$	$1.90 \mathrm{E}+05$	$1.94 \mathrm{E}+05$	$1.96 \mathrm{E}+05$	$1.96 \mathrm{E}+05$
4	1.67E+05	$1.87 \mathrm{E}+05$	$2.03 \mathrm{E}+05$	2.12E+05	$2.17 E+05$	$2.19 \mathrm{E}+05$	$2.19 \mathrm{E}+05$
3	$1.79 \mathrm{E}+05$	$2.09 \mathrm{E}+05$	$2.29 \mathrm{E}+05$	$2.40 \mathrm{E}+05$	$2.45 \mathrm{E}+05$	$2.48 \mathrm{E}+05$	$2.48 \mathrm{E}+05$
2	$1.90 \mathrm{E}+05$	$2.40 \mathrm{E}+05$	$2.61 \mathrm{E}+05$	$2.72 \mathrm{E}+05$	$2.77 E+05$	$2.79 \mathrm{E}+05$	$2.79 \mathrm{E}+05$
1	$0.00 \mathrm{E}+00$	$2.94 \mathrm{E}+05$	$2.97 \mathrm{E}+05$	$2.98 \mathrm{E}+05$	$2.99 \mathrm{E}+05$	$2.99 \mathrm{E}+05$	$2.99 E+05$

I =	8	9	10	11	12
J					
12	9.18E+04	$8.82 \mathrm{E}+04$	$8.44 \mathrm{E}+04$	8.17E+04	$0.00 \mathrm{E}+00$
11	$1.00 \mathrm{E}+05$	9.72E+04	9.51E+04	$9.63 \mathrm{E}+04$	$1.05 \mathrm{E}+05$
10	$1.16 \mathrm{E}+05$	$1.12 \mathrm{E}+05$	$1.09 \mathrm{E}+05$	$1.09 \mathrm{E}+05$	1.11E+05
9	1.31E+05	$1.26 \mathrm{E}+05$	$1.22 \mathrm{E}+05$	$1.19 \mathrm{E}+05$	$1.19 \mathrm{E}+05$
8	$1.45 \mathrm{E}+05$	$1.41 \mathrm{E}+05$	$1.35 \mathrm{E}+05$	$1.30 \mathrm{E}+05$	$1.26 E+05$
7	$1.60 \mathrm{E}+05$	$1.55 \mathrm{E}+05$	$1.48 \mathrm{E}+05$	$1.41 \mathrm{E}+05$	$1.35 \mathrm{E}+05$
6	$1.76 \mathrm{E}+05$	1.71E+05	$1.64 \mathrm{E}+05$	$1.54 \mathrm{E}+05$	$1.45 \mathrm{E}+05$
5	$1.94 \mathrm{E}+05$	$1.90 \mathrm{E}+05$	$1.82 \mathrm{E}+05$	$1.69 \mathrm{E}+05$	$1.55 \mathrm{E}+05$
4	$2.17 \mathrm{E}+05$	$2.12 \mathrm{E}+05$	$2.03 \mathrm{E}+05$	$1.87 \mathrm{E}+05$	$1.67 \mathrm{E}+05$
3	$2.45 \mathrm{E}+05$	$2.40 \mathrm{E}+05$	$2.29 \mathrm{E}+05$	$2.09 \mathrm{E}+05$	$1.79 \mathrm{E}+05$
2	$2.77 \mathrm{E}+05$	$2.72 \mathrm{E}+05$	2.61E+05	$2.40 \mathrm{E}+05$	$1.90 \mathrm{E}+05$
	$2.99 \mathrm{E}+05$	$2.98 \mathrm{E}+05$	$2.97 \mathrm{E}+05$		$0.00 \mathrm{E}+00$

2.5-6 Discussion of Results

As expected, the solution did not converge in one iteration. This is because the blackbody intensity of the medium is not known. Hence, the source function is unknown. Therefore, at the beginning we are guessing the source function. On the basis of guess value of source function intensity is calculated at the next iteration and it is compared with intensity calculated from previous iteration. This iterative process will continue till the maximum difference in intensity between two successive iterations will be less than or equal to EROR. Here it is seen that after thirteen iterations solution is converged. In the result lists for the present problem, along x direction $X(I)$ and $X U(I)$ represents the value of X at grid location I and the value of X for the corresponding control volume face. Similarly, along y direction $\mathrm{Y}(\mathrm{J})$ and $\mathrm{YV}(\mathrm{J})$ represents the value of Y at grid location J and value of Y for the corresponding control volume face. Angular grid contains grid related information in θ and ϕ-directions respectively. In the θ-direction $\mathrm{TH}(\mathrm{L})$ represents the value of θ at the grid location L and in the ϕ-direction PH (M) represents the value of ϕ at the grid location M. Figure 2.5.1 shows the temperature distribution due to the effect of the radiative heat source. The black lines show that locations of the centers of the control volumes for this uniformly divided spatial domain.

Fig. 2.5.1 Temperature distribution due to the radiative source.

2.5-7 Final Remarks

This example shows how radiative heat source is modeled using RAT. The next example shows the same problem modeled using non-uniform spatial grids.

2.6 Black, Square Enclosure with Absorbing-Emitting Medium with a radiative source (Example 6)

2.6-1 Problem Description

The physical parameters of this problem are identical to that of Example 5. This problem demonstrates the use of non-uniform spatial grids. The problem under consideration is steadystate radiation in an absorbing-emitting medium with a radiative source. In this example, the radiative source is specified as $q_{g e n}=5 \mathrm{~kW} / \mathrm{m}^{3}$. The medium intensity can be calculated from

$$
\begin{equation*}
\nabla \cdot q=q_{\text {gen }}=\kappa\left(4 \pi I_{b}-G\right) \tag{2.6.1}
\end{equation*}
$$

Once the blackbody intensity is obtained from Eq. (2.6.1), the gas temperature can be calculated using

$$
\begin{equation*}
E_{b}=\pi I_{b}=\sigma T_{g}^{4} \tag{2.6.2}
\end{equation*}
$$

The boundary conditions are specified as

$$
\begin{array}{ll}
y=0 & T=1200 \mathrm{~K} \\
y=1 m & T=400 \mathrm{~K} \\
\text { Others } & T=800 \mathrm{~K} \tag{2.6.3c}
\end{array}
$$

Our aim is to calculate the temperature of the medium.

2.6-2 Design of ADAPT

GRID. The title of the field printout is set to ' G ' through TITLE (1). The output file (PROB6.DAT) is then specified via OPEN. By default, the angular domains are $0 \leq \theta \leq \pi$ and 0 $\leq \phi \leq 2 \pi$. These are specified in DEFLT using the variables TL and PL respectively. Four control angles represented by NCVLT $=4$ are taken in the θ-direction and 8 control angles represented by NCVLP $=8$ are taken in the ϕ-direction respectively. The default value of POWERT $=1$ and POWERP $=1$ are used to generate angular grids with uniform $\Delta \theta$ and $\Delta \phi$. The boundaries of the control angles are calculated by calling QUAD. The spatial domain is divided into two zones in the x direction through $N Z X=2$. XZONE (1) specifies the length of the first zone to 0.5 which is half the size of the enclosure. The first zone is divided into five control volumes using $\operatorname{NCVX}(1)=5$. The widths of the control volumes are arranged to expand in the positive x direction using POWRX $(1)=1.5$. Similar to the first zone, the width of the second zone is set to 0.5 using XZONE (2). Five control volumes fill this space and is set using $\operatorname{NCVX}(2)=5$. The widths of these control volumes contract towards the wall (in the positive x direction). This is arranged using POWRX(2) $=-1.5$. Note that in this program, positive ($>$ 1.0) POWRX implies expanding grids, while negative (<-1) indicates contracting grids. The same magnitude (1.5 in this example) ensures that the meshes are symmetrical about the centerline (in this example). More complete explanation can be found in Patankar (1991). The same concept is used in specifying the grids in the y direction. The meshes are generated by calling ZGRID (not EZGRID as in the previous example.)

START. Numerical values of all boundary conditions as given in Eq. (2.6.3) are set here. The maximum number of iterations for the present problem are set as LAST $=30$. The value of absorption coefficient κ is taken as ALPHA $=0.5$. The radiative heat source is specified as QGEN. Then we fill the boundary temperatures according to Eq. (2.6.3).

LC. Since the medium is homogeneous, no addition treatment is done here.
OUTPUT. For each iteration (ITER) the temperature of the medium is calculated using Eq. (2.6.2). The value of the temperature, $T(I, J)$ at the center of the enclosure and maximum difference in magnitude of the intensity from previous iteration, DMAX (which is printed as DIFF-MAX) over all control volumes and control angles are printed for verifying the convergence of the solution. The default value of EROR $=1 . E-6$ is used in this example for satisfying the convergence criteria. When the maximum number of iterations has been reached (ITER $=$ LAST), or when the maximum change of the radiative intensities between two successive iterations falls below the prescribed value (KSTOP = 1), the boundary heat fluxes and incident radiation energy are calculated by calling HFLUX. All grid-related variables and incident radiation energy at control volume nodes are printed by calling PRINT. The user is of course free to use the temperature as the convergence monitoring variable. You will need to write this algorithm yourself in ENTRY OUTPUT.

GAMSOR. The effect of the radiative source given by Eq. (2.6.1) is incorporated in here. The incident radiation G is calculated by calling HFLUX. The intensities of all internal control volumes are then calculated according to Eq. (2.6.1). Radiative equilibrium is a degenerate case of this example with $q_{g e n}=0$.

2.6-3 Additional Fortran Names

DMAX \quad maximum of $\left|\left(I-I_{O L D}\right) / I\right|$ calculated over all control volumes and control angles
LAST maximum number of iterations
ALPHA absorption coefficient
STFAN Stefan-Boltzmann constant
G (I, J) incident radiation energy
QGEN radiative heat source

2.6-4 Listing of ADAPT for Example 6

```
C**********************************************************************
    SUBROUTINE USER
C**********************************************************************
    INCLUDE 'PARAM.FOR'
    INCLUDE 'COMMON.FOR'
C*******************************************************************
C PROBLEM 6: BLACK, SQUARE ENCLOSURE IN A MEDIUM
C WITH A RADIATIVE HEAT SOURCE
C********************************************************************
C
    ENTRY GRID
C
```

```
    TITLE(1)=' G '
    OPEN(7,FILE='PROB6.DAT')
C
    NCVLP=8
    NCVLT=4
C
    CALL QUAD
C
    NZX=2
    XZONE(1)=0.5
    NCVX(1)=5
    POWRX(1)=1.5
    XZONE(2)=0.5
    NCVX(2)=5
    POWRX(2)=-1.5
C
    NZY=2
    YZONE(1)=0.5
    NCVY(1)=5
    POWRY(1)=1.5
    YZONE (2)=0.5
    NCVY (2)=5
    POWRY(2)=-1.5
C
C
    CALL ZGRID
    RETURN
C*******************************************************************
C
C
    ALPHA=0.5
    QGEN=5000
C
    DO 100 J=2,M2
        T(1, J)=800
        T(L1,J)=800
    100 CONTINUE
C
    DO 101 I=2,L2
        T(I,1)=1200
        T(I,M1)=400
    101 CONTINUE
C
    RETURN
C*******************************************************************
C
C
    RETURN
C****************************************************************************
C
ENTRY OUTPUT
    DO 200 J=2,M2
        DO 201 I=2,L2
                T(I,J)=(PI*RIB(I,J)/STFAN)**0.25
            CONTINUE
    201
    200
        CONTINUE
        IF(ITER.EQ.0) WRITE(6,500)
        WRITE(6,501) ITER, T(L1/2,M1/2),DMAX
        IF(ITER.EQ.0) WRITE (7,500)
```

```
    WRITE(7,501) ITER, T(L1/2,M1/2),DMAX
C
    IF(KSTOP.EQ.1.OR.ITER.EQ.LAST) THEN
        CALL HFLUX
        CALL PRINT
    ENDIF
C
    500 FORMAT(/3X,'ITER',8X,'T',12X,'DIFF-MAX'/1X,48('*'))
    501 FORMAT(3X,I3,2(3X,1PE12.3))
C
    RETURN
C*******************************************************************
    ENTRY GAMSOR
C
    CALL HFLUX
C
    DO 300 J=2,M2
        DO 301 I=2,L2
                        RIB (I, J)=(QGEN/CAPPA(I, J)+G(I, J))/(4.*PI)
                        CONTINUE
        CONTINUE
        RETURN
        END
C*******************************************************************
```


2.6-5 Results for Example 6

$\mathrm{M}=$	$\stackrel{8}{\mathrm{PH}=}$	$5.11 \mathrm{E}+00$	$9.89 \mathrm{E}+00$
$6.28 \mathrm{E}+00$			

I =	1	2	3	4	5	6	7
12	$0.00 \mathrm{E}+00$	$8.04 \mathrm{E}+04$	$8.18 \mathrm{E}+04$	$8.55 \mathrm{E}+04$	9.07E+04	9.47E+04	
11	$1.03 \mathrm{E}+05$	$9.29 \mathrm{E}+04$	8.87E+04	$9.01 \mathrm{E}+04$	$9.43 \mathrm{E}+04$	9.79E+04	9.79E+04
10	$1.07 \mathrm{E}+05$	$1.03 \mathrm{E}+05$	$9.99 \mathrm{E}+04$	$1.01 \mathrm{E}+05$	$1.05 \mathrm{E}+05$	$1.09 \mathrm{E}+05$	$1.09 \mathrm{E}+05$
9	$1.14 \mathrm{E}+05$	$1.13 \mathrm{E}+05$	$1.12 \mathrm{E}+05$	$1.15 \mathrm{E}+05$	$1.20 \mathrm{E}+05$	$1.24 \mathrm{E}+05$	$1.24 \mathrm{E}+05$
8	1.23E+05	$1.23 \mathrm{E}+05$	$1.25 \mathrm{E}+05$	$1.30 \mathrm{E}+05$	$1.36 \mathrm{E}+05$	$1.41 \mathrm{E}+05$	$1.41 \mathrm{E}+05$
7	$1.33 \mathrm{E}+05$	$1.35 \mathrm{E}+05$	$1.40 \mathrm{E}+05$	$1.48 \mathrm{E}+05$	$1.55 \mathrm{E}+05$	$1.59 \mathrm{E}+05$	$1.59 \mathrm{E}+05$
6	$1.46 \mathrm{E}+05$	$1.49 \mathrm{E}+05$	$1.58 \mathrm{E}+05$	$1.69 \mathrm{E}+05$	$1.77 \mathrm{E}+05$	$1.81 \mathrm{E}+05$	$1.81 \mathrm{E}+05$
5	1. $60 \mathrm{E}+05$	$1.66 \mathrm{E}+05$	$1.81 \mathrm{E}+05$	$1.95 \mathrm{E}+05$	$2.03 \mathrm{E}+05$	$2.07 \mathrm{E}+05$	$2.07 \mathrm{E}+05$
4	$1.74 \mathrm{E}+05$	$1.86 \mathrm{E}+05$	$2.07 \mathrm{E}+05$	$2.23 \mathrm{E}+05$	$2.33 \mathrm{E}+05$	$2.38 \mathrm{E}+05$	$2.38 \mathrm{E}+05$
3	$1.86 \mathrm{E}+05$	$2.09 \mathrm{E}+05$	$2.37 \mathrm{E}+05$	$2.55 \mathrm{E}+05$	$2.65 \mathrm{E}+05$	$2.70 \mathrm{E}+05$	$2.70 \mathrm{E}+05$
2	$1.93 \mathrm{E}+05$	$2.42 \mathrm{E}+05$	$2.71 \mathrm{E}+05$	$2.84 \mathrm{E}+05$	$2.90 \mathrm{E}+05$	$2.93 \mathrm{E}+05$	$2.93 \mathrm{E}+05$
1	$0.00 \mathrm{E}+00$	$2.92 \mathrm{E}+05$	$2.95 \mathrm{E}+05$	$2.98 \mathrm{E}+05$	$2.99 \mathrm{E}+05$	$2.99 \mathrm{E}+05$	$2.99 \mathrm{E}+05$

$\mathrm{I}=$	8	9	10	11	12
12					
12	$9.07 \mathrm{E}+04$	$8.55 \mathrm{E}+04$	$8.18 \mathrm{E}+04$	$8.04 \mathrm{E}+04$	0.00E
11	$9.43 \mathrm{E}+04$	$9.01 \mathrm{E}+04$	8.87E+04	$9.29 \mathrm{E}+04$	$1.03 \mathrm{E}+05$
10	$1.05 \mathrm{E}+05$	$1.01 \mathrm{E}+05$	$9.99 \mathrm{E}+04$	$1.03 \mathrm{E}+0$	$1.07 \mathrm{E}+05$
9	$1.20 \mathrm{E}+05$	$1.15 \mathrm{E}+05$	$1.12 \mathrm{E}+05$	$1.13 \mathrm{E}+05$	1.14E+05
8	$1.36 \mathrm{E}+05$	$1.30 \mathrm{E}+05$	$1.25 \mathrm{E}+05$	$1.23 \mathrm{E}+05$	$1.23 \mathrm{E}+05$
7	$1.55 \mathrm{E}+05$	$1.48 \mathrm{E}+05$	$1.40 \mathrm{E}+05$	$1.35 \mathrm{E}+05$	$1.33 \mathrm{E}+05$
6	$1.77 \mathrm{E}+05$	$1.69 \mathrm{E}+05$	$1.58 \mathrm{E}+05$	$1.49 \mathrm{E}+05$	$1.46 \mathrm{E}+05$
5	$2.03 \mathrm{E}+05$	$1.95 \mathrm{E}+05$	$1.81 \mathrm{E}+05$	$1.66 \mathrm{E}+05$	$1.60 \mathrm{E}+05$
	$2.33 \mathrm{E}+05$	$2.23 \mathrm{E}+05$	$2.07 \mathrm{E}+05$	$1.86 \mathrm{E}+05$	$1.74 \mathrm{E}+05$
	$2.65 \mathrm{E}+05$	$2.55 \mathrm{E}+05$	$2.37 \mathrm{E}+05$	$2.09 \mathrm{E}+05$	1.86E+05
2	$2.90 \mathrm{E}+05$	$2.84 \mathrm{E}+05$	$2.71 \mathrm{E}+05$	$2.42 \mathrm{E}+05$	$1.93 \mathrm{E}+05$
1	$2.99 \mathrm{E}+05$	$2.98 \mathrm{E}+0$	$2.95 \mathrm{E}+0$	$2.92 \mathrm{E}+05$	$0.00 \mathrm{E}+00$

2.6-6 Discussion of Results

As expected, the solution did not converge in one iteration. This is because the blackbody intensity of the medium is not known. Hence, the source function is unknown. Therefore, at the beginning we are guessing the source function. On the basis of guess value of source function intensity is calculated at the next iteration and it is compared with intensity calculated from previous iteration. This iterative process will continue till the maximum difference in intensity between two successive iterations will be less than or equal to EROR. Here it is seen that after thirteen iterations solution is converged. In the result lists for the present problem, along x direction $X(I)$ and $X U(I)$ represents the value of X at grid location I and the value of X for the corresponding control volume face. Similarly, along y direction $Y(J)$ and $Y V(J)$ represents the value of Y at grid location J and value of Y for the corresponding control volume face. Angular grid contains grid related information in θ and ϕ-directions respectively.

In the θ-direction $\mathrm{TH}(\mathrm{L})$ represents the value of θ at the grid location L and in the ϕ-direction PH(M) represents the value of ϕ at the grid location M. Figure 2.6.1 shows the temperature distribution due to the effect of the radiative heat source. The black lines show that locations of the centers of the control volumes for this uniformly divided spatial domain. Note that the nodes are finer near the four walls.

Fig. 2.6.1 Temperature distribution due to the radiative source.

2.6-7 Final Remarks

LISTING OF THE INVARIANT PART OF RAT

A. 1 Include File "PARAM.FOR"

CCC
C TWO-DIMENSIONAL FINITE-VOLUME METHOD FOR
C RADIATIVE HEAT TRANSFER IN PARTICIPATING MEDIA
C JOHN C. CHAI
ССС
PARAMETER ($\mathrm{NI}=17, \mathrm{NJ}=17, \mathrm{NT}=6, \mathrm{NP}=10$, $\mathrm{NZMX}=4$, $\mathrm{NPSUB}=7$) CССС C PHI : ANGLE FROM THE X-AXIS ON THE X-Y PLANE, M , J1 C THETA : ANGLE FROM THE Z-AXIS, L, K1
CCC

A. 2 Include File "COMMON.FOR"

```
 cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
    CHARACTER*10 TITLE
    COMMON/BLK01/F(NI,NJ,NT,NP)
    COMMON/BLKO2/X(NI) ,XU(NI),XCV(NI),Y(NJ), YV (NJ) ,YCV(NJ) ,VOL(NI,NJ),
    5 THETA(NT),THETAI(NT),PHI(NP),PHII(NP)
    COMMON/BLKO3/AX(NJ,NT,NP) , AY (NI,NT,NP) ,DCX(NT,NP) ,DCY(NT,NP) ,
    1 DOM(NT,NP)
    COMMON/BLKO4/ISOLID(NI,NJ)
    COMMON/BLK05/BM(NI,NJ,NT,NP), SM(NI ,NJ,NT,NP) , SP(NI , NJ ,NT,NP),
    9 SC(NI,NJ,NT,NP),RIB(NI,NJ),T(NI,NJ)
        COMMON/BLK06/L1,L2 , L3,M1,M2,M3,K1, K2 , K3 , J1, J2 , J3 , ITER , LAST
        COMMON/BLK07/XL,YL,TL,PL,SMALL,BIG, EROR,DMAX
        COMMON/BLK08/KSTOP,KBOUND,KISO,KPHASE,KPNORM
        COMMON/BLK09/RIBI1(NJ ,NT,NP), RIBL1(NJ,NT,NP),
    1 RIBJ1(NI,NT,NP), RIBM1(NI,NT,NP)
    COMMON/BLK10/QPY(NI,NJ),QMY(NI,NJ),QPX(NI,NJ),QMX(NI,NJ),G(NI,NJ)
    COMMON/BLK11/CAPPA(NI,NJ),SIGMA(NI,NJ),BETA(NI,NJ)
    1 ,ALPHA,SIG,EPSI1,EPSL1,EPSJ1,EPSM1
    2 ,RHOI1,RHOL1,RHOJ1, RHOM1, STFAN
    COMMON/BLK12/MORDER, A(100), PHASE (NT , NP , NT , NP)
    COMMON/BLK13/PI,PIBY2,PI32,PI4
    COMMON/BLK14/TITLE(16)
    COMMON/BLK15/NCVLX,NCVLY,NCVX(NZMX) ,NCVY(NZMX) ,NZX,NZY ,NCVLP ,NCVLT,
    COMMON/BLK16/POWERX, POWERY, XZONE (NZMX) , POWRX (NZMX)
    1 ,YZONE (NZMX), POWRY (NZMX), POWERT, POWERP
    COMMON/BLK17/MPHI1,MPHI2,MPHI3,MPHI4,MP1P1,MP2P1,MP3P1,MP4P1,
    1 LTETA2,LT2P1
    COMMON/BLK18/KBCI1(NJ),KBCL1(NJ),KBCJ1(NI) ,KBCM1(NI)
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
```


A. 3 Invariant Part of RAT

СС

 PROGRAM RAT2DC***
INCLUDE 'PARAM.FOR'
INCLUDE 'COMMON.FOR'
C***
CALL DEFLT
CALL GRID
C
CALL SETUP1
C
CALL START
C
CALL SETUP2
C
CALL LC
C
CHECK FOR SCATTERING
C
DO $5 \mathrm{I}=2, \mathrm{~L} 2$ DO 6 J=2,M2

IF(SIGMA(I,J).NE.O.) KSIG=1
CONTINUE
$\begin{array}{lr}6 & \text { CONTIN } \\ 5 & \text { CONTINUE }\end{array}$
C
IF(KSIG.EQ.1) THEN
IF(KISO.EQ.1) THEN
CALL ISOTRP
ELSE
CALL ANISO
ENDIF
ENDIF
C
CALL OUTPUT
DO 10 ITER1=1, LAST
ITER=ITER1 IF(KSTOP.EQ.1) STOP CALL GAMSOR
CALL BNDRY
CALL SMBM
CALL HEART
CALL BOUND CALL OUTPUT
10 CONTINUE
C
END
CCC SUBROUTINE DEFLT

INCLUDE 'PARAM.FOR'
INCLUDE 'COMMON.FOR'

LAST=5
MODE=1
C
EROR=1.E-6
SMALL=1.E-10
BIG=1.E20
C
PI=4.0*ATAN (1.0)
PIBY2=PI/2.
PI32=3.*PI/2.

```
    PI4=4.*PI
C
    XL=1.0
    YL=1.0
C
C
    TL=PI
    PL=2.*PI
    POWERX=1.0
    POWERY=1.0
    POWERP=1.0
    POWERT=1.0
C
C
    EPSJ1=1.
    EPSI1=1.
    EPSM1=1.
    EPSL1=1.
C
    ALPHA=0.0
    SIG=0.0
C
        STFAN=5.6696E-8
        KISO=1
C
KBOUND=0
C
DO 95 I=1,NI
    DO 96 J=1,NJ
        DO 97 L=1,NT
                DO 98 M=1,NP
                F(I,J,L,M)=0.
                BM(I, J,L,M)=0.
                SM(I , J,L,M)=0.
                SC(I, J,L,M)=0.
                SP(I, J,L,M)=0.
                RIBI1(J,L,M)=0.
                RIBL1(J,L,M)=0.
                RIBJ1(I, L,M)=0.
                RIBM1(I,L,M)=0.
                CONTINUE
            CONTINUE
            T(I,J)=0.
            RIB (I,J)=0.
            CAPPA(I, J)=ALPHA
            SIGMA(I,J)=SIG
            BETA(I,J)=CAPPA(I,J)+SIGMA(I, J)
            KBCI1(J)=1
            KBCL1(J)=1
            KBCJ1(I)=1
            KBCM1(I)=1
        CONTINUE
    CONTINUE
```

```
C
    DO 123 L=2,K2
        DO 124 M=2, J2
            DO 125 LL=2,K2
                                    DO 126 MM=2,J2
                                    PHASE(L,M,LL,MM)=0.0
                                CONTINUE
                CONTINUE
        CONTINUE
            CONTINUE
        RETURN
    END
 ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
    SUBROUTINE SETUP
C***********************************************************************
    INCLUDE 'PARAM.FOR'
    INCLUDE 'COMMON.FOR'
C***********************************************************************
    DC(ARGU) =0.5*ARGU-0.25*SIN(2.*ARGU)
    SIN2(ARG)=(1.-COS(2.*ARG))/2.0
    AM(ARGU)=AMAX1(ARGU,0.0)
C***********************************************************************
            ENTRY SETUP1
C
    L2=L1-1
    L3=L2-1
    M2=M1-1
    M3=M2-1
    K2=K1-1
    K3=K2-1
    J2=31-1
    J3=J2-1
C
COME HERE TO CALCULATE X-DIRECTION GRID
C
    x(1)=xu(2)
    DO 5 I=2,L2
        X(I)=0.5*(XU(I+1)+XU(I))
        XCV(I)=XU(I+1)-XU(I)
    5 CONTINUE
    x(L1)=xU(L1)
C
COME HERE TO CALCULATE Y-DIRECTION GRID
C
    Y(1)=YV(2)
    DO 10 J=2,M2
        Y(J)=0.5*(YV (J+1)+YV(J))
        YCV(J)=YV(J+1)-YV(J)
        CONTINUE
    Y(M1)=YV(M1)
C
CALCULATIONS OF CONTROL VOLUME VOLUMES
C
    DO 15 J=2,M2
        DO 16 I=2,L2
            VOL(I,J)=XCV(I)*YCV(J)
        conTINUE
    CONTINUE
15
c
CALCULATIONSOF THETA-DIRECTION GRID
C
    THETA(1)=THETAI (2)
```

```
        DO 20 L=2,K2
            THETA(L)=0.5*(THETAI(L+1)+THETAI(L))
    20 CONTINUE
        THETA(K1)=THETAI (K1)
C
CALCULATIONS OF PHI-DIRECTION GRID
C
        PHI (1)=PHII (2)
        DO 30 M=2,J2
            PHI(M)=0.5*(PHII (M+1)+PHII (M))
    30 CONTINUE
        PHI (J1)=PHII (J1)
C
    CALCULATIONS OF CONTROL ANGLES AND "DIRECTION COSINES"
C
        DO 40 M=2,J2
            PHIM=PHI (M)
            IF(PHIM.LT.PIBY2) MPHI2=M
            IF(PHIM.LT.PI) MPHI3=M
            IF(PHIM.LT.PI32) MPHI4=M
            TERM1=COS(PHII(M+1))-COS(PHII (M))
            TERM2=SIN(PHII(M+1))-SIN(PHII (M))
            TERM3=PHII (M+1)-PHII (M)
            DO 41 L=2,K2
                    IF(THETA(L).LT.PIBY2) LTETA2=L
                    TERM4=DC(THETAI (L+1))-DC(THETAI (L))
                    TERM5=(SIN2 (THETAI (L+1))-SIN2 (THETAI (L)))/2.
                    DCX(L,M)= TERM2*TERM4
                    DCY(L,M)=-TERM1*TERM4
                    IF(ABS(DCX(L,M)).LT.1.E-5) DCX(L,M)=0.0
                    IF (ABS (DCY (L,M)).LT.1.E-5) DCY (L,M)=0.0
                    DOM(L,M)=-(COS(THETAI (L+1))-\operatorname{COS}(\operatorname{THETAI}(L)))*TERM3
            CONTINUE
        CONTINUE
        DO 50 L=2,K2
            DO 51 M=2,J2
                        DO 52 J=2,M2
                        AX(J,L,M)=ABS(DCX(L,M)*YCV (J))
                        CONTINUE
                        DO 53 I=2,L2
                                    AY(I,L,M)=ABS(DCY(L,M)*XCV(I))
                        CONTINUE
        CONTINUE
    CONTINUE
C
        MP2P1=MPHI2+1
        MP3P1=MPHI3+1
        MP4P1=MPHI4+1
        LT2P1=LTETA2+1
C
CAUTION***** XCV(1),XCV(L1),YCV(1),YCV(M1) ARE NOT USED. ****
            XCV(1)=SMALL
            XCV(L1)=SMALL
            YCV(1)=SMALL
            YCV(M1)=SMALL
C
        PRINT 2
            PRINT 55
C
            FORMAT(//15X,
        1 'COMPUTATION IN TWO-DIMENSIONAL CARTESIAN COORDINATES')
    55 FORMAT (14X,56(1H*),//)
C
```

RETURN
 ENTRY SETUP2
C
COME HERE TO SPECIFY BOUNDARY EMISSION FROM THE EAST AND WEST WALLS
C
DO $60 \mathrm{~J}=2, \mathrm{M} 2$
IF (KBCI1 (J).EQ.1) THEN
DO $62 \mathrm{~L}=2, \mathrm{~K} 2$
DO $63 \mathrm{M}=2$, MPHI2 RIBI1 ($J, L, M)=S T F A N * T(1, J) * * 4 / P I$
63

64
62 CONTINUE DO 64 M=MP4P1, J2 RIBII ($J, L, M)=S T F A N * T(1, J) * * 4 / P I$ CONTINUE CONTINUE
ENDIF
IF(KBCL1(J).EQ.1) THEN
DO $65 \mathrm{~L}=2, \mathrm{~K} 2$
DO 66 M=MP2P1,MPHI4
RIBL1 ($\mathrm{J}, \mathrm{L}, \mathrm{M}$) $=$ STFAN*T(L1, J) $* * 4 / \mathrm{PI}$ CONTINUE
CONTINUE
ENDIF
CONTINUE
C
COME HERE TO SPECIFY BOUNDARY EMISSIONS FROM THE NORTH AND SOUTH WALLS C

DO $70 \mathrm{I}=2, \mathrm{~L} 2$
IF (KBCJ1 (I).EQ.1) THEN
DO 72 L=2,K2
DO $73 \mathrm{M}=2$,MPHI3 RIBJ1 $(I, L, M)=S T F A N * T(I, 1) * * 4 / P I$ CONTINUE
CONTINUE
ENDIF
IF (KBCM1 (I).EQ.1) THEN
DO $75 \mathrm{~L}=2$,K2
DO $76 \mathrm{M}=\mathrm{MP} 3 \mathrm{P} 1, \mathrm{~J} 2$
RIBM1 (I, L , M) =STFAN*T (I , M1) $* * 4 / P I$ CONTINUE
CONTINUE
ENDIF
CONTINUE
C
COME HERE TO SPECIFY EMISSION FROM THE MEDIUM
C
DO 90 I=2,L2
DO $91 \mathrm{~J}=2, \mathrm{M} 2$
$\operatorname{RIB}(I, J)=S T F A N * T(I, J) * * 4 / P I$
$\operatorname{CAPPA}(I, J)=A L P H A$
SIGMA (I, J) =SIG
$\operatorname{BETA}(I, J)=\operatorname{CAPPA}(I, J)+S I G M A(I, J)$
CONTINUE
91 CONTINUE
c
COME
HERE TO UPDATE REFLECTIVITIES
C
RHOJ1=1-EPSJ1
RHOI1=1-EPSI1
RHOM1=1-EPSM1
RHOL1=1-EPSL1
C
RETURN

```
    END
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
    SUBROUTINE HEART
C***********************************************************************
    INCLUDE 'PARAM.FOR'
    INCLUDE 'COMMON.FOR'
C********************************************************************************
    AM(ARGU)=AMAX1(ARGU,0.0)
C***********************************************************************
            KSTOP=1
            DMAX=-1000.
C
COME HERE TO START FROM THE SOUTH-WEST CORNER (I=2, J=2)
    DO 10 J=2,M2
        DO 11 I=2,L2
                        DO 12 L=2,K2
                            DO 13 M=2,MPHI2
                        VOLM=VOL(I, J) *DOM (L ,M)
                        RNUM=AX(J,L,M)*F(I-1,J,L,M)+
                                    AY(I,L,M) *F(I,J-1,L,M)+
    1
                                VOLM*SM(I,J,L,M)
                            DENO=AX(J,L,M)+AY(I , L,M)+BM(I, J , L,M) *VOLM
                            FOLD=F(I,J,L,M)
                            F(I,J,L,M)=RNUM/ (DENO+SMALL)
                                    DIFF=ABS (F (I, J,L,M)-FOLD)/(F(I, J,L,M)+SMALL)
                                    DMAX=AMAX1(DMAX,DIFF)
                                    IF(DMAX.GT.EROR) KSTOP=0
                    CONTINUE
                        CONTINUE
            CONTINUE
    10 CONTINUE
    13
    12
C
COME HERE TO START FROM THE SOUTH-EAST CORNER (I=L2, J=2)
    DO 20 J=2,M2
        DO 21 I=L2,2,-1
                        DO 22 L=2,K2
                        DO 23 M=MP2P1,MPHI3
                        VOLM=VOL(I, J) *DOM(L,M)
        1
                        RNUM=AX(J,L,M)*F(I+1,J,L,M)+
                                    AY(I,L,M) *F(I,J-1,L,M)+
    2
                                    VOLM*SM(I, J,L,M)
                            DENO=AX(J,L,M)+AY(I , L,M)+BM(I, J , L,M) *VOLM
                            FOLD=F(I,J,L,M)
                            F(I,J,L,M)=RNUM/ (DENO+SMALL)
                            DIFF=ABS (F (I, J,L,M)-FOLD)/(F(I, J,L,M)+SMALL)
                            DMAX=AMAX1(DMAX,DIFF)
                            IF(DMAX.GT.EROR) KSTOP=0
                    CONTINUE
                        CONTINUE
            CONTINUE
            CONTINUE
C
COME HERE TO START FROM THE NORTH-WEST CORNER (I=2, J=M2)
    DO 110 J=M2,2,-1
        DO 111 I=2,L2
            DO 112 L=2,K2
                DO 113 M=MP4P1,J2
            VOLM=VOL(I, J)*DOM(L,M)
                        RNUM=AX(J,L,M)*F(I-1,J,L,M)+
                AY(I,L,M) *F(I,J+1,L,M)+
    1
                    VOLM*SM(I, J,L,M)
                            DENO=AX (J,L,M)+AY(I,L,M)+BM(I, J,L,M)*VOLM
                            FOLD=F(I,J,L,M)
            F(I,J,L,M)=RNUM/(DENO+SMALL)
```

```
                    DIFF=ABS(F(I, J, L,M)-FOLD)/(F(I, J,L,M)+SMALL)
                    DMAX=AMAX1(DMAX,DIFF)
                    IF(DMAX.GT.EROR) KSTOP=0
                CONTINUE
                CONTINUE
            CONTINUE
        CONTINUE
C
COME HERE TO START FROM THE NORTH-EAST CORNER (I=L2, J=M2)
    DO 120 J=M2,2,-1
            DO 121 I=L2,2,-1
                DO 122 L=2,K2
                DO 123 M=MP3P1,MPHI4
                    VOLM=VOL(I, J)*DOM(L,M)
                                    RNUM=AX(J,L,M)*F(I+1,J,L,M)+
                                    AY(I,L,M)*F(I,J+1,L,M)+
                                    VOLM*SM(I, J,L,M)
                                    DENO=AX (J,L,M)+AY (I,L,M)+BM(I, J,L,M) *VOLM
                                    FOLD=F(I,J,L,M)
                    F(I,J,L,M)=RNUM/(DENO+SMALL)
                            DIFF=ABS(F(I, J,L,M)-FOLD)/(F(I, J , L ,M)+SMALL)
                            DMAX=AMAX1(DMAX, DIFF)
                            IF(DMAX.GT.EROR) KSTOP=0
                CONTINUE
                CONTINUE
            CONTINUE
        CONTINUE
    122
        121
    120
C
    RETURN
    END
```



```
    SUBROUTINE SMBM
```



```
    INCLUDE 'PARAM.FOR'
    INCLUDE 'COMMON.FOR'
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCO
C
    DO 11 J=2,M2
        DO 12 I=2,L2
            DO 13 L=2,K2
                DO 14 M=2,J2
                SMSUM=0.
                IF(SIGMA(I,J).NE.O.) THEN
                    DO 15 LL=2,K2
                        DO 16 MM=2,J2
                                    SMSUM=SMSUM+PHASE(LL,MM,L,M)
    1
                                    *DOM(LL ,MM) *F(I, J , LL ,MM)
                                    CONTINUE
                                    CONTINUE
                                    SMSUM=SMSUM-PHASE(L,M,L,M)*DOM(L,M)
                                    *F(I, J,L,M)
                                    ENDIF
                                    BM(I, J,L,M)=CAPPA (I, J)+SIGMA (I, J)*
                                    (1.-PHASE (L,M,L,M) *DOM(L,M)/PI4)
                                    SM(I, J,L,M)=CAPPA (I, J) *RIB (I, J)
                CONTINUE
            CONTINUE
        CONTINUE
    CONTINUE
    RETURN
    END
```

```
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCO
    SUBROUTINE BNDRY
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCO
    INCLUDE 'PARAM.FOR'
    INCLUDE 'COMMON.FOR'
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
    DO 100 I=2,L2
        IF(KBCJ1(I).EQ.1) THEN
            CALL WLSUM(I,1,K2,J2,-1,DCY,F,SSUM)
            DO 102 L=2,K2
                DO 103 M=2,MPHI3
                    F(I,1,L,M)=EPSJ1*RIBJ1(I,L,M)+RHOJ1*SSUM/PI
                        CONTINUE
                CONTINUE
            ELSEIF(KBCJ1(I).EQ.2) THEN
                DO 104 L=2,K2
                    DO 105 M=2,MPHI3
                    MM=J2-(M-2)
                    F(I,1,L,M)=F(I, 1,L,MM)
                CONTINUE
                CONTINUE
            ENDIF
C
C
    DO 500 J=2,M2
        IF(KBCI1(J).EQ.1) THEN
        CALL WLSUM(1, J, K2 , J2 , -1, DCX , F,WSUM)
        DO 501 L=2,K2
            DO 502 M=2,MPHI2
                    F(1,J,L,M)=EPSI1*RIBI1(J,L,M)+RHOI1*WSUM/PI
                CONTINUE
                DO 503 M=MP4P1,J2
                    F(1,J,L,M)=EPSI1*RIBI1(J,L,M)+RHOI1*WSUM/PI
                CONTINUE
            CONTINUE
        ELSEIF(KBCI1(J).EQ.2) THEN
            DO 504 L=2,K2
                DO 505 M=2,MPHI2
                    MM=MPHI3-(M-2)
                    F(1, J,L,M)=F(1, J, L, MM)
                CONTINUE
                DO 515 M=MP4P1,J2
                    MM=MPHI4-(M-MP4P1)
                    F(1, J,L,M)=F(1, J,L,MM)
                CONTINUE
            CONTINUE
        ENDIF
C
```

```
        IF(KBCL1(J).EQ.1) THEN
            CALL WLSUM(L1, J, K2 , J2,1, DCX, F, ESUM)
            DO 508 L=2,K2
                DO 509 M=MP2P1,MPHI4
                                    F(L1,J,L,M)=EPSL1*RIBL1(J,L,M)+RHOL1*ESUM/PI
                CONTINUE
            CONTINUE
        ELSEIF(KBCL1(J).EQ.2) THEN
            DO 1510 L=2,K2
                DO 1511 M=MP2P1,MPHI3
                    MM=MPHI2-(M-MP2P1)
                F(L1, J,L,M)=F(L1, J, L,MM)
            CONTINUE
            DO 1514 M=MP3P1,MPHI4
                MM=J2-(M-MP3P1)
                F(L1, J,L,M)=F(L1,J,L,MM)
            CONTINUE
                            CONTINUE
                ENDIF
    CONTINUE
    RETURN
    END
```



```
    SUBROUTINE BOUND
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCO
    INCLUDE 'PARAM.FOR'
    INCLUDE 'COMMON.FOR'
```



```
    DO 10 J=2,M2
        DO 11 L=2,K2
            DO 12 M=MP2P1,MPHI4
                    F(1, J, L,M)=F(2, J,L,M)
                CONTINUE
                DO 13 M=2,MPHI2
                    F(L1,J,L,M)=F(L2 , J,L,M)
                    CONTINUE
                    DO 14 M=MP4P1,J2
                        F(L1,J,L,M)=F(L2,J,L,M)
                CONTINUE
                CONTINUE
    CONTINUE
        DO 20 I=2,L2
            DO 21 L=2,K2
                DO 22 M=2,MPHI3
                        F(I,M1,L,M)=F(I,M2,L,M)
                CONTINUE
                DO 23 M=MP3P1,J2
                    F(I,1,L,M)=F(I, 2,L,M)
                    CONTINUE
                CONTINUE
            CONTINUE
C
    RETURN
    END
```



```
    SUBROUTINE WLSUM(I , J, K2 , J2 , INDX, DC , FC, SUM)
 СССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССС
    INCLUDE 'PARAM.FOR'
    DIMENSION DC(NT,NP),FC(NI,NJ,NT,NP)
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
    SUM=0.
```

```
    IF(INDX.GT.0) THEN
        DO 10 L=2,K2
            DO 20 M=2,J2
                SUM=SUM+FC(I , J , L ,M) *AMAX1(DC(L,M) , 0.0)
            CONTINUE
        CONTINUE
    ELSE
            DO 30 L=2,K2
            DO 40 M=2,J2
                SUM=SUM+FC(I, J , L ,M)*AMAX1(-DC(L ,M),0.0)
            CONTINUE
        CONTINUE
    ENDIF
C
    RETURN
    END
```



```
    SUBROUTINE PHASEF
 cССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССС
    INCLUDE 'PARAM.FOR'
    INCLUDE 'COMMON.FOR'
    DIMENSION PSUB(NP,NPSUB),TSUB(NT,NPSUB),
    1 PSUBI (NP,NPSUB),TSUBI (NT,NPSUB)
 СССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССС
C
C
    DO 10 L=2,K2
        DO 20 M=2,J2
        DO 30 LL=2,K2
            DO 40 MM=2,J2
                        PHASE (LL ,MM, L ,M)=1.0
                        CONTINUE
                CONTINUE
            CONTINUE
    CONTINUE
    RETURN
```



```
    ENTRY ANISO
C
    nsub=5
    CALL PCOEF
C
    DO 2000 M=2,J2
        PLOW=PHII (M)
        PHIGH=PHII (M+1)
        CALL PHISUB(PLOW,PHIGH,NSUB,PSUB,PSUBI,M)
        DPHI=(PHIGH-PLOW)/NSUB
        DO 2100 L=2,K2
            TLOW=THETAI (L)
            THIGH=THETAI (L+1)
            CALL TETASUB(TLOW,THIGH,DPHI,NSUB,TSUB,TSUBI,L)
            CONTINUE
        CONTINUE
    DO 2200 M=2,J2
        PHIL=PHI (M)
        DO 2210 L=2,K2
            TETAK=THETA(L)
            DO 2300 MM=2,J2
                DO 2310 LL=2,K2
                        SUMLL=0.0
                        DO 2220 MS=2,NSUB+1
```

```
PLSSUB=PSUB (M,MS)
TERMA=PSUBI(M,MS+1)-PSUBI (M,MS)
DO 2230 LS=2,NSUB+1
    TKSSUB=TSUB (L,LS)
    TERMB=COS (TSUBI (L,LS+1))-COS (TSUBI (L,LS))
    DOMA=-TERMA*TERMB
    XMU=SIN(TKSSUB) *COS(PLSSUB)
    PSI=SIN(TKSSUB)*SIN(PLSSUB)
    ETA=COS(TKSSUB)
    DO 2410 MMS=2,NSUB+1
        PLSUB=PSUB (MM,MMS)
        TERM1=PSUBI (MM,MMS+1) - PSUBI (MM ,MMS)
        DO 2420 LLS=2,NSUB+1
                TKSUB=TSUB (LL,LLS)
                XMUL=SIN(TKSUB)*COS(PLSUB)
                        PSIL=SIN(TKSUB)*SIN(PLSUB)
                        ETAL=COS(TKSUB)
                ANG=XMU*XMUL+PSI*PSIL+ETA*ETAL
                SUM=1.0
                DO 2500 MO=1,MORDER
                    SUM=SUM+A(MO)*PLCOS(MO,ANG, SMALL)
        2500
                                    CONTINUE
                                    TERM2=COS(TSUBI (LL,LLS+1))-
                                    COS(TSUBI(LL,LLS))
                                    DOMS=-TERM1*TERM2
                                    SUMLL=SUMLL+SUM*DOMS*DOMA
                                    CONTINUE
                                    CONTINUE
                CONTINUE
            CONTINUE
            PHASE(LL,MM, L ,M)=SUMLL/DOM(LL ,MM)/DOM(L ,M)
            CONTINUE
            CONTINUE
        CONTINUE
            CONTINUE
            CALL PNORM
C
    RETURN
    END
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
    SUBROUTINE PHISUB (PLOW,PHIGH,NSUB,PSUB,PSUBI,L)
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCСССССССССССССССССССССССССССССССССС
    INCLUDE 'PARAM.FOR'
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCСССССССССССССССССССССССС
    DIMENSION PSUBI(NP,NPSUB),PSUB (NP,NPSUB)
C
    NSUBK=NSUB+2
    PSUBI (L, 2)=PLOW
    PSUBI (L,NSUBK)=PHIGH
    DPHI=(PHIGH-PLOW)/FLOAT(NSUB)
C
    DO 10 LL=3,NSUBK-1
        PSUBI(L,LL)=PSUBI(L,LL-1)+DPHI
    10
    CONTINUE
C
    PSUB (L, 1)=PSUBI (L, 2)
    DO 20 LL=2,NSUBK-1
        PSUB (L,LL)=0.5*(PSUBI(L,LL)+PSUBI (L,LL+1))
    CONTINUE
    PSUB (L,NSUBK)=PSUBI (L ,NSUBK)
C
    RETURN
    END
```

```
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCO
    SUBROUTINE TETASUB(TLOW,THIGH,DPHI,NSUB,TSUB,TSUBI,K)
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCO
    INCLUDE 'PARAM.FOR'
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
    DIMENSION TSUBI(NT,NPSUB),TSUB(NT,NPSUB)
C
    NSUBL=NSUB+2
    TSUBI (K, 2)=TLOW
    TSUBI (K,NSUBL)=THIGH
    DPHI=(THIGH-TLOW)/FLOAT(NSUB)
    DO 10 KK=3,NSUBL-1
            TSUBI (K,KK)=TSUBI (K,KK-1)+DPHI
    10 CONTINUE
C
        TSUB (K,1)=TSUBI (K, 2)
        DO 20 KK=2,NSUBL-1
            TSUB (K,KK)=0.5*(TSUBI (K,KK)+TSUBI (K , KK+1))
    20 CONTINUE
        TSUB (K,NSUBL)=TSUBI (K,NSUBL)
C
        RETURN
        END
 ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccco
    SUBROUTINE PCOEF
C****************************************************************************
    INCLUDE 'PARAM.FOR'
    INCLUDE 'COMMON.FOR'
    COMPLEX IOR
C***********************************************************************
C
    KPHASE PHASE FUNCTION
C ----------------------------------
C
                IF(KPHASE.EQ.1) IPH=0
                IF(KPHASE.EQ.2) IPH=2
                IF(KPHASE.EQ.3) IPH=4
                IF(KPHASE.EQ.4) IPH=5
                IF(KPHASE.EQ.5) IPH=6
                IF(KPHASE.EQ.6) IPH=10
                IF(KPHASE.EQ.7) IPH=20
C--- FORWARD SCATTERING PHASE FUNCTIONS.
        IF(IPH.EQ.100)THEN
        MORDER =1
C A(0) =1.0
        A(1) =3.*0.30
        ENDIF
C-----
    IF(IPH.EQ.0) THEN
    XSIZ = 999.
    IOR = (999.,999.)
    QSCA = 999.
    QABS = 999.
    MORDER = 26
C
    A(0) = 1.0
    A(1) = 2.78197
```

```
    A(2) = 4.25856
    A(3) = 5.38653
    A(4) = 6.19015
    A(5) = 6.74492
    A(6) = 7.06711
    A(7) = 7.20999
    A(8) = 7.20063
    A(9) = 7.03629
    A(10) = 6.76587
    A(11) = 6.35881
    A(12) = 5.83351
    A(13) = 5.22997
    A(14) = 4.47918
    A(15) = 3.69000
    A(16) = 2.81577
    A(17) = 1.92305
    A(18) = 1.11502
    A(19) = 0.50766
    A(20) = 0.20927
    A(21) = 0.07138
    A(22) = 0.02090
    A(23) = 0.00535
    A(24) = 0.00120
    A(25) = 0.00024
    A(26) = 0.00004
    ENDIF
C
        IF(IPH.EQ.1) THEN
        XSIZE =10.0
        IOR =(1.33,0.0)
        QSCA=2.20654869
        QABS=0.0
        GFAC=0.71245915
        MORDER=20
        A(0)=1.0000000
        A(1)=2.1373777
        A(2)=2.9336057
        A(3)=2.8347003
        A(4)=2.7405264
        A(5)=2.6281443
        A(6)=2.5408404
        A(7)=2.6078286
        A(8)=2.7392752
        A(9)=2.9413168
        A(10)=3.2081311
        A(11)=3.4706223
        A(12)=3.7823384
        A(13)=4.1312394
        A(14)=4.2848716
        A(15)=4.7362566
        A(16)=4.4471574
        A(17)=4.3439150
        A(18)=3.3834202
        A(19)=2.2265594
        A(20)=1.3012373
        ENDIF
C -----
    IF(IPH.EQ.2) THEN
    XSIZE = 5.0
    IOR = (1.33,0.0)
    QSCA = 3.59103251
    QABS = 0.0
    GFAC =0.84534043
```

C	MORDER $=12$
	$\mathrm{A}(0)=1.0$
	$\mathrm{A}(1)=2.5360217$
	$\mathrm{A}(2)=3.5654900$
	$\mathrm{A}(3)=3.9797626$
	$\mathrm{A}(4)=4.0029206$
	$\mathrm{A}(5)=3.6640084$
	$\mathrm{A}(6)=3.0160117$
	$\mathrm{A}(7)=2.2330437$
	$\mathrm{A}(8)=1.3025078$
	$A(9)=0.5346286$
	$A(10)=0.2013563$
	$A(11)=0.0547964$
	$\mathrm{A}(12)=0.0109929$
	ENDIF
	IF (IPH.EQ.3) THEN
	XSIZE =3.0
	IOR $=(1.33,0.0)$
	QSCA=1.75339794
	QABS $=0.0$
	GFAC=0.78320068
	MORDER=9
C	$\mathrm{A}(0)=1.0000000$
	$\mathrm{A}(1)=2.3496020$
	$\mathrm{A}(2)=2.7382560$
	$A(3)=2.3145776$
	$A(4)=1.3907945$
	$A(5)=0.5534959$
	$A(6)=0.1744258$
	$\mathrm{A}(7)=0.0401137$
	$\mathrm{A}(8)=0.0069153$
	$\mathrm{A}(9)=0.0008899$
	ENDIF
	IF (IPH.EQ.4) THEN
	XSIZE $=2.0$
	IOR $=(1.33,0.0)$
	QSCA $=0.71294856$
	QABS $=0.0$
	MORDER $=8$
C	$\mathrm{A}(0)=1.0$
	$\mathrm{A}(1)=2.0091653$
	$\mathrm{A}(2)=1.5633900$
	$\mathrm{A}(3)=0.6740690$
	$A(4)=0.2221484$
	$A(5)=0.0472529$
	$A(6)=0.0067132$
	$A(7)=0.0006743$
	$\mathrm{A}(8)=0.0000494$
	ENDIF
	IF (IPH.EQ.5) THEN
	XSIZE $=1.0$
	IOR $=(1.33,0.0)$
	QSCA $=9.39240903 \mathrm{E}-02$
	QABS $=0.0$
	GFAC=0.18451715
	MORDER=6
C	$\mathrm{A}(0)=1.0000000$
	$A(1)=0.5535514$
	$A(2)=0.5600496$
	$A(3)=0.1157242$
	$\mathrm{A}(4)=0.0107823$

```
    A(5) = 0.0005812
    A(6) = 0.0000230
    ENDIF
C-----
    IF(IPH.EQ.6) THEN
    XSIZE = 999.
    IOR =(999.,999.)
    QSCA = 999.
    QABS = 999.
    MORDER = 2
C A(0) = 1.0
    A(1) = 1.2
    A(2) = 0.5
    ENDIF
C
C-----
    IF(IPH.EQ.7) THEN
    XSIZE = 999.
    IOR =(999.,999.)
    QSCA = 999.
    QABS = 999.
    MORDER = 1
C A(0) = 1.0
    A(1) = 1.0
    ENDIF
C
C--- BACKWARD SCATTERING PHASE FUNCTIONS.
    IF(IPH.EQ.10) THEN
            XSIZE = 999.
            IOR =(999.,999.)
            QSCA = 999.
            QABS = 999.
            MORDER = 5
            A(0) = 1.0
            A(1) =-0.56524
            A(2) =0.29783
            A(3) = 0.08571
            A(4) =0.01003
            A(5) = 0.00063
    ENDIF
C-----
    IF(IPH.EQ.20) THEN
                XSIZE = 999.
            IOR =(999.,999.)
            QSCA = 999.
            QABS = 999.
            MORDER = 2
            A(0) = 1.0
            A(1) =-1.2
            A(2) = 0.5
            ENDIF
C-----
            IF(IPH.EQ.30) THEN
            XSIZE = 999.
            IOR =(999.,999.)
            QSCA = 999.
            QABS = 999.
            MORDER = 1
            A(0) = 1.0
            A(1) = -1.0
    ENDIF
C
    RETURN
```

```
    END
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
    SUBROUTINE PNORM
C******************************************************************
    INCLUDE 'PARAM.FOR'
    INCLUDE 'COMMON.FOR'
    DIMENSION PHOLD(NT,NP,NT,NP)
C***********************************************************************
    DO 10 L=2,K2
        DO 20 M=2,J2
                    SUM=0.0
                    DO 30 LL=2,K2
                        DO 40 MM=2,J2
                        SUM=SUM+PHASE(LL,MM,L,M) *DOM(LL ,MM)
                        CONTINUE
                CONTINUE
    30
C
                FACT=SUM/(4.*PI)
C
                    DO 50 LL=2,K2
                        DO 60 MM=2,J2
                                    PHOLD(LL ,MM, L,M)=PHASE(LL,MM , L,M)
                                    PHASE(LL,MM,L,M)=PHASE(LL,MM,L,M)/(FACT+SMALL)
                                    CONTINUE
                CONTINUE
                CONTINUE
    CONTINUE
C
    RETURN
    END
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
    FUNCTION PLCOS(L,X,SMALL)
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C COMPUTES THE LEGENDRE POLYNOMIAL P-SUB-L.
C X IS IN THE RANGE FROM -1 TO +1.
C MODIFIED FROM 'NUMERICAL RECIPES, THE ART OF SCIENTIFIC COMPUTING' BY
C W. H. PRESS, B. P. FLANNERY, S. A. TEUKOLSKY, W. T. VETTERLING
C ORIGINAL FUNCTION NAME = PLGNDR
CC IF(L.LT.1.OR.ABS(X).GT.1.+SMALL) PRINT*,'CHECK ANG',X
C
    PMM=1.
    PMMP1=X
    IF(L.EQ.1) THEN
    PLCOS=PMMP1
C
    ELSE
        DO 12 LL=2,L
                PLL=(X*'(2*LL-1)*PMMP1-(LL-1)*PMM)/(LL)
                PMM=PMMP1
                PMMP1=PLL
    12 CONTINUE
            PLCOS=PLL
        ENDIF
        RETURN
    END
```



```
    SUBROUTINE SUPPLY
```



```
    INCLUDE 'PARAM.FOR'
    INCLUDE 'COMMON.FOR'
C************************************************************************
    7 FORMAT(/1X,6(1H*),3X,A18,3X,6(1H*)/9X,20(1H-))
    8 FORMAT(/' I =',I6,6I9)
```

```
    9 FORMAT(' J')
    10 FORMAT(26(1H*),3X,A10,3X,26(1H*))
    20 FORMAT(4H I =,I6,6I9)
    30 FORMAT(1HJ)
    40 FORMAT(1X,I2,3X,1P7E9.2)
    50 FORMAT(1H )
    51 FORMAT(1X,'I =',2X,7(I4,5X))
    FORMAT(1X,'X =',1P7E9.2)
    FORMAT(1X,'TH =',1P7E9.2)
    FORMAT(1X,'J =',2X,7(I4,5X))
    55 FORMAT(1X,'Y =',1P7E9.2)
    62 FORMAT(1X,'XU=',1P7E9.2)
    65 FORMAT(1X,'YV=',1P7E9.2)
    56 FORMAT(1X,'K =', 2X,7(I4,5X))
    57 FORMAT(1X,'Z =',1P7E9.2)
    58 FORMAT(1X,'L =',2X,7(I4,5X))
    59 FORMAT(1X,'TH =',1P7E9.2)
    60 FORMAT(1X,'M =',2X,7(I4,5X))
    61 FORMAT(1X,'PH =',1P7E9.2)
C******************************************************************
    ENTRY EZGRID
C
CONSTRUCT THE X-DIRECTION GRID
    L1=NCVLX+2
    XU(1)=XU(2)
    XU(L1)=XL+XU(2)
    L2=L1-1
    FCVLX=FLOAT(NCVLX)
    DO 21 I=3,L2
    DD=FLOAT(I-2)/FCVLX
    IF(POWERX.GT.0.) THEN
    XU(I)=XL*DD**POWERX+XU(2)
    ELSE
    XU(I) =XL*(1.-(1.-DD)**(-POWERX))+XU(2)
    ENDIF
    21 CONTINUE
CONSTRUCT THE Y-DIRECTION GRID
    M1=NCVLY+2
    YV (2)=0.
    YV(M1)=YL
    M2=M1-1
    FCVLY=FLOAT(NCVLY)
    DO 31 J=3,M2
    DD=FLOAT (J-2)/FCVLY
    IF(POWERY.GT.0.) THEN
    YV(J)=YL*DD**POWERY
    ELSE
    YV(J)=YL*(1.-(1.-DD)**(-POWERY))
    ENDIF
    31 CONTINUE
C
    RETURN
```



```
    ENTRY ZGRID
CONSTRUCT THE GRID ZONE-BY-ZONE
C
CONSIDER THE X DIRECTION
    XU(1)=XU(2)
    I2=2
    DO }1101\mathrm{ NZ=1,NZX
    FCVLX=FLOAT(NCVX(NZ))
    ILAST=I2
    I1=ILAST+1
    I2=ILAST+NCVX(NZ)
```

```
DO }1101 I=I1,I
DD=FLOAT(I-ILAST)/FCVLX
IF(POWRX(NZ).GT.0.) THEN
XU(I) =XU(ILAST)+XZONE(NZ) *DD**POWRX (NZ)
ELSE
XU(I) =XU(ILAST)+XZONE (NZ)*(1.-(1. -DD)**(-POWRX(NZ)))
ENDIF
    1101 CONTINUE
    L1=I2
C
CONSIDER THE Y DIRECTION
C
    YV(2)=0.
    JJ2=2
    DO }1100\mathrm{ NZ=1,NZY
    FCVLY=FLOAT(NCVY(NZ))
    JLAST=JJ2
    JJ1=JLAST+1
    JJ2=JLAST+NCVY(NZ)
    DO 1100 J=JJ1,JJ2
    DD=FLOAT(J-JLAST)/FCVLY
    IF(POWRY(NZ).GT.0.) THEN
    YV(J)=YV(JLAST)+YZONE (NZ) *DD**POWRY (NZ)
    ELSE
    YV(J)=YV(JLAST)+YZONE(NZ)*(1.-(1. -DD)**(-POWRY(NZ)))
    ENDIF
    1100 CONTINUE
        M1=JJ2
        RETURN
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
    ENTRY QUAD
C
CONSTRUCT THE PHI-DIRECTION GRID
C
    J1=NCVLP+2
    PHII (2)=0.
    PHII(J1)=PL
    J2=J1-1
    FCVLP=FLOAT(NCVLP)
    DO 4 M=3,J2
    DD=FLOAT(M-2)/FCVLP
    IF(POWERP.GT.O.) THEN
    PHII(M)=PL*DD**POWERP
    ELSE
    PHII (M)=PL*(1.-(1.-DD)**(-POWERP))
    ENDIF
    CONTINUE
C
CONSTRUCT THE THETA-DIRECTION GRID
C
    K1=NCVLT+2
    THETAI (2)=0.
    THETAI (K1)=TL
    K2=K1-1
    FCVLT=FLOAT(NCVLT)
    DO 5 L=3,K2
        DD=FLOAT(L-2)/FCVLT
        IF(POWERT.GT.0.) THEN
            THETAI(L)=TL*DD**POWERT
        ELSE
            THETAI(L)=TL*(1.-(1.-DD)**(-POWERT))
        ENDIF
    5 CONTINUE
C
```

RETURN
CCC ENTRY PRINT
C
PRINT 50
WRITE $(7,50)$
IEND=0
301 IF (IEND.EQ.L1) GO TO 310
IBEG=IEND +1
IEND=IEND+7
IEND=MINO (IEND, L1)
PRINT 50
WRITE $(7,50)$
PRINT 51, (I, I=IBEG, IEND)
WRITE (7,51) (I, I=IBEG, IEND)
IF (MODE.EQ.3) GO TO 302
PRINT 52, (X(I), I=IBEG,IEND)
PRINT 62, (XU (I), I=IBEG,IEND)
WRITE $(7,52)$ (X(I), I=IBEG,IEND)
WRITE (7,62) (XU (I) , I=IBEG, IEND)
GO TO 303
302 PRINT 53, (X(I), I=IBEG,IEND)
WRITE $(7,53)(X(I), I=I B E G, I E N D)$
303 GO TO 301
310 JEND=0
PRINT 50
WRITE $(7,50)$
311 IF(JEND.EQ.M1) GO TO 320
JBEG=JEND+1
JEND=JEND+7
JEND=MIN0 (JEND, M1)
PRINT 50
PRINT 54, (J, J=JBEG, JEND)
PRINT 55, (Y (J), J=JBEG, JEND)
PRINT 55, (YV(J), J=JBEG, JEND)
WRITE $(7,50)$
WRITE $(7,54)$ (J, J=JBEG, JEND)
WRITE $(7,55)(Y(J), J=J B E G, J E N D)$
WRITE $(7,65)(Y V(J), J=J B E G, J E N D)$
GO TO 311
320 JEND=0
PRINT 50
WRITE $(7,50)$
331 IF(JEND.EQ.K1) GO TO 340
JBEG=JEND+1
JEND=JEND+7
JEND=MINO (JEND, K1)
PRINT 50
PRINT 58, (J,J=JBEG,JEND)
PRINT 59, (THETA (J), J=JBEG, JEND)
WRITE $(7,50)$
WRITE $(7,58)$ (J, J=JBEG, JEND)
WRITE (7,59) (THETA (J), J=JBEG, JEND)
GO TO 331
340 JEND=0
PRINT 50
WRITE $(7,50)$
341 IF (JEND.EQ.J1) GO TO 350
JBEG=JEND+1
JEND=JEND+7
JEND=MIN0 (JEND, J1)
PRINT 50
PRINT 60, (J, J=JBEG, JEND)

```
    PRINT 61,(PHI(J),J=JBEG,JEND)
    WRITE (7,50)
    WRITE(7,60) (J , J=JBEG , JEND)
    WRITE(7,61)(PHI (J), J=JBEG,JEND)
    GO TO 341
    350
    CONTINUE
C
    WRITE(6,7) TITLE(1)
    WRITE(7,7) TITLE(1)
    IBEG=1
    JBEG=1
    IEND=11
    JEND=m1
    IREP=(IEND-IBEG+7)/7
    DO 551 KP=1,IREP
        INCR=MIN(6,IEND-IBEG)
        ISTOP=IBEG+INCR
        WRITE (6,8) (I,I=IBEG,ISTOP)
        WRITE(6,9)
        WRITE (7,8) (I, I=IBEG,ISTOP)
        WRITE (7,9)
        DO 552 J=JEND,JBEG,-1
            WRITE(6,40) J,(G(I,j),I=IBEG,ISTOP)
            WRITE (7,40) J,(G(I,j),I=IBEG,ISTOP)
        CONTINUE
        IBEG=ISTOP+1
        CONTINUE
    RETURN
    END
CcCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCcccccccccccccccccccccccccco
    SUBROUTINE HFLUX
C******************************************************************
    INCLUDE 'PARAM.FOR'
    INCLUDE 'COMMON.FOR'
C******************************************************************
    DO 500 I=1,L1
        DO 510 J=1,M1
                SQPY=0.
            SQMY=0.
            SQPX=0.
            SQMX=0.
            DO 520 L=2,K2
                DO 530 M=2,J2
                    ADCY=ABS (DCY (L,M))
                        ADCX=ABS(DCX(L,M))
                        IF(I.GT.1.AND.I.LT.L1) THEN
                        IF(DCY(L,M).GT.O.0) THEN
                        SQPY=SQPY+ADCY*F(I, J,L,M)
                            ELSE
                    SQMY=SQMY+ADCY*F(I, J,L,M)
                        ENDIF
                            ENDIF
                            IF(J.GT.1.AND.J.LT.M1) THEN
                                    IF(DCX(L,M).GT.O.0) THEN
                                    SQPX=SQPX+ADCX*F(I, J,L,M)
                    ELSE
                                    SQMX=SQMX+ADCX*F(I , J , L,M)
                                    ENDIF
                            ENDIF
                CONTINUE
            CONTINUE
            QPY(I,J)=SQPY
            QMY (I,J)=SQMY
```

```
                QPX (I, J)=SQPX
                QMX(I,J)=SQMX
    CONTINUE
    CONTINUE
    CONTINUE
    DO 540 I=1,L1
        DO 550 J=1,M1
            GSUM=0.
            DO 560 L=2,K2
                DO 570 M=2,J2
                GSUM=GSUM+F(I , J , L , M) *DOM(L ,M)
            CONTINUE
        CONTINUE
        G(I, J)=GSUM
    CONTINUE
    CONTINUE
    CONTINUE
    DO 580 J=1,M1
        IF(KBCI1(J).EQ.2) THEN
            QPY (1, J)=QPY (2, J)
            QMY (1, J)=QMY (2,J)
            G}(1,\textrm{J})=\textrm{G}(2,\textrm{J}
        ENDIF
        IF(KBCL1(J).EQ.2) THEN
            QPY (L1,J)=QPY (L2,J)
            QMY (L1,J)=QMY (L2,J)
            G(L1,J) =G(L2,J)
        ENDIF
    CONTINUE
    DO 600 I=1,L1
        IF(KBCJ1(I).EQ.2) THEN
            QPX(I,1)=QPX(I, 2)
            QMX(I,1)=QMX (I, 2)
            G(I,1) =G(I,2)
        ENDIF
        IF(KBCM1(I).EQ.2) THEN
            QPX(I,M1)=QPX(I,M2)
            QMX(I ,M1)=QMX (I,M2)
            G(I,M1) =G(I,M2)
        ENDIF
    6 0 0 ~ C O N T I N U E
    C
        RETURN
    END
    CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
```


FUNCTIONS OF VARIOUS SUBROUTINES AND ENTRIES

DEFLT	: default values are set here.
GRID*	: geometry of the problem is specified here.
SETUP1	: initial setup.
START	: properties and temperatures are set here.
SETUP2	: final setup.
LC *	: inhomogeneous medium is set here.
ISOTRP	: set the phase function to the isotropic phase function.
ANISO	: calculates anisotropic phase function.
OUTPUT*	: output routine.
GAMSOR	: irregular geometries and radiative equilibrium conditions are set here.
HEART	: main solution loop.
PRINT	: print grid related variables and incident radiation energy.
EZGRID	: usually called in entry grid to construct the spatial grids.
QUAD	: usually called in entry grid to construct the angular grids.
HFLUX	: heat fluxes and incident radiation energy are calculated here.

[^0]
FORTRAN VARIABLES

LAST	maximum number of iterations.
MODE	indicator for co-ordinate system.
EROR	convergence criteria.
SMALL	: a small number.
BIG	: a big number.
PI	: π
PIBY2	: $\pi / 2$
PI32	: $3 \pi / 2$
PI4	: 4π
TL	: θ-direction length of the calculation domain $=\pi$
PL	: ϕ-direction length of the calculation domain $=2 \pi$
XL	: x-direction length of the calculation domain
YL	: y-direction length of the calculation domain
POWERT	: non-uniformity index for the theta-direction grid.
POWERP	: non-uniformity index for the phi-direction grid.
POWERX	: non-uniformity index for the x-direction grid.
POWERY	: non-uniformity index for the y-direction grid.
NCVLP	: number of phi-direction control volume widths in the domain. Presently, please use NCVLP that is divisible by 4.
NCVLT	: number of theta-direction control volume widths in the domain. Presently, please use NCVLP that is divisible by 2.
NCVLX	: number of x-direction control volume widths in the domain.
NCVLY	: number of y-direction control volume widths in the domain.
XZONE(NZ)	: x-direction length of a zone.
YZONE(NZ)	: y-direction length of a zone.
NCVX(NZ)	: number of x-direction control volume widths in a zone.
NCVY(NZ)	: number of y-direction control volume widths in a zone.
POWRX(NZ)	: non-uniformity index for the x-direction grid in a zone.
POWRY(NZ)	: non-uniformity index for the y-direction grid in a zone.
EPSJ1	: emissivity of the south wall.
EPSM1	: emissivity of the north wall.
EPSL1	: emissivity of the east wall.
EPSI1	: emissivity of the west wall.
RHOJ1	: 1.- EPSJ1.
RHOM1	1.- EPSM1.

[^1]| J3 | : J2-1 |
| :---: | :---: |
| X(I) | : value of X at grid location I. |
| XU(I) | : value of X at the control-volume face. $\mathrm{XU}(1)$ is meaningless. |
| XCV(I) | : x-direction width of control-volume. $\mathrm{XCV}(1)$ and $\mathrm{XCV}(\mathrm{L} 1)$ are meaningless. |
| Y(J) | : value of Y at grid location J . |
| YV(J) | value of Y at the control-volume face. $\mathrm{Y} V(1)$ is meaningless. |
| $\mathrm{YCV}(\mathrm{J})$ | : y-direction width of control-volume. $\mathrm{YCV}(1)$ and $\mathrm{YCV}(\mathrm{M} 1)$ are meaningless. |
| AX(J) | : YCV(J) |
| AY(I) | : XCV (I) |
| $\operatorname{VOL}(\mathrm{I}, \mathrm{J})$ | : $\mathrm{XCV}(\mathrm{I}) * \mathrm{YCV}(\mathrm{J})$ |
| THETA(L) | $:$ value of θ at grid location L. |
| THETAI(L) | : value of θ at the control-volume face. THETAI(1) is meaningless. |
| PHI(M) | : value of ϕ at grid location M. |
| PHII(M) | : value of ϕ at the control-volume face. $\mathrm{PHII}(1)$ is meaningless. |
| DCX () | : $D_{C X}^{L}$ |
| DCY() | : $D_{C Y}^{L}$ |
| DOM() | : $\Delta \Omega$ |
| ISOLID() | : index denoting blockage. |
| QPY() | : q_{y}^{+} |
| QMY() | $:\left\|q_{y}^{-}\right\|$ |
| QPX() | : q_{x}^{+} |
| QMX() | $:\left\|q_{x}^{-}\right\|$ |
| G | : incident radiation energy. |

REFERENCES

Chai, J. C., Lee, H. S., and Patankar, S. V., 1994a, "Finite-Volume Method for Radiation Heat Transfer, "AIAA Journal of Thermophysics and Heat Transfer", Vol. 8, No. 3, pp. 419425.

Chai, J. C., Lee, H. S., and Patankar, S. V., 1994b, "Treatment of Irregular Geometries Using a Cartesian Coordinates Finite-Volume Method," Numerical Heat Transfer, Part B, Vol. 26, pp. 225-235.
Chai, J. C., Parthasarathy, G., Lee, H. S., and Patankar, S. V., 1995, "Finite-Volume Radiation Heat Transfer Procedure for Irregular Geometries," AIAA Journal of Thermophysics and Heat Transfer, Vol. 9, No. 3, pp. 410-415.
Chai, J. C. and Patankar, S. V., 2000, "Finite-Volume Method for Radiation Heat Transfer," Advances in Numerical Heat Transfer, Vol. 2, Chapter 4, Taylor \& Francis, pp. 109-138.
Patankar, S. V., 1991, Computation of Conduction and Duct Flow Heat Transfer, Taylor \& Francis.

[^0]: * Denotes entries in the ADAPT subroutine.

[^1]: ${ }^{\dagger} \operatorname{KBCL1}(), \operatorname{KBCJ} 1()$ and $\operatorname{KBCM1}()$ are similar to $\mathrm{KBCI1}()$.

