
CODES FOR CHAPTER 16

P1sor.f90, P1sor.cpp
Subroutine P1sor provides the solution to equation (16.38) with its boundary condition (16.49) for a two-
dimensional (rectangular or axisymmetric cylinder) enclosure with reflecting walls and an absorbing, emit-
ting, linear-anisotropically scattering medium.

Input:
II = Number of nodes in x-direction
JJ = Number of nodes in y- or r-direction
KK = 0 for rectangular, KK=1 for cylindrical enclosure
IRE = Radiative equilibrium identifier; IRE=0: no equilibrium; IRE=1: radiative equilibrium
L = Length of enclosure (in cm)
R = Height (rectangle) or radius (cylinder) of enclosure (in cm)
EPSX = Wall emittances, EPSX(1) at X=0, EPSX(2) at X=L
EPSR = Wall emittances, EPSR(1) at Y=0 (for rectangle only), EPSY(2) at Y,r=R
SX = Sources at x-direction walls:

SX(1,j=1,2,...JJ) source at x = 0 for varying y/r-nodes
SX(2,j=1,2,...JJ) source at x = L for varying y/r-nodes
(for a standard, gray application SX = 4σT 4, in W/cm2)

SR = Sources at y, r-direction walls:
SR(1,i=1,2,...II) source at y = 0 for varying x-nodes (for rectangle only)
SR(2,i=1,2,...II) source at y, r = R for varying x-nodes
(for a standard, gray application SR = 4σT 4, in W/cm2)

KT = Absorption coefficient for all internal nodes (in cm−1)
ST = Scattering coefficient for all internal nodes (in cm−1)
A1 = Linear anisotropy factor for all internal nodes
SS = Sources for all internal nodes (in cm−1)

(for a standard, gray application SS = 4σT 4, in W/cm2)
Output:
G = Incident radiation for all internal nodes, (in W/cm2)
QX = Fluxes at x-direction walls:

QX(1,j=1,2,...JJ) flux at x = 0 for varying y/r-nodes
QX(2,j=1,2,...JJ) flux at x = L for varying y/R-nodes
(positive into positive x-direction, in W/cm2)

QR = Fluxes at x-direction walls:
QR(1,i=1,2,...II) flux at y = 0 for varying x-nodes (for rectangle only)
QR(2,i=1,2,...II) flux at y, r = R for varying x-nodes
(positive into positive r, y-direction, in W/cm2)

Calculations can be done for a gray medium or, on a spectral basis, for a nongray medium. For a gray
medium the user may either specify a temperature field (IRE=0) by supplying SS= 4n2σT 4, or radiative
equilibrium may be invoked (IRE=1), in which case the heat generation term SS= Q̇ ′′′ must be input. Note
that radiative equilibrium is not possible on a spectral level.
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Width L is broken up into II equally spaced nodes with spacing ∆x = L/(II − 1); similarly height/radius
R is broken up into JJ equally spaced nodes with spacing ∆r = R/(JJ − 1).

For each of the II×JJ nodes each of the radiative properties (κ = KT, σs = ST, A1 = A1) must be input,
as well as the local radiative source SS (= 4πIb if IRE=0, or = Q̇ ′′′ if IRE=1). In addition, for each surface
an emittance must be specified [ε(x = 0) = EPSX(1), ε(x = L) = EPSX(2); ε(y = 0)= EPSR(1) for rectangular
enclosures only, and ε(rory = R) = EPSR(2)], as well as radiation sources [4πIbw(x = 0) = SX(1), 4πIbw(x =

L) = SX(2); 4πIbw(y = 0) = SR(1) for rectangular enclosures only, and 4πIbw(rory = R) = SR(2)]. Insulated
boundaries can be treated by setting the emittance of that surface to zero. One-dimensional problems can
be treated by setting two opposing emittances to zero; for better efficiency the number of nodes in the
cross-direction should be set to one. Thus, EPSR(1) = EPSR(2) = 0 and JJ = 1 makes the problem a one-
dimensional slab, while EPSX(1) = EPSX(2) = 0 and II = 1 makes a one-dimensional cylinder.

Upon return P1sor provides the solution array G (incident radiation G for all II×JJ nodes), as well as
flux vectors QX (for radiative fluxes at the two surfaces x = 0 and x = L) and QY (radiative fluxes at y = 0
for a rectangle, and rory = R). The solution is found by successive over-relaxation, with over-relaxation
parameter OM, which is optimized by an implementation of algorithm 9-6.1 given in [1].
Code Details
For a two-dimensional problem equation (16.38) may be rewritten as
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= κ(4πIb −G) temperature specified,

= Q̇ ′′′ radiative equilibrium, (CC-16-1)

where β∗ = β − A1σs/3; KK = 0 makes it a rectangular enclosure, and KK = 1 makes it an axisymmetric
cylinder. Standard central finite differencing with equal spacing ∆r = R/(JJ − 1) and ∆x = L/(II − 1) and
λ = ∆x/∆r produces an equation for each (internal and boundary) node:

Ai jGi−1, j + Bi jGi+1, j + Ci jGi, j−1 + Di jGi, j+1 − Ei jGi j = −Fi j, (CC-16-2)

where
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Ei j =

{
3κi jβ

∗
i j∆x2 + Ai j + Bi j + Ci j + Di j temperature specified,

Ai j + Bi j + Ci j + Di j radiative equilibrium,

Fi j =

 3κi jβ
∗
i j∆x2SSi j temperature specified (SSi j = 4πIbi j),

3β∗i j∆x2SSi j radiative equilibrium (SSi j = Q̇ ′′′i j ).

Boundary conditions equation (16.49) are written as, and finite-differenced using artificial nodes (i = 0 at
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x = 0, i = II at x = L, j = 0 at r = 0 and j = JJ at r = R)

x = 0 :
∂G
∂x
− bx(1)β∗ [G − SX(1)] = 0 where bx() =

3
2

ε

2 − ε
, SX() = 4πIbw

x = L :
∂G
∂x

+ bx(2)β∗ [G − SX(2)] = 0

r = 0 :
∂G
∂r
− br(1)β∗ [G − SR(1)] = 0 (rectangular enclosure, KK = 0, only)

r = R :
∂G
∂r
− br(2)β∗ [G − SR(2)] = 0

or, with β∗ = BT

x = 0 (i = 1) : Gi−1, j −Gi+1, j + 2bx(1) ∆x BTi j
(
Gi j − SXj(1)

)
= 0

x = L (i = II) : Gi+1, j −Gi−1, j + 2bx(2) ∆x BTi j
(
Gi j − SXj(2)

)
= 0

r = 0 ( j = 1) : Gi, j−1 −Gi, j+1 + 2br(1) ∆r BTi j
(
Gi j − SRi(1)

)
= 0 (KK = 0 only)

r = R ( j = JJ) : Gi, j+1 −Gi, j−1 + 2br(2) ∆r BTi j
(
Gi j − SRi(2)

)
= 0

Eliminating the artificial nodes between internal node and boundary node equations yields the updated
values

i = 1 : A′i j = 0, B′i j = Ai j + Bi j, E′i j = Ei j + 2bx(1) ∆x BTi jAi j

F′i j = Fi j + 2bx(1) ∆x BTi jAi jSXj(1)

i = II : B′i j = 0, A′i j = Ai j + Bi j; E′i j = Ei j + 2bx(2) ∆x BTi jBi j

F′i j = Fi j + 2bx(2) ∆x BTi jBi jSXj(2)

j = 1 : C′i j = 0,D′i j = Ci j + Di j, E′i j = Ei j + 2br(1) ∆r BTi jCi j

F′i j = Fi j + 2br(1) ∆r BTi jCi jSRj(1)

j = JJ : D′i j = 0,C′i j = Ci j + Di j, E′i j = Ei j + 2br(2) ∆r BTi jDi j

F′i j = Fi j + 2br(2) ∆r BTi jDi jSRj(2)

For a cylindrical enclosure (KK = 1) the boundary condition at r = 0 (J = 1) becomes

r = 0, ( j = 1) :
∂G
∂r

= 0 or Gi, j−1 = Gi, j+1.

Also, the governing equation (CC-16-1) becomes indeterminate. Expanding the radial derivative and using
De l’Hopital’s rule, we obtain
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Thus, for KK = 1 and J = 1

Ci j = 0, Di j = 4λ2
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P1-2D.f90, P1-2D.cpp
Program P1-2D is a front end for subroutine P1sor, setting up the problem for a gray medium with spatially
constant radiative properties (dimensions, radiative properties, and sources from known temperatures); may
be used as a starting point for more involved applications. After calling P1sor the program also generates
appropriate output. As given, P1-2D simulates the case of a two-dimensional axisymmetric cylinder (KK=1)
of R = 10 cm radius and L = 20 cm length, using JJ=21 nodes in the radial direction and II=41 nodes
in the axial direction (i.e., ∆x = ∆r = 0.5 cm), with a cold (Ti j = TM = 0) gray medium, with constant
absorption and scattering coefficients (κ = σs = 0.1 cm−1, A1 = 0); bounding walls are black and cold
except for the face at x = 0, which is gray (EPSX(1)=0.5) and hot (TX(1)=2000K). Since the temperature
field is specified, we have IRE=0. Running P1-2D we find from screen output that the calculation requires
97 iterations with a residual 2-norm error of 0.1354 × 10−4.

The output is in file P1-2Dsor.dat, giving:
GENERAL DATA

************

CYLINDER RADIUS (R-DIR): 10.00

CYLINDER LENGTH (X-DIR): 20.00

TEMPERATURE AT r=R(j=J): 0.00K, EMITTANCE 1.00

TEMPERATURE AT x=0(i=1): 2000.00K, EMITTANCE 0.50

TEMPERATURE AT x=L(i=I): 0.00K, EMITTANCE 1.00

MEDIUM TEMPERATURE TM (K)

\J 1 3 5 7 9 11 13 15 17 19 21

I

1 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

3 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

5 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

7 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

9 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

11 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

13 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

15 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

17 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

19 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

21 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

23 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

25 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

27 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

29 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

31 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

33 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

35 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

37 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

39 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

41 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

INCIDENT RADIATION G (W/SQCM)

\J 1 3 5 7 9 11 13 15 17 19 21

I

1 99.6 99.4 99.0 98.3 97.1 95.5 93.1 89.7 84.7 77.0 64.0

3 76.3 76.2 75.7 75.0 73.7 72.0 69.5 65.9 60.9 53.5 42.7

5 58.3 58.1 57.7 56.9 55.7 54.0 51.6 48.3 43.7 37.6 29.6

7 44.3 44.1 43.7 43.0 41.9 40.3 38.2 35.3 31.5 26.7 20.9

9 33.5 33.4 33.0 32.4 31.4 30.0 28.2 25.8 22.8 19.2 14.9
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11 25.3 25.2 24.8 24.3 23.4 22.3 20.8 18.9 16.6 13.8 10.8

13 19.0 18.9 18.6 18.2 17.5 16.5 15.3 13.8 12.1 10.0 7.8

15 14.2 14.2 13.9 13.5 13.0 12.2 11.3 10.2 8.8 7.3 5.7

17 10.6 10.6 10.4 10.1 9.6 9.1 8.3 7.5 6.5 5.3 4.1

19 7.9 7.9 7.7 7.5 7.2 6.7 6.1 5.5 4.7 3.9 3.0

21 5.9 5.9 5.8 5.6 5.3 5.0 4.5 4.0 3.5 2.9 2.2

23 4.4 4.4 4.3 4.1 3.9 3.7 3.3 3.0 2.6 2.1 1.6

25 3.3 3.2 3.2 3.1 2.9 2.7 2.5 2.2 1.9 1.5 1.2

27 2.4 2.4 2.4 2.3 2.1 2.0 1.8 1.6 1.4 1.1 0.9

29 1.8 1.8 1.7 1.7 1.6 1.5 1.3 1.2 1.0 0.8 0.6

31 1.3 1.3 1.3 1.2 1.2 1.1 1.0 0.9 0.7 0.6 0.5

33 1.0 1.0 1.0 0.9 0.9 0.8 0.7 0.6 0.6 0.5 0.3

35 0.7 0.7 0.7 0.7 0.6 0.6 0.5 0.5 0.4 0.3 0.3

37 0.5 0.5 0.5 0.5 0.5 0.4 0.4 0.4 0.3 0.2 0.2

39 0.4 0.4 0.4 0.4 0.4 0.3 0.3 0.3 0.2 0.2 0.1

41 0.3 0.3 0.3 0.3 0.3 0.2 0.2 0.2 0.2 0.1 0.1

WALL FLUXES AT X=O AND X=L (W/SQCM)

J 1 3 5 7 9 11 13 15 17 19 21

Q 43.9 43.9 44.0 44.1 44.3 44.6 45.0 45.5 46.4 47.6 49.8

Q 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

RADIAL FLUXES TO CYLINDER WALL (W/SQCM)

I QR

1 32.0

2 25.9

3 21.3

.

.

.

Had we defined IRE=1 the same case would be calculated, but for radiative equilibrium with Q̇ ′′′ = 0 (since
TM was set to zero). This results in (now requiring 137 iterations):

GENERAL DATA

************

CYLINDER RADIUS (R-DIR): 10.00

CYLINDER LENGTH (X-DIR): 20.00

TEMPERATURE AT r=R(j=J): 0.00K, EMITTANCE 1.00

TEMPERATURE AT x=0(i=1): 2000.00K, EMITTANCE 0.50

TEMPERATURE AT x=L(i=I): 0.00K, EMITTANCE 1.00

MEDIUM TEMPERATURE TM (K)

\J 1 3 5 7 9 11 13 15 17 19 21

I

1 1611. 1610. 1606. 1600. 1592. 1579. 1563. 1540. 1510. 1466. 1393.

3 1555. 1554. 1550. 1542. 1532. 1517. 1497. 1470. 1433. 1381. 1302.

5 1499. 1497. 1493. 1484. 1472. 1455. 1432. 1402. 1361. 1306. 1228.

7 1442. 1441. 1435. 1426. 1413. 1394. 1370. 1337. 1295. 1238. 1163.

9 1386. 1384. 1379. 1369. 1355. 1335. 1309. 1276. 1233. 1177. 1105.

11 1331. 1329. 1323. 1313. 1298. 1278. 1251. 1218. 1175. 1121. 1051.

13 1277. 1275. 1268. 1258. 1243. 1223. 1196. 1163. 1121. 1068. 1002.
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15 1224. 1222. 1215. 1205. 1190. 1169. 1143. 1110. 1069. 1019. 955.

17 1172. 1170. 1164. 1153. 1138. 1118. 1093. 1061. 1021. 972. 911.

19 1122. 1120. 1114. 1104. 1089. 1069. 1044. 1013. 975. 928. 870.

21 1074. 1072. 1066. 1056. 1041. 1022. 998. 968. 931. 886. 830.

23 1027. 1025. 1019. 1009. 995. 977. 953. 924. 889. 846. 793.

25 982. 980. 974. 965. 951. 933. 911. 883. 849. 807. 757.

27 938. 936. 930. 921. 908. 891. 869. 843. 810. 771. 722.

29 895. 893. 888. 879. 867. 850. 829. 804. 773. 735. 689.

31 853. 852. 847. 838. 826. 810. 790. 766. 736. 700. 656.

33 812. 811. 806. 798. 786. 771. 752. 729. 701. 666. 624.

35 772. 770. 765. 758. 747. 732. 714. 692. 665. 633. 593.

37 730. 729. 725. 717. 707. 693. 676. 655. 630. 599. 561.

39 688. 686. 682. 675. 665. 653. 636. 617. 593. 564. 528.

41 642. 641. 637. 630. 621. 609. 594. 576. 553. 526. 493.

INCIDENT RADIATION G (W/SQCM)

\J 1 3 5 7 9 11 13 15 17 19 21

I

1 152.8 152.4 151.1 148.8 145.5 141.1 135.2 127.6 117.8 104.7 85.5

3 132.7 132.2 130.8 128.4 124.9 120.1 113.9 105.9 95.6 82.4 65.1

5 114.5 114.0 112.5 110.1 106.5 101.7 95.5 87.6 77.9 65.9 51.5

7 98.2 97.7 96.3 93.8 90.3 85.7 79.8 72.5 63.7 53.3 41.5

9 83.8 83.3 81.9 79.6 76.4 72.1 66.7 60.1 52.4 43.6 33.8

11 71.2 70.7 69.5 67.4 64.4 60.5 55.6 49.9 43.2 35.8 27.7

13 60.2 59.9 58.7 56.8 54.1 50.7 46.4 41.5 35.8 29.5 22.8

15 50.8 50.5 49.5 47.8 45.4 42.4 38.7 34.5 29.7 24.4 18.9

17 42.8 42.5 41.6 40.1 38.1 35.5 32.3 28.7 24.6 20.3 15.6

19 36.0 35.7 34.9 33.7 31.9 29.6 27.0 23.9 20.5 16.8 13.0

21 30.1 29.9 29.3 28.2 26.7 24.8 22.5 19.9 17.0 14.0 10.8

23 25.2 25.0 24.5 23.5 22.3 20.6 18.7 16.6 14.2 11.6 9.0

25 21.1 20.9 20.4 19.6 18.6 17.2 15.6 13.8 11.8 9.6 7.4

27 17.5 17.4 17.0 16.3 15.4 14.3 13.0 11.4 9.8 8.0 6.2

29 14.6 14.4 14.1 13.6 12.8 11.8 10.7 9.5 8.1 6.6 5.1

31 12.0 11.9 11.7 11.2 10.6 9.8 8.9 7.8 6.7 5.5 4.2

33 9.9 9.8 9.6 9.2 8.7 8.0 7.3 6.4 5.5 4.5 3.4

35 8.0 8.0 7.8 7.5 7.1 6.5 5.9 5.2 4.4 3.6 2.8

37 6.5 6.4 6.2 6.0 5.7 5.2 4.7 4.2 3.6 2.9 2.2

39 5.1 5.0 4.9 4.7 4.4 4.1 3.7 3.3 2.8 2.3 1.8

41 3.8 3.8 3.7 3.6 3.4 3.1 2.8 2.5 2.1 1.7 1.3

WALL FLUXES AT X=O AND X=L (W/SQCM)

J 1 3 5 7 9 11 13 15 17 19 21

Q 35.0 35.1 35.3 35.7 36.2 37.0 37.9 39.2 40.8 43.0 46.2

Q 1.9 1.9 1.9 1.8 1.7 1.6 1.4 1.2 1.1 0.9 0.7

RADIAL FLUXES TO CYLINDER WALL (W/SQCM)

I QR

1 42.7

2 37.0

.

.

.
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Finally, if we set IRE=1, EPSR=0 and JJ=1, we obtain the results for a one-dimensional slab at radiative
equilibrium:

GENERAL DATA

************

CYLINDER RADIUS (R-DIR): 10.00

CYLINDER LENGTH (X-DIR): 20.00

TEMPERATURE AT r=R(j=J): 0.00K, EMITTANCE 0.00

TEMPERATURE AT x=0(i=1): 2000.00K, EMITTANCE 0.50

TEMPERATURE AT x=L(i=I): 0.00K, EMITTANCE 1.00

MEDIUM TEMPERATURE TM (K)

\J 1

1 1829.

3 1809.

5 1788.

7 1767.

9 1745.

11 1722.

13 1698.

15 1673.

17 1646.

19 1619.

21 1590.

23 1559.

25 1527.

27 1492.

29 1454.

31 1414.

33 1369.

35 1320.

37 1264.

39 1201.

41 1124.

INCIDENT RADIATION G (W/SQCM)

\J 1

1 253.7

3 242.8

5 232.0

7 221.1

9 210.2

11 199.3

13 188.4

15 177.5

17 166.7

19 155.8

21 144.9

23 134.1

25 123.2

27 112.3

29 101.5

31 90.6

33 79.7

35 68.9

37 58.0

39 47.1
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41 36.2

WALL FLUXES AT X=O AND X=L (W/SQCM)

J 1

Q 18.2

Q 18.1

RADIAL FLUXES TO CYLINDER WALL (W/SQCM)

I QR

1 0.0

2 0.0

.

.

.

Of course, the matrix for this case could have easily been inverted by a tridiagonal matrix solver (instead of
using 181 iterations as done here), or could have been found analytically using Example 15.5 (but for a gray
wall).

Delta.f90:
Program Delta is a stand-alone program to calculate the rotation matrix ∆n

mm′(α, β, γ) required for the
boundary conditions of higher-order PN-approximations, as given by equations (16.64) through (16.67);
here set for 2l = N − 1 = 4 (P5). Results for the case of a backward rotation with −γ(= alpha) = −π/2,
−β(= beta) = π/2, −α(= gamma) = π/2 (a surface at y = const facing toward larger y, with x̄ = x) are
calculated and stored in delta.dat. For incorporation into a general PN-code the stand-alone program can
easily be converted into a subroutine calculating a single or all rotation ∆-values for a given set of angles
α, β, γ.

pnbcs.f90:
Program pnbcs is a stand-alone program to calculate the Legendre half-moments pm

n, j and coefficients
um

li , v
m
li , w

m
li , which are required for the boundary conditions of higher-order PN-approximations, as given

by equations (16.71) through (16.72). Calculations use the recursion relationships described in [2], Eqs.
(27) through (32). As provided, N = NN = 5, i.e., the pm

n, j, u
m
li , v

m
li and wm

li are calculated up to n = 5 (P5-
approximation). Output is directed to PNbc.dat, containing all the pm

n, j data for Table 16.2 (i.e., normalized
by 10−m), and the corresponding u, v, w. Higher orders may be implemented by changing NN (however,
output format would need adjustment beyond P19).
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