CODES FOR CHAPTER 19

transPN. £90

Program transPN calculates energy from a pulsed collimated laser source transmitted through an absorbing,
isotropically scattering slab as a function of time, using the P; and Pj;3 methods. Following Example
19.3 the equations for the P;- and Pj/3-approximations for a nonemitting and isotropically scattering, one-
dimensional medium, reduce to

0G  0q
e + g =—(1 - w)G + wG,, (CC-19-1)
oqg 0G
3 — = -3q, CC-19-2
Yor Tor T M ( )

where a = 1 for P and a = 1/3 for Py/3, and G and g have been normalized as G = G4/q, and g = g4/q,.
These two equations are subject to the initial and boundary conditions

r=0: G(0,7)=¢0,7) =0, (CC-19-3)
T=0: =29, 0) =G(",0), (CC-194)
T=1: +2q(t", 1) = G(t", 7). (CC-19-5)

The normalized isotropic scattering source is immediately found from equations (19.25) and (19.18) for a
nonreflecting boundary. For the top-hat profile of Example 19.3 this results in a total nondimensional pulse
energy of 7, and

Gt 1) = [H(t = 1) = H' (' =1 - 1})] " (CC-19-6)
If a clipped Gaussian source is used [1], then
t—t.\
q0(0,1) = qo [H(#) — H(t — 2tc)] exp | - ; ; (CC-19-7)
p
and the total nondimensional pulse energy is
40(0, 1) oo -\
—Bcdt = | [H{I") - H({" —21)]exp |- - dt
q0 Ip
0 0
= fexp l—( - C) }dr* = ﬁtz erf(—:). (CC-19-8)
Ip Ip
0
Thus, to run transPN with equal pulse strengths, one must use
fmH = Vrerf [i)tpc} ~ \/7_rth, (CC-19-9)
p



FIGURE 1
Time-space nodal system for transPN. £90.

the latter assuming 7. 2 21,g. For the clipped Gaussian pulse the source term then becomes

l,*

3k _ * — 2
Go(t',7) = [H( = 1) = H(E =21 — )] exp [—T - (H—T) l . (CC-19-10)
P

The hyperbolic nature of this set of equations becomes obvious, if ¢ is eliminated from them (by differenti-
ating the first with respect to * and the second with respect to 7), leading to

0G,

G-26, -0 -0, (CC-19-11)
a or*

az_G_iaz_G 1_w+1 6G+1_w
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which has a signal velocity of @ = 1/ V3a (nondimensional in terms of speed of light, c), as already indicated
in the formulation for the P, methods. Eliminating ¢ also from initial and boundary conditions gives

oG
r'=0: G@O,7)= %(0, 7)=0, (CC-19-12)
T=0: 3(GF,0) + aaG(t*,O) - 26—G(t*,0) =0, (CC-19-13)
or* or
T=1: 3 (G(t*,O) + ag—t(f(t*,O)) + 2(?9—G(t*,0) =0. (CC-19-14)
T

This second-order hyperbolic equation is readily solved by the method of characteristics [2] along the char-
acteristic lines 7 = *af*. Using subscript notation, i.e., G, = dG/0dr, etc., equation (CC-19-11) may be
rewritten as

Gu — &Gy + (1 = )G, + 367 |G, + (1 - )G - wG,| =0, (CC-19-15)

where G; = G, + 0G./0r*. Along the two characteristic lines T = +ar* we have [2]
+adG, — a*dG, + {(1 - )G, +30? [G, + (1 - )G - wG, |} dr =0 (CC-19-16)

and the total differential is
dG = Gidt* + G dT. (CC-19-17)

We will break up the thickness of the slab, L, into N, equally-spaced nodes of width Ax = L/N,, or
At = 1 /N,. In t*-7-space the characteristics then are straight lines as shown in Fig. 1, with the lines going



up to the right corresponding to the upper sign in equation (CC-19-16), and the lines going down to the right
to the lower sign. As time step At we take the time it takes to move along the characteristics from adjacent
points (n, i) and (n, i + 1) to their intersection at (n + 1,i + 1/,) as shown in the figure. During that time the
signal moves a distance +Ax/2, so that
At = At/2a. (CC-19-18)
We can finite-difference equations (CC-19-16) and (CC-19-17) along the characteristics by using d¢ =
" b~ qﬁ?‘] for the left-to-right characteristics, and d¢ = ¢ , b~ :?;11 for the right-to-left characteristics,
where ¢ stands for any of the variables 7, G, G, and G,. In the finite differencing we distinguish between

odd time steps (all nodes, such as i + 1/», are internal) and even time steps (all nodes are at integer locations,
including two boundary nodes i = 0 and i = N,).

Odd Time Steps (n odd) All new positions are at i + 1/, (i = 0,1...N, — 1); all old positions are at i
(i = 0, Ny—1) for the left-to-right characteristics, and at i+1 (i+1 = 1, N,) for the right-to-left characteristics.
Thus,

A(Gjsy, — Gri) — @*(G iy — Gug) + {(1 —w) Gy, + Gr)
2 , , AT
+302 [Giy, + Gri + (1 = )Gy, + Gi) — (G, + G - =0 (CC-19-19)

where we have used averaged values, ¢ = %( [ , T ¢;"1) for the terms within braces, and have omitted the

time superscripts, since the distinction between new and old is clear. Bringing all unknown quantities at the
new time to the left-hand side we get

ByGrisyy, = CaGrivy, + oGy, = =BuGri = CaGri = C2Gi + C3(G, ., + G, ) = EN,
i=0,N,—1, (CC-19-20)

where
A A
Bp=a+(1—w+3az)TT, Bmza—(l—w+3a/2)TT,
A A
C, = 3a%(1 - w)TT, C; = 30&»77, Cs = . (CC-19-21)

Similarly, we obtain for the right-to-left characteristics, by switching the signs in equation (CC-19-16) and
replacing i by i + 1:

ByGyivipy + CaGy vy + C2Giy,
= =BG i1 + CsGyiv1 — C2Gip1 + C3(G

’

+ G;,i+1) =E,, i=0,N,—-1. (CC-19-22)

C,i+1/2

We now have two equations in the three unknowns G, ;,1,, G .1, and G;,1,: one more relation is needed
and will come from equation (CC-19-17), which may be finite-differenced from the left or from the right as

! o At
Gi+1/2 =G;+ E(Gl‘,i+l/2 + Gt,l‘)A[ + E(GXJ"FI/Z + Gx,l‘)T, l—>r

1 L 1 At
=Gy + E(Gt,i+l/2 + Griv)DAL — E(GX,HI/Z + Gx,i+1)7a r—l (CC-19-23)



For better accuracy, we take the average, or

—%Gm% + Gy, = %(Gi +Giy) + ATI*(Gt,i + Griv1) + %T(Gx,i = Gyi+1) = Da. (CC-19-24)

Subtracting equation (CC-19-20) from (CC-19-22) leads to

Gyivyy = (E2 —E)/2C4, i=0,Ny -1, (CC-19-25)
while adding them gives

ByGy vy + CoGiyyyy = %(El + Ep) = Dy, (CC-19-26)
which, together with equation (CC-19-24) leads to

D\At* /2 + D>B D, —C»,D
Giyy = é‘zAt/*/Z " ;pp, titlh = W% i=0,N,—1.

Even Time Steps (» even) Even time steps are a little more difficult to handle, because two of the nodes
lie on the boundaries, and for them the boundary conditions must be invoked. Internal nodes, on the other
hand, are the same as those for odd n, except that nodes are displaced by half a node. Replacing every i by
i — 1/, we obtain

Dy - oDy

Gii=(Ey—E/2Cy, Gij= ——""——,
X,i ( 2 1)/ 4 t,i C2At*/2 n Bp

_ D]At*/2+Dng.

= ; = 1,N, - 1, CC-19-27
‘T TCAr2+ B, e ( )
where
E\ = =ByGip, = CaG i, =~ C2G_y + C3(G; + G, )
Ey = =BuGiipyp + CaGipy, = OG0 + C3(G;’i + G;,i+1/z)

1
Dy = E(El + E»)

At At
Dy = (G, + Gy + T(Gt,i—‘/z +Gripip) + ?(Gx,i—]/z = Guivip)

At the left boundary, i = 0, equation (CC-19-20) is not valid and must be replaced by the boundary condition,
slightly rewritten as

3 1

Gx,,' = EGl + ﬁ Gt,i- (CC-19-28)

Sticking this into equation (CC-19-22) (with i + 1/, replaced by i) gives

Cy 1 3
fiGi+ £Gi=Ey;  fi=By+ 7 = By+ 5 =Gt G (CC-19-29)
Also, for the total derivative we can only use the » — [ form, or
1 L 1 At

Gi=Gjy, + E(Gt,i + Gyipip) AL — E(Gx,i + Gx,i+1/2)7a (CC-19-30)

or, after eliminating G, ; through equation (CC-19-28)

At A 3A7
-

G+ f1Gi=Dy, fr=——-—; fo=14+—7, (CC-19-31)
8a 2 8



and, thus,
_ fEx—=fiDy _ hDy - fuEs

Gi = Bh-Afk" " BA-fifs’

(CC-19-32)
and G, ; from equation (CC-19-28).

Similarly, for i = N, equation (CC-19-22) is not valid and must be replaced by the boundary at 7 = 7,
and for the total derivative the [ — r version must be used, leading to very similar expressions.

Finally, transmissivity and reflectivity of the slab are simply the absolute value of the nondimensional
fluxes at the boundaries, i.e.,

Reflectivity = |¢(#*,0| = %G(r*, 0)
Transmissivity = q(t*, 1) + q.(t*,71) = %G(z‘*,q) +G.(t*, Tp). (CC-19-33)
Input:
Nx = Number of equally-spaced nodes across slab,
a = P,-approximation switch: a = 1 for P-approximation, a = 1/; for P} 3-approximation,
L = Thickness of slab, in m,
beta = Extinction coefficient 3, in m~!,
omga = single scattering albedo, w,
tmax = Maximum #},,, to be considered in calculation,
tps = Total nondimensional pulse energy,
tme = Starting time for calculation; tme = 0 will start top-hat pulse at t* = 0, tme = —tps/2 will
center top-hat pulse at * = 0, etc.
tc,tp = Pulse parameters for clipped-Gaussian pulse; note that tp = tps/ v/r results in a total pulse
energy of tps (i.e., the same as for the top-hat pulse).
Output:

For every even time step the program prints out the value for tme = ¢*, Transmissivity and Reflectivity as
defined in equation (CC-19-33). Total pulse energy, total time integrated reflectivity and transmissivity are
also printed out, which — for w = 1 — gives a check of truncation error and the proper choice for tmax to
simulate the entire pulse.

Example: As an example we will analyze a slab of 1 m width using the Pj,3-approximation (a = /),

with an extinction coefficient of 8 = 5m™' (leading to an optical thickness of 7; = 5), and a scattering
albedo of w = 1 (or 100%). Thus, we call the output file transP3rd-5-100.dat. We will use a top-hat
laser pulse centered at z = 0, with a nondimensional pulse length of 7, = 0.3. Finally, we will use a spatial

resolution of 200 nodes and, since it takes the signal 5 nondimensional time units to penetrate the slab and
pure scattering will bounce around the beam for much longer, we choose a maximum #* of 80. Thus, the
beginning of the program looks as follows: (i) in the fifth line we have set Nx=200, (ii) under “pulse shape”
we have uncommented the 4 ’top-hat’ lines, and (iii) we have fashioned the numbers below ‘Input data’ to
fit our needs:

program transPN
| Program to calculate energy transmitted as a function of time
! from a pulsed collimated laser source, through absorbing-scattering slab,
! using P1 and P1/3

IMPLICIT NONE

INTEGER, PARAMETER :: Nx=200

INTEGER :: i,n

DOUBLE PRECISION :: L,tp,tps,beta,omga, taul,dx,dt,trmsv,reflc,Bp,Bm, tme, tc
DOUBLE PRECISION i G(®:Nx),Gx(0:Nx),Gt(0:Nx),G5(0:Nx),Gx5(0:Nx),Gt5(0:Nx)
DOUBLE PRECISION :: alf,cl,c2,c3,c4,Gc,Ge5,Gep,Gep5,Heav,y,E1,E2,D1,D2,£f1,£2,£3,£f4

DOUBLE PRECISION 11 tmax,a,sumpls,sumtrn, sumref



Heav (y)=FLOAT(INT(1.+.5%y/(abs(y)+1.d-15)))

(R w Pulse shape ** 3

! uncomment only one set of laser data below!!

! the following 4 lines simulate a top hat laser starting at n*dt=0
Gc(n,i)=(Heav(n*dt-i*dx)-Heav(n*dt-i*dx-tps))*exp(-i*dx)
Ge5(n,i)=(Heav(n*dt-(i+.5)*dx)-Heav(n*dt-(i+.5) *dx-tps)) *exp(- (i+.5)*dx)
Gep(n,i)=Gc(n,i)
Gep5(n,i)=Gc5(n,i)

! the following 6 lines simulate a clipped Gaussian laser centered at n*dt=tc

! Ge(n,i)=exp(-i*dx-((n*dt-i*dx-tc)/tp)**2) &

! *(Heav(n*dt-i*dx)-Heav(n*dt-i*dx-2.*tc))

! Gep(n,i)=Gc(n,i)*(1.-2.*a*(n*dt-i*dx-tc) /tp**2)

! Gec5(n,i)=exp(-(i+.5)*dx- ((n*dt-(i+.5)*dx-tc)/tp)**2) &

1

1

1

1

*(Heav(n*dt-(i+.5)*dx)-Heav(n*dt-(i+.5)*dx-2.%tc))
Gep5(n,i)=Gc5(n,i)*(1.-2.*a*(n*dt-(i+.5) *dx-tc) /tp**2)

s

Fededk e

Output file
open(unit=8,file="transP3rd-5-100.dat’,status="unknown’)

! Tl dedededededededhhhk Input data Fededededededededede N f e ffdeddeddddddd e ffddddd
a=1.d0/3.d® ! =1 for P1, =1/3 for P1/3 approximation
L=1. I'm
beta=5. 1'1/m
omga=1
tmax=80. ! maximum t* to be considered

! pulse data: make sure to uncomment only 1 starting time "tme"
! pulse width for top-hat laser

tps=0.3 ! total pulse duration = total pulse power

tme=-tps/2. ! non-zero value moves beginning of pulse; -tps/2 centers pulse at 0
| pulse shape for clipped Gaussian laser

tc=0.5

tp=tps/1.77245d0 ! total pulse power/sqrt(pi)
! tme=-tc

| Fededededededededededededededed End Of input data dedededededededededededededededededededededededededeededededehd

This leads to the following results stored in:
VARIABLES = tme,trmsv,reflc

zone
-0.125 0.0000E+00 0.2536E-03
-0.100 0.0000E+00 0.8391E-03
-0.075 0.0000E+00 0.1675E-02
-0.050 0.0000E+00  0.2744E-02
-0.025 0.0000E+00 0.4027E-02
0.000 0.0000E+00 0.5507E-02
0.025 0.0000E+00 0.7167E-02
0.050 0.0000E+00 0.8993E-02
0.075 0.0000E+00 0.1097E-01
0.100 0.0000E+00 0.1308E-01
0.125 0.0000E+00 0.1533E-01
0.150 0.0000E+00 0.1768E-01
0.175 0.0000E+00 0.2012E-01
0.200 0.0000E+00 0.2237E-01
0.225 0.0000E+00 0.2444E-01
0.250 0.0000E+00 0.2632E-01
0.275 0.0000E+00 0.2804E-01
0.300 0.0000E+00 0.2960E-01
0.325 0.0000E+00 0.3103E-01
0.350 0.0000E+00 0.3232E-01
0.375 0.0000E+00 0.3348E-01
0.400 0.0000E+00 0.3453E-01



L — I — I — R — R R A A — I — N — I — A A~ A — = A= A — A — N — I — I — A~ ]

VIRV, IV IV, I RV IV IRV RNV, RNV, RNV, RNV, RV [N GO N O NN NG QR NG QY SO NG O NSO SO NI O NI

.425
.450
.475
.500
.525
.550
.575
.600
.625
.650
.675
.700
.725
.750
775
. 800
.825
.850
.875
.900
.925
.950
.975
.000

.500
.525
.550
.575
.600
.625
.650
.675
.700
.725
.750
775
.800
.825
.850
.875
.900
.925
.950
.975
.000
.025
.050
.075
.100
.125
.150
.175
.200
.225
.250
.275
.300

== — A A A = A — N A = A — A A A — A — A A= A — = A — A — A= I~

(= — I — R A A = I — I — R R — I — A A N I — I — I — I — R — I — R — R = A = I — I — R — I — N = I~

.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00

.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.6893E-02
.7201E-02
.7507E-02
.7811E-02
.8114E-02
.8417E-02
.8718E-02
.9019E-02
.9319E-02
.9618E-02
.9917E-02
.1022E-01
.1052E-01
.3921E-02
.3912E-02
.3905E-02
.3899E-02
.3895E-02
.3892E-02

= = — A A A = I — I — R A A — I — I — I — I — R = A = I — A — A= I~

(== — A A A = I — I — R A A = I — N A = A — A A A I — I — N — I A AN — A — = A — A — A= I~

.3548E-01
.3633E-01
.3708E-01
.3775E-01
.3835E-01
.3887E-01
.3932E-01
.3971E-01
.4004E-01
.4032E-01
.4055E-01
.4074E-01
.4088E-01
.4098E-01
.4105E-01
.4109E-01
.4109E-01
.4107E-01
.4102E-01
.4095E-01
.4086E-01
.4074E-01
.4061E-01
.4046E-01

.1518E-01
.1509E-01
.1501E-01
.1492E-01
.1484E-01
.1476E-01
.1468E-01
.1459E-01
.1451E-01
.1443E-01
.1436E-01
.1428E-01
.1420E-01
.1412E-01
.1405E-01
.1397E-01
.1390E-01
.1382E-01
.1375E-01
.1368E-01
.1361E-01
.1353E-01
.1346E-01
.1339E-01
.1332E-01
.1326E-01
.1319E-01
.1312E-01
.1305E-01
.1299E-01
.1292E-01
.1285E-01
.1279E-01



(S A B O BV, B, B, B e, |

79.
79.
79.
79.
80.
80.

O 00 00 00 00O 00 00 00 00 00 00 00 0O 0O 00 00 CO 00 00 00 00 00 0O 0O 00 OO0 OO0 00 00 00 0O 0O 0O 00 00 ©0 0 0 0O O

.325
.350
.375
.400
.425
.450
.475
.500

.000
.025
.050
.075
.100
.125
.150
.175
.200
.225
.250
.275
.300
.325
.350
.375
.400
.425
.450
.475
.500
.525
.550
.575
.600
.625
.650
.675
.700
.725
.750
.775
. 800
.825
.850
.875
.900
.925
.950
.975
.000

900
925
950
975
000
025

(= — I — A A A A A A A= A I A= N A A = A A A = A A= N~ A AN — A~ A A= N — = A= A — N = I — A= I — I~ 1] (=N — I — I — I — I — I I~

(=N — I — I — = I~

.3891E-02
.3891E-02
.3892E-02
.3893E-02
.3896E-02
.3899E-02
.3904E-02
.3909E-02

.4665E-02
.4667E-02
.4669E-02
.4671E-02
.4673E-02
.4674E-02
.4676E-02
.4677E-02
.4679E-02
.4680E-02
.4681E-02
.4682E-02
.4683E-02
.4684E-02
.4685E-02
.4685E-02
.4686E-02
.4686E-02
.4687E-02
.4687E-02
.4687E-02
.4687E-02
.4687E-02
.4687E-02
.4687E-02
.4687E-02
.4686E-02
.4686E-02
.4685E-02
.4685E-02
.4684E-02
.4683E-02
.4682E-02
.4681E-02
.4680E-02
.4679E-02
.4678E-02
.4677E-02
.4675E-02
.4674E-02
.4673E-02

.1443E-04
.1440E-04
.1437E-04
.1434E-04
.1431E-04
.1428E-04

(= I I — R A = A N A A= A I A N — A A = = N A = A A= N — A A= A — N A= N — = A= A — N = I — I — I~ I~ 1] (=N — I — I — R — I — I I~

(=N — I — I — = I~

.1272E-01
.1266E-01
.1260E-01
.1253E-01
.1247E-01
.1241E-01
.1235E-01
.1229E-01

.8036E-02
.8006E-02
.7977E-02
.7948E-02
.7919E-02
.7890E-02
.7861E-02
.7833E-02
. 7804E-02
.7776E-02
.7748E-02
.7720E-02
.7693E-02
.7665E-02
.7638E-02
.7611E-02
.7584E-02
.7557E-02
.7530E-02
.7504E-02
.7477E-02
.7451E-02
.7425E-02
.7399E-02
.7373E-02
.7348E-02
.7322E-02
.7297E-02
.7272E-02
.7247E-02
.7222E-02
.7197E-02
.7173E-02
.7148E-02
.7124E-02
.7100E-02
.7076E-02
.7052E-02
.7028E-02
.7004E-02
.6981E-02

.1431E-04
.1428E-04
.1425E-04
.1422E-04
.1419E-04
.1416E-04



Total transmission: 8.525E-02
Total reflection: 2.394E-01
Total trans+reflec: 3.246E-01
Total pulse enrg: 3.063E-01

Note that the transmissivity remains O until #* = 4.85, when the beginning of the pulse has reached the
opposite end by direct travel, and has its maximum at around ¢* =~ 8.6 (while the reflectivity peaks around
t* ~ (0.8. Note that, for the present case of conservative scattering w = 1, the sum of transmissivity and
reflectivity should equal the total pulse energy, or 0.3 (= #,)). The departures are due to the relatively coarse
grid and the nonconservative nature of the P -approximation.
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