
CODES FOR CHAPTER 21

mocacyl.f, rnarray.f
Program mocacyl is a Monte Carlo routine for a nongray, nonisothermal, isotropically scattering medium
confined inside a two-dimensional, axisymmetric cylindrical enclosure bounded by gray, diffusely emit-
ting and reflecting walls. Temperature and radiative properties are assumed known everywhere inside the
enclosure and along the walls. Requires use of program rnarray to set up random number relationships
(locations and wavenumbers of emission vs. random numbers). Calculates local radiative fluxes to the walls
qR
w. mocacyl.f is supplied in two slightly different versions: mocacyl_std.f uses standard Monte Carlo

for absorption, i.e., an absorption length is picked from equation (21.17) and the bundle is traced until this
point is reached (and its energy is deposited at that point) or to a point on a wall, where it is absorbed (i.e.,
picking a random number Rα < α), whichever comes first. In the other version, mocacyl_ep.f, the energy
partitioning scheme of Sections 8.7 and 21.7 is employed, i.e., the bundle’s energy is gradually attenuated by
absorption along its path, and by the fraction α, whenever the bundle hits (and is reflected from) a wall, until
the bundles energy becomes negligible. This method is somewhat more expensive per bundle, but should
in many instances give converged results with a lot less bundles. At the present time only mocacyl_std.f
also calculates the internal radiative source −∇ · qR in addition to wall fluxes.
The package consists of the following files:

• the main programs mocacyl_std.f and mocacyl_ep.f ,

• the program preparing random number relationships for medium emission, rnarray.f,

• file mocasub.f, which contains simple versions of subroutine PROPS and function ABSCO, as well as
a poor man’s random number generator called RNUM, all of which the user can (and should) replace,

• a file splines.f for monotonic splines,used by both mocacyl.f and rnarray.f, and

• sample output files datlam.dat and results.dat.

Program rnarray
This program prepares random number relationships for photon emission locations within the cylindrical
medium, using equations (21.9) and (21.11).
Input:
NRP = Number of radial nodes for medium emission random number relationships
NZP = Number of axial nodes for medium emission random number relationships
NNP = Number of random numbers for medium emission relationships
RL = Radius of cylinder, (cm)
ZL = Length of cylinder, (cm)
AN = Refractive index of medium (AN=1.0 for gases)
STN = Refractive index of soot
STK = Absorptive index of soot
IGRAY = Gray/nongray medium switch: IGRAY=0 nongray, IGRAY=1 gray (ignoring contribution from

gases; absorption coefficient = PAC)

1



2

LU = Logical unit number for output: LU=6 sends output to screen, other (legal) values send output
to file datlam.dat

Output:
File datlam.dat contains random number relationships generated by RNARRAY:
ETOTAL = Total energy emitted (per unit time) by entire volume, in W
PLMCL(I),I=1,NZP = Planck-mean absorption coefficient along centerline, in cm−1

RRA(J),J=1,NNP = Emission radial location as f (random#), in cm
ZR(K,J),K=1,NRP,J=1,NNP = Emission axial location as f (r, random#), in cm
WVE2(K,I,J),K=1,NRP,I=1,NZP,J=1,NRNP1 = Emission wavelength as f (r, z, random#) (IGRAY=0

only), in µm
These arrays are used by mocacyl.f to determine emission location and wavelength, using single (r),
double (z), and triple (λ) linear interpolation between tabulated values.

Note: this program requires two user-supplied subroutines, SUBROUTINE PROPS and FUNCTION ABSCO.
Subroutine PROPS(R,Z,T,SVF,PCO2,PH2O,PAC,PSC), upon inputting radial position R (in cm) and axial
position Z (in cm), must return local values of T (temperature in K), SVF (soot volume fraction, –), PCO2 (par-
tial pressure of CO2, in bar), PH2O (partial pressure of H2O, in bar), PAC (nonsoot particle background ab-
sorption coefficient, in cm−1), and PSC (nonsoot particle background scattering coefficient, in cm−1). As pro-
vided here, the subroutine produces a uniform field, i.e., SVF=0., T=1000., PH2O=.1, PCO2=.1, PAC=.01,
PSC=0.

Function ABSCO(SVF,PCO2,PH2O,PAC,W,T), upon inputting SVF (soot volume fraction, –), PCO2 (partial
pressure of CO2, in bar), PH2O (partial pressure of H2O, in bar), PAC (nonsoot particle background absorp-
tion coefficient, in cm−1), W (wavelength in µm), and T (temperature in K), must return ABSCO, the absorption
coefficient of the medium (in cm−1). As provided, function ABSCO calculates the gas absorption coefficient
from the wide-band model [with an approximate evaluation of α(T )/α0 in equation (11.144)] assuming
strong overlap (β→ ∞), and the soot absorption coefficient is calculated from equation (12.123).
Function ABSCO should return ABSCO=PAC if W < 0 (gray medium). Both, PROPS and ABSCO, must contain
the common statement line COMMON RL,ZL,AN,STN,STK,NRR,NZL,NRN.

Program mocacyl
Program mocacyl requires the following input:
NRP = Number of radial nodes for medium emission random number relationships
NZP = Number of axial nodes for medium emission random number relationships
NNP = Number of random numbers for medium emission relationships
NR = Number of radial nodes for surface flux calculations
NZ = Number of axial nodes for surface flux calculations
T3(NZ) = Temperature of liner wall (r = R), (K)
EPS(3) = Surface emittances: EPS(1)=inlet, EPS(2)=exit, EPS(3)=liner
RL = Radius of cylinder, (cm)
ZL = Length of cylinder, (cm)
AN = Refractive index of medium (AN=1.0 for gases)
STN = Refractive index of soot
STK = Absorptive index of soot
NTOTAL = Total number of photon bundles emitted from medium (number of bundles for surface emission

are chosen automatically as function of NTOTAL)
IGRAY = Gray/nongray medium switch: IGRAY=0 nongray, IGRAY=1 gray (ignoring contribution from

gases and soot; absorption coefficient = PAC)
IWALL = Wall emission switch: IWALL=0 only considers medium emission; IWALL=1 also considers

surface emission
LU = Logical unit number for output: LU=6 sends output to screen, other (legal) values send output

to file results.dat
File datlam.dat Contains random number relationships generated by rnarray
Note: The program does not check for consistency of datlam.dat, i.e., whether identical input values
have been chosen in both rnarray and mocacyl!



3

Output:
Upon output relevant input data are displayed, as well as
QW(1,1..NR) = Axial radiative heat flux for NR radial nodes at inlet (W/cm2)
QW(2,1..NR) = Axial radiative heat flux for NR radial nodes at exit (W/cm2)
QW(3,1..NZ) = Radial radiative heat flux for NZ axial nodes at liner (W/cm2)
Note: QW > 0 implies that the flux goes into wall, while for QW < 0 the flux is out of the wall.
Example:
We will use routines PROPS and ABSCO as provided, and also the input data as stated in mocacyl (and similar
in rnarray):
C C GENERAL DATA C C T3=liner temperature (K),

EPS=emittances(inlet,exit,liner), C RL=radius (cm), ZL=length (cm),

AN=refractive index of medium (-), C STN= soot refractive index, STK= soot

absorptive index, C NRR=# radial nodes, NZL=# axial nodes, NRN=# wavelength

nodes C

DATA T3/7*1000./

DATA EPS/1.,1.,.5/

RL=10.

ZL=10.

TW0=1000.

TWL=0.

AN=1.

STN=1.89

STK=0.92

NTOTAL=500000

IGRAY=0

IWALL=1

LU=7

This models an isothermal, cylindrical, nongray medium with temperatures of 1000 K for medium, inlet
and liner, only the exit being cold at 0 K. For the simulation we will use 500,000 bundles for medium
emission, and corresponding numbers for surface emission (such that all bundles carry roughly identical
energies). Executing rnarray produces the required data file datlam.dat and, running mocacyl, the
results are contained in results.dat as:

GENERAL DATA

************

BURNER RADIUS 10.00 CM

BURNER LENGTH 10.00 CM

EMITTANCES: INLET: 1.00

EXIT: 1.00

LINER: 0.50

REFRACTIVE INDEX 1.00

NUMBER OF BUNDLES: MEDIUM: 500000

INLET: 474561

EXIT: 1

LINER: 474562

WALL TEMPERATURES (DEG.K)

TW0 TWL T3:I= 1 2 3 4 5 6 7

1000. 0. 1000. 1000. 1000. 1000. 1000. 1000. 1000.

PROPERTY VALUES ALONG CENTER LINE:



4

I Z T FR PCO2 PH2O K-PL ABSC SCAT

CM DEG.K % ATM ATM CM-1 CM-1 CM-1

1 0.0 1000. 0.00 0.100 0.100 0.032 0.010 0.000

2 0.5 1000. 0.00 0.100 0.100 0.032 0.010 0.000

3 1.0 1000. 0.00 0.100 0.100 0.032 0.010 0.000

4 1.5 1000. 0.00 0.100 0.100 0.032 0.010 0.000

5 2.0 1000. 0.00 0.100 0.100 0.032 0.010 0.000

6 2.5 1000. 0.00 0.100 0.100 0.032 0.010 0.000

7 3.0 1000. 0.00 0.100 0.100 0.032 0.010 0.000

8 3.5 1000. 0.00 0.100 0.100 0.032 0.010 0.000

9 4.0 1000. 0.00 0.100 0.100 0.032 0.010 0.000

10 4.5 1000. 0.00 0.100 0.100 0.032 0.010 0.000

11 5.0 1000. 0.00 0.100 0.100 0.032 0.010 0.000

12 5.5 1000. 0.00 0.100 0.100 0.032 0.010 0.000

13 6.0 1000. 0.00 0.100 0.100 0.032 0.010 0.000

14 6.5 1000. 0.00 0.100 0.100 0.032 0.010 0.000

15 7.0 1000. 0.00 0.100 0.100 0.032 0.010 0.000

16 7.5 1000. 0.00 0.100 0.100 0.032 0.010 0.000

17 8.0 1000. 0.00 0.100 0.100 0.032 0.010 0.000

18 8.5 1000. 0.00 0.100 0.100 0.032 0.010 0.000

19 9.0 1000. 0.00 0.100 0.100 0.032 0.010 0.000

20 9.5 1000. 0.00 0.100 0.100 0.032 0.010 0.000

21 10.0 1000. 0.00 0.100 0.100 0.032 0.010 0.000

RADIAL HEAT FLUXES AT NODES I (W/SQCM)

I Z QWALL

CM W/SQCM

1 0.7 -0.4

2 2.1 -0.4

3 3.6 -0.5

4 5.0 -0.7

5 6.4 -0.8

6 7.9 -1.0

7 9.3 -1.2

AXIAL HEAT FLUXES AT NODES J (W/SQCM)

J 1 2 3 4 5

Q0 -2.4 -2.3 -2.1 -1.9 -1.6

QL 5.9 5.8 5.8 5.6 5.4

Note that the fluxes for the three hot walls are slightly negative (surfaces are losing heat, while the cold
exit surface experiences strong positive heat fluxes. Also note that the code does not provide error estimates,
i.e., it should be run for different values of NTOTAL to get an idea of variances.

FwdMCcs.f90

Program FwdMCcs is a standard forward Monte Carlo code for a narrow collimated, cylindrical beam (cen-
tered at x = y = 0) penetrating through a nonabsorbing, isotropically scattering slab, calculating the flux
onto a small, directionally-selective detector located at x0 < x < x0 + dx, 0 < y < dy, z = L, as shown
in Fig. 21-6 and described in Example 21.3. (FwdMCck1 and FwdMCck2 are forward Monte Carlo codes for
the same problem, but also allow for absorption in the medium; FwdMCck1 uses standard ray tracing, while
FwdMCck2 uses energy partitioning; see Example 21.4.)



5

Input:
L = thickness of layer, L (m);
sig = scattering coefficient of medium, σs (m−1);
QT = total energy contained in collimated beam, (W);
R = radius of collimated beam, R (m);
x0 = displacement of left end of detector from center of beam, x0 (m);
dx = width of detector in x-direction, (m);
dy = width of detector in y-direction, (m);
thd = opening angle of detector, θmax (degrees);
N = minimum number of photon bundles to be traced for each “sample;”
numsmpl = number of numerical “samples” collected for the determination of a variance;
stddevmax = maximum relative variance allowed for the calculation of qdet, the flux hitting detector,

= σm/qdet from equation (8.8).
The values for input parameters are assigned in sequence near the top of the program. As distributed, a

1 m thick layer with a scattering coefficient of σs = 1m−1 is modeled, for a 10 cm radius beam of 100 W
strength. The (rather large) detector is 10 cm × 10 cm displaced by 20 cm from the center of the beam, and
has an acceptance angle of 10◦. numsmpl= 10 numerical samples will be taken, initially each containing
N= 100, 000 bundles, to be increased (if necessary) until the relative variance falls below stddevmax= 0.05
or 5%.

open(unit=8,file=’fwdmccs.dat’,status=’unknown’)

write(8,1)

write(*,1)

1 format(’no. of bundles q_det variance rel.var.(%)’)

!

L=1. ! m

sig=1. ! 1/m

QT=100. ! W

R=.1 ! m

x0=.2 ! m

dx=0.10 ! m

dy=0.10 ! m

thd=10. ! deg

N=100000

numsmpl=10

stddevmax=0.05

!

The program consists of two major parts. The first is a double loop over numsmpl*N photon bundles,
tracing their paths, as described in Example 21.3. In the second part an average value for the detector
irradiation is determined, as well as its relative standard deviation, based on the numsampl data points. If
the relative standard deviation is too large (stddev>stddevmax) the numsampl samples of qdet (based on
N bundles) are combined into 1/2×numsampl samples (with 2N bundles each), the number of bundles is
doubled to 2N , and an additional 1/2×numsampl samples are obtained (with 2N bundles each). Thus, after
going through the bundle-tracing part one more time, we have again numsmpl samples, but each based on
twice as many photon bundles. This procedure is repeated until the convergence criteria are met.

For the given case that leads to the following output, stored in fwdmccs.dat,
no. of bundles q_det variance rel.var.(%)

1000000 0.3200E-02 0.4899E-03 15.31

2000000 0.3500E-02 0.3944E-03 11.27

4000000 0.3100E-02 0.3055E-03 9.86

8000000 0.2963E-02 0.1468E-03 4.95

i.e., for this large detector 8,000,000 photon bundles are needed to attain a relative variance of less than 5%.
If a smaller detector was chosen, the necessary number of bundles would be roughly inversely proportional
to the detector area!



6

FwdMCck1.f90

Program FwdMCck1.f90 is identical to FwdMCcs.f90, except that the medium also absorbs radiation (be-
sides isotropically scattering it). Therefore, the input is:

Input:
L = thickness of layer, L (m);
sig = scattering coefficient of medium, σs (m−1);
kap = absorption coefficient of medium, κ (m−1);
QT = total energy contained in collimated beam, (W);
R = radius of collimated beam, R (m);
x0 = displacement of left end of detector from center of beam, x0 (m);
dx = width of detector in x-direction, (m);
dy = width of detector in y-direction, (m);
thd = opening angle of detector, θmax (degrees);
N = minimum number of photon bundles to be traced for each “sample;”
numsmpl = number of numerical “samples” collected for the determination of a variance;
stddevmax = maximum relative variance allowed for the calculation of qdet, the flux hitting detector,

= σm/qdet from equation (8.8).
As distributed, a 1m thick layer with a scattering coefficient of 1m−1 and an absorption coefficient of

κ = 1m−1 is modeled, for a 10 cm radius beam of 100 W strength. The (rather large) detector is 10 cm ×
10 cm displaced by 20 cm from the center of the beam, and has an acceptance angle of 10◦. numsmpl=
10 numerical samples will be taken, initially each containing N = 100, 000 bundles, to be increased (if
necessary) until the relative variance falls below stddevmax = 0.05 or 5%:

open(unit=8,file=’fwdmck1.dat’,status=’unknown’)

write(8,1)

write(*,1)

1 format(’no. of bundles q_det variance rel.var.(%)’)

!

L=1. ! m

sig=1. ! 1/m

kap=1. ! 1/m

QT=100. ! W

R=.1 ! m

x0=.2 ! m

dx=0.10 ! m

dy=0.10 ! m

thd=10. ! deg

N=100000

numsmpl=10

stddevmax=0.05

!

For the given case that leads to the following output, stored in fwdmck1.dat:
no. of bundles q_det variance rel.var.(%)

1000000 0.1100E-02 0.2333E-03 21.21

2000000 0.7500E-03 0.2007E-03 26.76

4000000 0.6500E-03 0.1067E-03 16.42

8000000 0.6875E-03 0.7512E-04 10.93

16000000 0.6438E-03 0.4375E-04 6.80

32000000 0.6781E-03 0.4396E-04 6.48

64000000 0.6766E-03 0.3424E-04 5.06

128000000 0.7102E-03 0.3011E-04 4.24

i.e., 128,000,000 photon bundles are required, or – making allowance for the slightly different variance –
about 10 times as many as for the purely scattering medium. Clearly, with a minimum optical thickness



7

of
√

12 + 0.22 = 1.02 many photon bundles, that would otherwise be scattered toward the detector, become
absorbed first.
FwdMCck2.f90
Program FwdMCck2.f90 is identical to FwdMCck1.f90, except that energy partitioning is employed, i.e.,
photon bundles are emitted and have paths identical to the simulation in FwdMCcs.f90, but the bundles’
strengths are attenuated exponentially along their way according to Beer’s law. Input is identical to FwdMCck1.f90,
as are the as-distributed input parameters. However, the output (stored in fwdmck2.dat) now looks like this:
no. of bundles q_det variance rel.var.(%)

1000000 0.9003E-03 0.1610E-03 17.89

2000000 0.9382E-03 0.1109E-03 11.82

4000000 0.8160E-03 0.8774E-04 10.75

8000000 0.7927E-03 0.3710E-04 4.68

i.e., FwdMCck2.f90 converges at he same rate as the no-absorption case FwdMCcs.f90, demonstrating the
power of the energy partitioning approach.

FwdMCps.f90

Program FwdMCps is a standard forward Monte Carlo code for radiative energy emitted by a point source
penetrating through a nonabsorbing, isotropically scattering slab, calculating the flux onto a small, directionally-
selective detector. It is a variation of FwdMCcs.f90, considering a purely scattering slab, but replacing the
collimated beam by an internal point source at x = 0, y = 0, z = zps. Thus, the simulation is almost identical
to that of FwdMCcs.f90, except that all photon bundles are now emitted from a single point, but into random
directions. The input is also identical to FwdMCcs.f90, with R replaced by zps:

Input:
L = thickness of layer, L (m);
sig = scattering coefficient of medium, σs (m−1);
QT = total energy contained in point source, (W);
zps = z-coordinate of point source, (m);
x0 = displacement of left end of detector from point source, x0 (m);
dx = width of detector in x-direction, (m);
dy = width of detector in y-direction, (m);
thd = opening angle of detector, θmax (degrees);
N = minimum number of photon bundles to be traced for each “sample;”
numsmpl = number of numerical “samples” collected for the determination of a variance;
stddevmax = maximum relative variance allowed for the calculation of qdet, the flux hitting detector,

= σm/qdet from equation (8.8).
The as-delivered case also is the same as for FwdMCcs.f90, with the 10 cm-radius beam replaced by a

points source at zps = 0.5(m). Thus, the input section reads:
open(unit=8,file=’fwdmcps.dat’,status=’unknown’)

write(8,1)

write(*,1)

1 format(’no. of bundles q_det variance rel.var.(%)’)

!

L=1. ! m

sig=1. ! 1/m

QT=100. ! W

zps=.1 ! m

x0=.2 ! m

dx=0.10 ! m

dy=0.10 ! m

thd=10. ! deg

N=100000

numsmpl=10

stddevmax=0.05



8

!

The resulting output, stored in fwdmcps.dat, is:
no. of bundles q_det variance rel.var.(%)

1000000 0.5000E-02 0.7303E-03 14.61

2000000 0.4550E-02 0.4561E-03 10.02

4000000 0.4800E-02 0.3958E-03 8.25

8000000 0.4850E-02 0.3226E-03 6.65

16000000 0.4850E-02 0.2143E-03 4.42

RevMCcs.f90

This program is a reverse or backward Monte Carlo implementation of the problem solved by FwdMCcs.f90,
i.e., a narrow collimated beam hitting a purely scattering slab, and scattered toward a small, directionally-
selective detector. Input and output are identical to FwdMCcs, except that the default minimum number of
photon bundles is much smaller, here set to N=1000.

Again, the program consists of two parts, a double loop tracing over numsmpl×N photon bundles, and a
module calculating detector power and its standard deviation. Tracing follows the rules of equation (21.84),
and the detector flux from equation (21.79) (with ε

′

λ = 1 for the black detector). The coding is self-
explanatory except when, between two scattering events, the bundle starts and ends outside the collimated
beam column, x2 + y2 = r2 > R2. There are four different possibilities, as illustrated in the sketch below:

( )x ,yi i

ca
se

(1
)

ca
se

(3
)

ca
se

(2
)

ca
se

(4
)

R

Öd

( )x ,yi i

( )x ,yi i

( )x ,yi i

( )x ,ye e

( )x ,ye e

( )x ,ye e

( )x ,ye e

(0,0)

1. The path of the bundle misses the beam altogether,

2. the path intercepts the beam, but the bundle is moving away from the beam,

3. the path intercepts the beam and moves toward it, but is scattered anew before reaching it, and finally

4. the bundles path intersects the beam.

These four possibilities are tested by calculating the partial distances l1 and l2 (lpart) from the starting
point (projected into the x-y-plane) (xi, yi) toward (xe, ye) (the final point) to where the path enters and exits
the beam. Thus, using the x- and y-components of the vector equation

ri + lŝ = R

leads to
xi + lsx = xc,

yi + lsy = yc,



9

where (xc, yc) is a point on the outer limit of the collimated beam, r = R. Squaring and adding the latter two
equations gives

x2
i + y2

i + 2(xisx + yisy)l + (s2
x + s2

y)l
2 = R2

or

l1,2 =
−b ±

√
d

c
,

where

a = x2
i + y2

i − R2

b = xisx + yisy
c = s2

x + s2
y

d = b2 − ac.

Thus the above four scenarios correspond to

1. If d < 0 the roots are complex, i.e., there is no intersection,

2. If l1 < 0 the bundle moves away from beam

3. If l1 < lσ the bundle is scattered again before reaching the beam, and

4. otherwise both intercepts are calculated to determine Iλn.

After the tracing of photon bundles is completed, average values and standard deviations are calculated
as in the forward Monte Carlo codes, e.g., FwdMCcs. Using the as-supplied input (same as for FwdMCcs, but
with N=1000) leads to the output, stored in revmccs.dat:
no. of bundles q_det variance rel.var.(%)

10000 0.2882E-02 0.1192E-03 4.14

Thus, a better variance is achieved with only 10,000 bundles, as opposed to the 8,000,000 bundles used
in the forward simulation (and this ratio would become correspondingly more extreme for smaller detector
areas and acceptance angles).

RevMCck1.f90, RevMCck2.f90
These programs are backward Monte Carlo Implementations of FwdMCck1 and FwdMCck2, respectively, as
also discussed in Example 21.4. They have identical inputs (except the much lower minimum number of
photon bundles, here set to N=1000 as default); and their outputs also follow the format of their counterparts.
Ray tracing for RevMCck1 is the same as for RevMCcs, except for the slight modification demanded by
equation (21.85). If energy partitioning is used, attenuation along the entire path length of the photon
bundle must be considered, as explained in the last equation of Example 21.4. For the as-supplied cases the
output from RevMCck1, stored in revmck1.dat, is:
no. of bundles q_det variance rel.var.(%)

10000 0.7261E-03 0.5045E-04 6.95

20000 0.7540E-03 0.3091E-04 4.10

i.e., 20,000 bundles are required (as opposed to 128,000,000 used by FwdMCck1). For RevMCck2 the output,
stored in revmck2.dat, is:
no. of bundles q_det variance rel.var.(%)

10000 0.7623E-03 0.3061E-04 4.02

i.e., 10,000 bundles are required (as opposed to 8,000,000 used in FwdMCck2, or 20,000 used in RevMCck1).

RevMCps.f90

This program is the backward Monte Carlo equivalent of FwdMCps, with identical input and output format
(again, with the exception of a much smaller base line value for the number of bundles). In the backward



10

Monte Carlo simulation, the detector flux again consists of a direct and a scattered component. In the code
it is assumed that the direct component is zero, this time because all direct radiation hits the detector at
an angle larger than the acceptance angle (this could, of course, be easily changed). As for collimated
irradiation backward Monte Carlo also becomes inefficient if the radiation source comes from a very small
surface or volume. The trick is again to break up intensity into a direct component (intensity coming directly
from the source without scattering or wall reflections), and a multiply-scattered and reflected part, as given
by Modest [1] and briefly described here. Again, we let Id satisfy the radiative transfer equation without the
inscattering term, or,

ŝ · ∇Id(r, ŝ) = S d(r, ŝ) − β(r)Id(r, ŝ),

which has the simple solution

Id(r, ŝ) =

∫
S d(r′, ŝ) exp

[
−

∫
r→r′

(κ + σs) ds′
]

ds, (CC-21-1)

where the main integral is along a straight path from the boundary of the medium to point r in the direction
of ŝ. For example, if there is only a simple point source at r0 with total strength Q0, emitting isotropically
across a tiny volume δV , equation (CC-21-1) becomes

Id(r, ŝ) =
Q0

4π|r0 − r|2
exp
[
−

∫
r0→r

(κ + σs) ds′
]
δ(ŝ − ŝ0), (CC-21-2)

where ŝ is a unit vector pointing from r0 toward r, and use has been made of the fact that

δV = δA δs = δΩ0|r0 − r|2 δs,

where δΩ0 is the solid angle, with which δV is seen from r. Equation (CC-21-2) can be used to calculate the
direct contribution of Q0 hitting a detector, and it can be used to determine the source term for the RTE of
the scattered radiation as

S 1(r, ŝ) =
σs(r)

4π

∫
4π

Id(r, ŝ′)Φ(r, ŝ′, ŝ) dΩ′

=
σs(r)Q0

16π2|r0 − r|2
exp
[
−

∫
r0→r

(κ + σs)ds′
]
Φ(r, ŝ0, ŝ). (CC-21-3)

The rest of the solution proceeds as before, with In(ri,− ŝi) found from equations (CC-21-3) and (21.82) as

In (ri,−ŝi) =
σsQ
16π2

∑
j

∫
lσ, j

e−σs |r0−r|

|r0 − r|2
dl′, (CC-21-4)

where the lσ, j are the straight paths the bundle travels between scattering events. Equation (CC-21-4) must
be integrated numerically, and this can be done using a simple Newton-Cotes scheme. Alternatively, the
integral can be obtained statistically from

In (ri,−ŝi) =
σsQ
16π2

∑
j

lσ, j
Nint

Nint∑
k=1

e−σs |r0−rk |

|r0 − rk|
2 ,

where the rk are Nint random locations chosen uniformly along path lσ, j. This was implemented in RevMCps.f90,
choosing Nint (= numint) to be inversely proportional to the distance of the integration point from the source
(or proportional to its relative importance). Results for detector flux for the as-supplied case (same as for
FwdMCps.f90) are stored in revmcps.dat as:



11

no. of bundles q_det variance rel.var.(%)

10000 0.4614E-02 0.1057E-03 2.29

i.e., with only 10,000 bundles we achieved a much better variance then by using 16,000,000 bundles in
FwdMCps.f90.

RevMCps.f90

The backward Monte Carlo equivalent of FwdMCps.

The documentation for this routine is not available.

References

1. Modest, M. F.: “Backward Monte Carlo simulations in radiative heat transfer,” ASME Journal of Heat Transfer, vol. 125,
no. 1, pp. 57–62, 2003.


