
TUTORIAL OF THE TOOLBOX

This file contains one document to help the user to understand the algorithms developed

in this toolbox and how to use it.

The document is:

B. Boashash and A.P. Reilly, "Algorithms for Time-Frequency Signal Analysis ",

Chapter 7, pp. 163-181, in B. Boashash, editor, “Time Frequency Signal Analysis -

Methods and Applications”, Longman Cheshire, 1992.

A second document which can help the user is (not included):

B. Boashash, “Getting Started With A Practical And Efficient Time-Frequency

Toolbox TFSAP-7.0”, in B. Boashash, Ed, Time-Frequency Signal Analysis &

Processing: A Comprehensive Reference 2nd Ed, chapter 17, pp. 967–988, Elsevier,

Academic Press, 2015.

Published in Australia, New Zealand, the Pacific, Asia and Africa by
Longman Cheshire Pty Limited
Loilgman House
Kings Gardens
95 Coventry Street
Melbourne 3205 Australia
ISBN 0 582 71286 6

Offices in Sydney, Brisbane, Adelaide and Perth. Associated companies,
branches and representatives throughout the world.

Copublished in the Western Hemisphere, United Kingdom
and Europe by Halsted Press: an Imprint of
John Wiley & Sons, Inc.
New York Toronto Chichester

Copyright @ Longman Cheshire 1992
First published 1992

All rights res~ed. Except under the conditions described in the Copyright Act
1968 of Australia and subsequent amendments, no part of this pUblication may
be reproduced, stored in a retrieval system or transmitted in any fonn or by any
means, electronic, mechanical, photocopying, recording or otherwise, without
the prior pennission of the copyright owner.

Designed by Nadia Graziotto
Printed in Hong Kong

National Library of Australia
Catalogulng-in-Publlcatlon data

Time-frequency signal analysis.
Bibliography.
Includ6 index.
ISBN 0-582-71286-6
l.Signal processing. 1. Boashash, Boualem.
621. 38223

Library or Congress Cataloguing-in-Publication data

Time-frequency signal analysis-methods and applications/edited by Boualem
Boashash.
p. en.
Includes bibliographical references and index.
ISBN 0-470-21821-5
1. Signal processing. I. Boashash, Boualem.
YK5102.T585 1992
621.382'2-dc20 91-32658

CIP

TIME • FREQUENCY SIGNAL ANALYSIS
METHODS AND APPLICATIONS

Edited by Boualem Boashash

~.~ ••• • ••
Longman Cheshire

6M WI LEY ~:tisTED

162 Time-Frequency Signal Analysis

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

Wahba, G., "Practical Approximate Solutions to Linear Operator
Equations when the Data are Noisy", SIAM J. Numer. Anal.,
Volume 14, Number 4, September 1977, pp. 651-667.
Wahba, G., "Smoothing and Ill-Posed Problems", in M. A.
Golberg, editor, Solution Methods for Integral Equations, Plenum
Press, 1978, pp. 183-194.
West, G., "Eine schnelle Mellin-Transformation", Computing,
Volume 33, pp. 237-245, 1984.
Whitehouse, H. J. and Speiser, J. M., "Algorithms and Architec­
tures for Array Signal Processing", Presented at the Indo- U. S.
Workshop on Systems and Signal Processing, Bangalore, India,
January 8-12, 1988. The conference was sponsored by the U.S.
Office of Naval Research, the Indian Department of Science and
Technology, and the IEEE Bangalore chapter. A book of the ex­
tended abstracts of the conference papers is available, and a con­
ference proceedings is planned.
Whitehouse, H. J. Boashash, B. and Speiser. J. M., "High
Resolution Processing Techniques for Temporal and Spatial
Signals" , Presented at the Workshop on High Resolution Methods
for Underwater Acoustics, organized by GRETSI, Juan les Pins,
France, June 16, 1989. To appear as a chapter in a volume edited
by M. Bouvet and G. Bienvenu, in the Springer-Verlag Lecture
Notes in Comp'uter Science.
Wiener, Norbert, The Four-ier Integral and Cer-tain of its Appli­
cations, Dover Publications Inc., New York, p.3.
Wiener, Norbert, Generalized Har-monic Analysis and Tauber-ian
Theorems, The M.LT. Press, Massachusetts Institute of Technol­
ogy, Cambridge, Massachusetts, 1964.
Wilcox, C. H. "The Synthesis Problem for Radar Ambiguity
Functions", Mathematics Research Center, MRC Technical Sum­
mary Report No.157, The University of Wisconsin, April 1960.
Zwick, Philip E. and Imre Kiss, "A New Implementation of the
Mellin Transform and its Application to Radar Classification
of Ships" IEEE Transaction on Pattem Analysis and Machine
Intelligence, Volume PAMI-5, Number 2, pages 191-199, 1983.

Chapter 7

Algorithms for Time-Frequency
Signal Analysis

Boualem Boashash and Andrew Reilly

Keywords: fast algorithms, efficient implementation, Fortran sub­
routine, optimizations, analytic signal, Cohen's class, Wigner-Ville
distribution

1 Introduction

This chapter presents algorithms which implement time-frequency sig­
nal analysis techniques on computer systems. Fortran code fragments
are included.

A generalized framework for time Jrequency distribution calcu­
lation is provided, and a number of speed-up optimizations are de­
scribed. Algorithms are presented for the calculation of all of the
time-frequency representations listed in table 7.1.

Most popular time-frequency representations can be expressed in
terms of the general bilinear time-frequency distribution representa­
tion proposed byL.Cohen [6] (see also chapter 1 in this book). This
is shown in equation 1 below: *

Pz(t, f) =/ ! ! ej27rv (u-t) g(v, r)z(u + ~)z*(u - ~)e-j27r!r dvdudr (1)

Here z is an analytic signal, (see [11] i.e., a complex signal which
contains no negative frequencies. The function g(v, r) determines
the characteristics of the time-frequency distribution. For example
if .q(v, r) = 1 then the distribution formed is the Wigner-Ville

164 Time-F'requency Signal Analysis

distribution. If the integration with respect to v is performed, then
the equation becomes:

Pz(t, f) = J J G(t, r)z(u + ~)z*(u - ~)e-j2'71Ir dudr (2)

This distribution (pz) is related by Fourier transforms to the tin,te­
lag representation Rz (t, r) , the Doppler-frequency representatl~n
Tz(V,f), and the Doppler--delay representation, Az(v,r) as shown m
figure 7.1.

7Pjl,fl~

R'(I~ ~,fJ

AAv, '1')

Figure 7.1. Relationships between continuous time representations.

The equivalent discrete time relationships, related by discrete
Fourier transforms are Rz(n, m), pAn, k), Tz(l, k), AAl, m), as shown
in figure 7.2.

)/P'("kJ~

R.(n, m) rAI, k)

~A AAI,m)

Figure 7.2. Relationships between discrete time representations.

The expression to be used for discrete time implementation of these
transforms is the discrete time equivalent of equation 2, and is shown
in equation 3.

M M
pz(n, k) = L L G(p, m)z(n+p+m)z*(n+p-m)e-j41l'mk/N (3)

m=-Mp=-M

This can also be expressed as:

(4)

Algorithms for Time-Frequency Signal Analysis 165

where (~) denotes the discrete time convolution, and fm-+k denotes the
discrete Fourier transform from time (n) to frequency (k).

2 Analytic signal calculation

In most practical cases, the signals to be analysed consist only of real
values. In these cases it is necessary, as a first step towards signal
analysis, to form the corresponding analytic signal, as explained in
[3].

The direct method of producing the analytic signal is to use its
definition: a signal with no negative frequency components. That is,
form the Fourier transform of the signal, set the negative frequency
values to zero, and perform the inverse Fourier transform. Unfortu­
nately, finite data length effects (windowing) cause this method to
produce undesirable ripples in the signal. Setting the negative fre­
quency components to zero has the same effect in the time domain as
any naive frequency domain filtering operation: the resulting response
has sizable ripples for any non-harmonic frequencies.

Another method is to use a Hilbert transform filter to produce
the required complex component of the signal, which when added to
the real part produces the desired analytic signal. This is shown in
equation 5.

z(n) = x(n) + jH[x(n)] (5)

where HO is the Hilbert transform [11], and has the ideal impulse
response shown in equation 6.

{
2 sin2 (7rn/2)

() for n =I 0
h n = 7rn

. 0, for n = 0
(6)

The Hilbert transform can be implemented as a finite-impulse
response (FIR) digital filter, which may be more efficient than the
Fourier technique., depending on the length of the signal to be
transformed, and the length of the filter impulse response used.
Although an ideal Hilbert transform filter has an infinite impulse
response length, in practise an FIR filter length of 79 samples has
been shown to provide an adequate approximation[4].

This filter could be a rectangular-windowed version of the infinite
length filter, or it could be an optimal implementation calculated
using one of the filter design algorithms, such as the Remez-exchange
algorithm. This produces a filter which is optimal in a minimax or
Chebyschev sense [I1J.

166 Time-Frequency Signal Analysis

3 General approach to computation of TFDs

The discrete-time definition of Cohen's class of time-frequency distri­
butions given in equation 3 forms the basis of the general approach to
implementation of time-frequency distributions. This approach can
be expanded into three steps:

1. Form the bilinear product Kz(n, m) = zen + m)z*(n - m). This
is known as the 'bilinear kernel' or just 'kernel' where meaning
is obvious.

2. Convolve the kernel with the desired determining function'
G(n, m) in the n (time) dimension.

3. Calculate the discrete Fourier transform of this result, to
produce the time slice of the desired distribution.

These steps will now be elaborated on, and issues arising from
implementation on computing systems mentioned. The next section,
section 4, presents an example of some of the optimizations that can
be applied to these techniques for a specific example of Cohen'sdass,
the Wigner-Ville distribution.

3.1 Calculation of the bilinear kernel
It can be easily shown that the bilinear kernel has Hermitian
symmetry:

{
zen + m)z*(n - m)

Kz(n, m) = K;(n, -m)
for m 2: 0
for m < 0

(7)

This means that values of the kernel need only be calculated for
positive time lags.

It is normally not necessary to store the calculated kernel values
in an array, as each will only be used once. (Of course there are
exceptions to this rule, such as when a sliding analysis window is
used, with a large overlap between successive windows.) Since the
kernel array would be rectangular, twice as long (in the n direction)
as wide (the m direction), storage requirements for the kernel would
increase with the square of the problem size. In a finite storage system
this will reduce the useful analysis window length.

The alternative is to calculate the kernel values as they are
required, and this is the way the code in section 3.4 works. This
code includes the concurrent convolution with the kernel specification
function, G(n, m), which will be described in section 3.2 below, and
so is best studied after that section has been read.

Algorithms for TimecFrequency Signal Analysis 167

3.2 Convolution in the n (time) direction

This is simply the matrix multiplication of the weighting function
values G(n,m) with the bilinear kernel values Kz(n,m). This must
be performed for each time instant for which output is required.

In an actual implementation, either the kernel matrix or the
selection function matrix may be calculated at the point of use (in
the convolution). This can save memory space and sometimes time.
If the kernel values are only going to be used once, then a considerable
memory saving can be made by not storing them at all (remember,
they are complex, so would require a very large array to store).
Conversely, if the selection function is trivial then this need not be
stored either.

Since the selection function G(n, m) is 8(n) for the Wigner-Ville
distribution, the convolution step does not really occur at all.

Most common bilinear transforms exhibit symmetry in both the
m and n directions, and this fact can be used to reduce both
computation and storage requirements. In the code fragment shown
in section 3.4, this symmetry is used by multiplying the same G(n, m)
value with the required two bilinear kernel values at the same
time. The delay axis symmetry of G and the corresponding kernel
Hermitian symmetry allow the uppet half of the result matrix R to be
calculated from the lower half through conjugation, rather than direct
calculation. Care must be taken that symmetry exists around the R (1)
element, rather than including it. That is, R(FFTLEN)=conjg(R(2»,
not conjg(R(1», where FFTLEN is the data length of the Fourier
transform to be used.

3.3 Discrete Fourier transform

The discrete Fourier transform of each time-slice of the distribution
is calculated using a fast-Fourier transform routine (FFT). Examples
of this can be found in [11 J. The most important point to note is that
the use of one of the fast algorithms puts restrictions on the length
of each data' segment (usually to a power of two). This may require
zero-padding of the filtered kernel before performing the transform.
Another point to note is that these routines operate only on positive
time and frequency values, rather than the positive and negative values
expected by simple translation from the continuous domain. That is,
rather than representing frequencies from -~fs to ~is, with the zero
frequency value appearing in the middle of the array, frequencies from
o to is are used, with the zero frequency value appearing as the first
element in the array. This has absolutely no effect on the algorithms or
calculations, due to the cyclic nature of the discrete Fourier transform,
but does affect the way values are referred to. The 'nega.tive' frequency
values are stored at the 'top' of the arra.y, and are usually referenced

168 Time-Frequency Signal Analysis

with indices like: FFTLEN+1-i.
The FFT routine referred to in the code fragments in this chapter

performs calculations in place, and requires both length and order
parameters:

subroutine FFT(A,mf,FFTLEN)
c A is an array of complex
c mf is the calculation order, FFTLEN=2**mf
c FFTLEN is the length of the array, a power of 2

The code to find the next power of two greater than or equal to
the length of a signal is a simple loop:

c

6

7

calculate FFTLEN, the minimum (2**mj) .ge. lwin
mf=O
FFTLEN=l
if (FFTLEN.ge.lwin) goto 7

mf=mf+1
FFTLEN=FFTLEN+FFTLEN
goto 6

continue

3.4 Arbitrary transform code fragment
This routine performs the convolution of the bilinear kernel with the
distribution specification matrix G, for a signal window of length
2 x hlf + 1, centered on element 0 (see below). It then takes the Fourier
transform of the result, producing one time-slice of the distribution.

G is known to be symmetrical in both time and lag dimensions,
and so values are only used from the positive quadrant.

It is also known that the resulting spectrum is real, so the result
of the convolution must have Hermitian symmetry. Thus half of the
RO values are computed directly, the others from symmetry. (R is the
array used to store the kernel products for different lags.)

Finally, it is known that the z array origin is not situated at the
beginning of the signal array, but is at least 2 x hlf from either end.
Thus negative array indices may be used, and a substantial complexity
reduction may be realized, as no special cases are introduced at the
beginning and end of the signal (see section 3.5).

subroutine transform(z,G,FFTLEN,mf,hlf,KERNMAX,R)
complex z(1), RCi)

2

1

1
2

Algorithms for Time-Frequency Signal Analysis 169

real G(KERNMAX,KERNMAX)
integer FFTLEN,mf,hlf,KERNMAX,m,p

do 1 m=O,hlf
R(m+1)=G(1,m+1)*z(m)*conjg(z(-m»
do 2 p=l,hlf

R(m+1)=R(m+1) +G(p+1,m+l)* (
z(p+m)*conjg(z (p-m) + z(-p+m) *conjg(z(--p-m»
)

if (m. gt. 0) R(FFTLEN-m+1) =conjg (R(m+l))
continue

c make sure any points not containing calculated values aTe set
c to zero, as the FFT length may be gTeater than the window:

do 3 m=hlf+2,FFTLEN-hlf
3 R(m)=(O.O,O.O)

call FFT(R,mf,FFTLEN)
return
end

3.5 Notes on implementation techniques

The code presented to perform the convolution with the kernel in
section 3.4 used negative indices into the signal array z, which ~ay
seem strange, and may not work with a compiler that generates code
to check array bounds, but is more efficient than the alternatives.
The same effect ca~ be achieved (a little less efficiently) by passing
the whole of the sIgnal (z) array, and also an index i to indicate
the center of the analysis window, which must then be added into all
references to z. That is, the first line of code inside the outer loop in
section 3.4 would change from:

R(m+1)=G(1,m+1)*z(m)*conjg(z(-m»
to:

R(m+l)=G(1,m+l)*z(i+m)*conjg(z(i-m»

. Both. implementation techniques have a problem when the analysis
wmdow IS not wholly contained within the extent of the signal, as in
that case some of the values used in calculations must be zero. There
are a number of ways to solve this problem:

170 Time-Frequency Signal Analysis

(I The obvious solution is to check each array index before
accessing the value, and return zero if the access is outside the
array bounds. This is inefficient, since it requires a lot of extra
work in the inner loops of the convolution.

(I Another technique is to move the range checking outside the
loops, so that the indices never exceed the array bounds. This
can be quite efficient, especially where the analysis window is
very long. In that case the time required to do the checking, and
the reduced symmetry available may be offset by the reduction
in the number of computations required at the ends of the signal.

(I The technique used here is to pad the signal in the signal array
with sufficient zero values that the array will not be indexed
out of bounds. Thus the correct windowing effect is achieved,
without any bounds checking within the convolution loops. Here
the reduced overhead in the 'working' loops makes up for the
extra 'dead' iterations involving computation with zero values.

This approach is shown in the code fragment below, extracted
frorp. a Choi-Williams distribution program. It reads the data into the
signal array, converts the signal to an analytic signal (with a call to
SIGANA), and then produces nplts spectra using an analysis window
of length lwin centered points with a time separation of res samples.

c make hif max (2*hlf+l .le. lwin)
hlf=(lwin+l)/2-1

c
c
c

10

5

c

read the signal
this is where the zero-padding buffers are built at either

end ...
do 10 i=l,LWINMAX-l

z(i)=(O.O,O.O)
z(n+LWINMAX+i)=(O.O,O.O)

do 5 i=LWINMAX,LWINMAX+n-l
read (1, *) x
z(i)=cuaplx(x,O.O)

form the analytic signal: (and get nl as power of 2 .ge. n)
call SIGANA(n,z(LWINMAX), .false. ,nl)

do 8 ii=O,nplts-l
t=ii*res+hlf+LWINMAX
call transform(z(t),G,FFTLEN,mf,hlf,KERNMAX,choi)

do 9 i=i, FFTLEN

9
8

Algorithms for Time-Frequency Signal Analysis 171

write(2,*) real(choiCi»
continue

Table 7.1 Some TFDs and their determining functions G (n, m)

Time-Frequency Representation G(n,m)

Windowed Discrete WVD .,
ben) mE [-(M-l) (M-l)]

2 ' 2

0 otherwise

Smoothed WVD using a rectangular window 1 n E [-(P-l) (P-l)]
p 2 ' 2

of odd length P 0 otherwise

Rihaczek-Margenau ~[b(n + m) + b(n - m)]

STFT using a Rectangular Window of odd 1 1m + nl ~ (P;-l) P
length P, 0 otherwise

1 Iml ~Inl
Born-J ordan-Cohen Iml+l

0 otherwise

Choi-Williams (parameter IT) ~ e-un2j4m2
2m

3.6 Code fragments to generate G(n,m)

Thi~ sectiOI~. shows example code fragments to generate the distri­
butIOn specIfication matrix G(n, m) for the functions specified in ta­
ble 7.l.

. Note that for many of these distributions, this computation tech­
mque ?f con,"olving the bilinear kernel with the G(n, m) array is obvi­
ously mefficlent, because most of the values of G(n, m) are zero, and
th~ others are a constant (e.g., Wigner-Ville distribution smoothed
~lg~er-yille distri?utio~, Rihaczek-Margenau, and STFT). For these
dlstnb~tIOns, algorlthm Improvements yield much higher performance.
The Wlgner-Ville distribution is the only one for which such an im­
provement will be demonstrated.

172 Time-Frequency Signal Analysis

G(n,m) for Choi-Williams distribution

c

2

3

c

4

calculate the distribution specification matrix "0"
do 2 i=O,hlf

G(i+1,1)=0
G(1,1)=1.0

do 4 j=1,hlf
wt=O.O
do 3 i=O,hlf

G(i+1,j+1)= exp(-(sigma*i*i)/(4*j*j»
wt= wt+2*G(i+1,j+1)

wt=wt-G(l, j+1)
normalize array so that we know 2.:n G(n,j) = 1.0

do 4 i=O,hlf
G(i+1,j+1)=G(i+1,j+1)/wt

In this routine, the variable 'wt' is used to ensure that the sum
along every constant 'j' (parallel to the time axis) is exactly one, a
condition necessary to preserve the marginals of the distribution, as
described in [2], Property 2-7. These are repeated here:

This is obtained if

n

L:pz(n, k) = Iz(n)12
k

G(n,O) = 8(n) and L: G(n, m) = 1
n

This condition would not necessarily be met otherwise, due to finite
precision in the calculations. It should be noted that the Choi­
Williams distribution selection function:

G() - JrJ/7f _(y-n2/4m2
n,m ---e 2m

J I
I

does not meet these criteria, and does not hold for m = 0, at which
point the rule G(n, 0) = 8(n) must be imposed.

G(n,m) for Born-Jordan-Cohen distribution

c calc'ulate the distribution specification matrix "0"
do 4 i=O,hlf

Algorithms for Time-Frequency Signal Analysis 173

2

3

4

wt=1.0/(real(i)+1.0)
do 2 j=O,i

G(i+1,j+1)= wt
do 3 j=i+1,hlf

G(i+1,j+1)= 0.0
continue

G(n,m) for STFT

c calculate the distribution specification matrix "0"
wt=1.0/(real(2*hlf-l»

2

3
4

do 4 i=O,hlf
do 2 j=O ,hlf-i

G(i+l,j+l)= wt
do 3 j=hlf-i+1,hlf

G(i+1,j+1)= 0.0
continue

G(n,m) for Rihaczek-Margenau distribution

c calculate the distribution specification matrix
do 2 i=O,hlf

do 2 j=O ,hlf
2 G(i+l,j+1)= 0.0

do 3 i=l,hlf
3 G(i+1,i+1)= 0.5

G(l, 1)=1. 0

G(n,m) for smoothed WVD

"0"

Note: p is half the length of the smoothing region, calculated in a
similar manner to the calculation of hlf from lwin.

c calculate the distribution specification matrix "0"
wt=1.0/real(2*p-l)
do 4 i=O,hlf

do2 j=O ,p-l
2 G(i+l,j+l)= wt

do 3 j=p,hlf
3 G(i+l,j+1)= 0.0
4 continue

174 Time-Frequency Signal Analysis

3.7 Effect of windowing
Time-windowed distributions will often be calculated in preference to
full-length distributions. Two reasons for this. practice are:

• To reduce unnecessary computation, when it is known that the
signals of interest have a limited time-extent within the data
collected; or

• When the data stream is continuous (real-time analysis). For
this case, it is impractical to collect all of the data before
analysis, as results are required on early sections before later
sections have been collected.

Instead of performing all of the operations on the entire signal, only
sections of the signal are read into the data arrays at once, displacing
previous values, and the calculations are repeated for each 'window'.
If the windows are overlapped, then some data must be retained, and
shifted forward within the data arrays by an amount equal to the
time-displacement of the window.

4 Wigner-Ville distribution implementation

Although covered in conjunction with the other bilinear time-frequency
distributions in the previous section, the implementation of the Wigner­
Ville distribution will be presented again here, as an example of how
to optimize the general calculation for special cases.

There are a number of optimizations applicable to the calculation
of the Wigner--Ville distribution (some of these also apply to the
calculation of other TFDs):

1. The array G(n, m) is trivial, and need not be stored or calcu­
lated. Instead, its effect can be incorporated into the algorithm.

2. The bilinear kernel has Hermitian symmetry, and so only values
for positive lags need be calculated (This applies for all kernels.)

3. Two result spectra can be calculated by each Fourier transform.
This is possible because the spectra are known to be real, the
Fourier transform is known to be a linear operator, and the
fast Fourier transform routine being used operates exclusively
on complex data.
The best way to use this optimization is to multiply the second
set of lags by j, so that the resulting spectrum-slice will appear
in the imaginary part of the Fourier transform result. That is:

Algorithms for Time-Frequency Signal Analysis 175

4. Where the distribution will be calculated for every time value
there is another optimization, presented by Eilouti and Khadr~
[~l. Here a recursive technique is used to calculate the analytic
sIgnal for successive windows. This will not be described here .

5. The formulation of the discrete Wigner-Ville distribution (and
all of the other distributions in Cohen's class) presented here
produces a result with a frequency scaling of f = M where
th t h · . 2M'

oer ec mques, such as the short-tIme Fourier transform result
in a scaling of f = ';;. The consequence of this is that the
resulting transforms are twice as long as one might expect. To
overcome this Sun, Li, Sekhar and Sclabassi [12J have shown
how to pr~duce a transform with the usual length, and a saving
of a~proxlInately half the computations. Since this technique
reqUIres the replacement of the fast Fourier transform with their
own 'fast Fourier transform in part' (FFTP) it will not be
described further here. '

Only the code for the outer loop and the transform routine will
be presented. It is assumed that the signal array 'z' and input and
out~ut files have been attended to by the surrounding code in a similar
fashIOn to that presented in section 3.5.

c
c
c
c
c

c
c
c
c
c

9

11
8

nplts=n/res

since we're using the 'do two transforms at once'
optimization, nplts must be even, make it so (possibly
at the expense of the last plot:

nplts=(nplts/2)*2

Here is the outer loop of the actual distribution calculation:
Call the distribution routine for each two windows of the
signal. The signal array z() is passed with a time ojJ.set t , ,
so that the transform2() routine can operate as though t was always
zero.

do 8 ii=O,nplts/2-1
t=ii*res*2+hlf+LWINMAX
call transform2 (z(t) ,z(t+res) ,FFTLEN,mf,hlf,wvd)
do 9 i=l,FFTLEN

write (2 ,*) real(wvdCi»
do 11 i=l,FFTLEN

write(2,*) aimag(wvd(i)
continue

176 Time-Frequency Signal Analysis

999

close (2)

return
end

c -------------------
subroutine transform2(zl,z2,FFTLEN,mf,hlf,R)
connplex zi(i), z2(1), R(i)

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

connplex vi, v2
integer FFTLEN,mf,hlf,m

This routine forms the bilinear lag array for two kernel
time-slices at once, for lag values up to hlf. (i. e., using
a window of length 2*hlf+l centered on elements 0 and res.)

The second set of lag values (those around res) are added
into the lag array in an 'odd 'fashion, as opposed to the
'even' fashion that the first set were inserted.

Finally, the Fourier transform of the lag array is taken,
forming the two time-slices at once, in the real and imaginary

parts of the array.

This is achieved by multiplying the second array of lags by
j before performing the Fourier transform. Since this is a
linear operator, this also rotates the resulting spectrum into

the imaginary plane.

Finally, it is known that the z array origin is not situated
at the beginning of the signal array, but is at least 2*hlf
from either end. Thus negative array indices may be used, and
a substantial complexity reduction may be realized, as no
special cases are introduced at the beginning and end of the

signal (see section 3.5)

vi=zl(O)*conUg(zl(O))
v2=z2(O)*conjg(z2(O))
R(1)=vl+cnnplx(-ainnag(v2),real(v2))
do 1 m=i,hlf

vl=zi(m)*conjg(zi(-m))
v2=z2(m)*conjg(z2(-m))

1

c
c

3

5

Algorithms for Time-Frequency Signal Analysis 177

R(m+i)=vi+cnnplx(-ainnag(v2),real(v2))
R(FFTLEN-m+i)=c°nUg(vi)+cnnplx(ainnag(v2),real(v2))

continue

make sure any points not containing calculated values are set
to zero, as the FFT length may be greater than the window:

do 3 m=hlf+2,FFTLEN-hlf
R(m)=(O.O,O.O)

call FFT(R,mf ,FFTLEN)
return
end

Other· methods

While the general approach presented will allow calculation of most
time-frequency distributions, it does not cope with all possibilities
and. fo.r s~me popular cases it is not the most efficient approach:
OptimIzatIOns of the method for the Wigner-Ville distribution have
already been noted. If work is to center on one of these other
tech~iques, then more computationally efficient approaches may be
c~nsidered. Some techniques not covered by the general technique
wIll ~e commented on 15riefly in this section, and references will be
provIded for source~ of further information.

5.1 The wavelet transform
This is a linear transform, as opposed to the bilinear distributions
discuss~d in t~is chapter, and has the interesting property of time
resolutIOn whIch is a function of frequency. See [7) for more
information.

5.2 Cross-Wigner-Ville distribution
~he most significant differences between the implementation tech­
mques for the Cross-Wigner-Ville distribution and those already de­
scribed are:

• the necessity to read and store two data streams· ,

178 Time-Frequency Signal Analysis

• the necessity to provide storage for complex numbers m the
output matrix;

• the loss of some of the symmetry optimizations that could be
performed with the bilinear transforms.

Once these are taken into account, all of the presented techniques
and program structure still apply. The cross Wigner-Ville distribution
is discussed in the chapter by Boles in this volume [5].

5.3 Short-time Fourier transform
The short-time Fourier transform (STFT) is a special case because it
can be efficiently calculated by taking the spectrum of windows of the
data. The program structure will be somewhat similar, from the point
of view of data input, output and windowing. Instead of calculation
of the bilinear kernel, and convolution with the relevant determining
function, all that is necessary is to form the Fourier transform of each
window of data, and output the squared magnitude of each frequency
point. Some care is necessary, if windowing is required. Unlike the
bilinear transforms noted, this technique will produce both positive
and negative frequency values (which will be zero for analytic signals),
and so only half of the calculated frequency vector need be output.

Since the Fourier transform approach assumes signal stationarity
over the period of the window, care must be taken to optimize the
window length for signals that are not stationary. Where linear
frequency modulated signals are involved, the optimum window length
is (~;)-~. Wi.ndows shorter than this cause unnecessary spreading of
the signal due to the width of the window in the frequency domain.
Longer windows cause a smearing of the signal within the window due
to the non-stationarity of the frequency law contained within it.

5.4 Parametric methods
All of the parametric spectrum estimation techniques can be used for
time-frequency spectrum analysis in the same manner that the Fourier
transform is used: by the assumption of short time stationarity. For a
very detailed discussion of these methods, consult the books by Kay
and Marple [9,10].

The higher resolution offered by these techniques can also be
applied to the bilinear distributions, by replacing the final Fourier
transform with a parametric spectrum calculation. This generally
requires a much greater amount of computation. An algorithm is
described by Whitehouse, Boashash and Speiser in [13].

Algorithms for Time-Frequency Signal Analysis 179

5.5 The Q-distribution
A time-frequency technique that will not be covered in depth here is
the Q-distribution of Altes [1], so called because it shares the constant­
Q or proportional bandwidth property of the Wavelet transform
although it is based on the bilinear Wigner-Ville distribution rathe;
than a linear transform. The paper [1] describes how this ~aybe
done efficiently, after which the calculation would proceed as for the
Wigner-Ville.

6 Description of the TFSA package

TFSA is th~'c~frent name of a package of signal analysis tools built
up over a period of time by B. Boashash and his students. Its primary
function is to produce time-frequency representations and plots from
time series, although it has a number of auxiliary functions. Currently
the spectrum analysis tools include the short-time Fourier transform
the Wigner-Ville distribution, an auto-regressive (parametric) model
based spectrum estimator, Wigner-Ville distribution modified to
use an auto-regressive model spectrum estimator, Choi-Williams
distribution, Born-Jordan-Cohen distribution and ZAM distribution
[14].

It also has a suite of test signal generation routines with which
a wide variety of test signals, including Gaussian white noise can be
produced and manipulated.
. The package consists of a large number of stand alone programs

lmked by common file formats and an interactive menu/form based
front end, which simplifies and speeds the use of these programs
dramatically. The code fragments presented in this chapter were
extracted from this package, which is constantly being updated. It
is available for a small cost from the authors, and may be ordered
with the order form which appears at the back of the book.

7 Summary

In this chapter we have presented a general approach to the calculation
of the time-frequency energy distributions based on Cohen's class of
distributions. The principle steps of this approach are:

1. Produce the analytic signal from the real data sequence to be
analysed (section 1).

2. Calculate the bilinear kernel values (section

180 Time-Frequency Signal Analysis

3. Convolve the bilinear kernel with the distribution specification
function G(n, m), (sections 3.2, 3.6).

4. Take the discrete Fourier transform with respect to lag (m) for
each time instant (section 3.3).

This process was demonstrated for the case of the Choi-Williams
distribution in the code fragments in sections 3.4 and 3.5.

This algorithm can be simplified and optimized quite significantly
for a number of common members of Cohen's class, due to extra
properties of the kernel. The Wigner-Ville distribution was presented
as an example of how the kernel selection function G(n, m) can be
incorporated into the algorithm, rather than being stored or calculated
(see section 4).

References were presentedfdr a number of other popular time­
frequency signal analysis techniques which do not fit into this frame­
work, in section 5.

The final section (6) briefly described a signal analysis package
written by the authors and their colleagues which utilizes most of the
techniques presented.

References

[1] R. A. Altes, "Wideband, Proportional Bandwidth Wigner-Ville
Analysis," IEEE Trans. Acoust. Speech Signal. Process., 38,
June 1990.

[2J B. Boashash, "Time-Frequency Signal Analysis", in Advances
in Spectral Analysis and Array Processing (Prentice-Hall Signal
Processing Series), S. Haykin, editor, Englewood Cliffs, NJ,
Prentice-Hall, 1990.

[3J B. Boashash, "Note on the Use of the Wigner Distribution of
Time-Frequency Signal Analysis", IEEE Trans. Acoust. Speech
Signal. Process., 36, pp. 1518-1521, September 1988.

[4] B. Boashash and P. Black, "An Efficient Real Time Implemen­
tation of the Wigner-Ville Distribution", IEEE Trans. Acoust.
Speech Signal. Process. ASSP 35, no. 11, pp. 1611-1618,
November 1987, CRISSP Reference CSP 87/6.

[5J P. Boles, "Application of the Cross-Wigner-Ville Distribution
to Seismic Surveying" in TFSA Methods and Applications, B.
Boashash, editor, Longman Cheshire, 1991.

[6] L. Cohen, "Time-Frequency Distributions-A Review," IEEE
Proc., 77, no. 7, pp. 941-981, July 1989.

[7J 1. Daubechies, "The Wavelet Transform: a Method for Tirne­
Frequency Localization" in Advances in Spectral Analysis and

Algorithms for Time-Frequency Signal Analysis 181

A rray Processing (Prentice-Hall Signal Processing Series), S.
Haykin, editor, Englewood Cliffs, NJ, Prentice-Hall, 1990.

[8J H. H. Eilouti and L. M. Khadra, "Optimized Implementation of
Real-Time Discrete Wigner Distribution," Electronics Letters,
25, no. 11, pp. 706,707, 25 May 1989.

[9] S. Kay, Modern Spectral Analysis, Englewood Cliffs, NJ, Prentice­
Hall, 1989.

[10J S. L. Marple, Jr, Digital Spectral Analysis with Applications,
Englewood Cliffs, NJ, Prentice-Hall, 1987.

[11] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal
Processing, Englewood Cliffs, NJ, Prentice-Hall, 1989.

[12] M. Sun, C. C., Li, L. N. Sekhar and R. J. Sclabassi, "Effi­
cient Computation of the Disc,r~tet'p'seudo-Wigner Distribution,"
IEEE Trans. Acoust. Speech Signal. Process., 37, no. 11, pp.
1735-1742, November 1989.

[13] H. J. Whitehouse, B. Boashash and J. M. Speiser, "High Res­
olution Processing Techniques for Temporal and Spatial Sig­
nals," in High Resolution Techniques in Underwater Acoustics
(L~cture Notes in Control and Information Series), New York­
HeIdelberg-Berlin, Springer-Verlag, 1989.

[14J Y. Zhao, L. E. Atlas and R. J. Marks "The Use of Cone-Shaped
Kernels for Generalized Time-Frequency Representations of
Nonstationary Signals," IEEE Trans. Acoust. Speech Signal.
Process., 38, no. 7, July 1990.

	firstPage
	TutorialToolbox
	19-Ch17
	Getting Started with a Practical and Efficient Time-Frequency Toolbox TFSAP-7.00

	1992BookCh7

