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Chapter 7 

Algorithms for Time-Frequency 
Signal Analysis 

Boualem Boashash and Andrew Reilly 

Keywords: fast algorithms, efficient implementation, Fortran sub­
routine, optimizations, analytic signal, Cohen's class, Wigner-Ville 
distribution 

1 Introduction 

This chapter presents algorithms which implement time-frequency sig­
nal analysis techniques on computer systems. Fortran code fragments 
are included. 

A generalized framework for time .... Jrequency distribution calcu­
lation is provided, and a number of speed-up optimizations are de­
scribed. Algorithms are presented for the calculation of all of the 
time-frequency representations listed in table 7.1. 

Most popular time-frequency representations can be expressed in 
terms of the general bilinear time-frequency distribution representa­
tion proposed byL.Cohen [6] (see also chapter 1 in this book). This 
is shown in equation 1 below: * 

Pz(t, f) =/ ! ! ej27rv (u-t) g( v, r )z( u + ~ )z*( u - ~ )e-j27r!r dvdudr (1) 

Here z is an analytic signal, (see [11] i.e., a complex signal which 
contains no negative frequencies. The function g( v, r) determines 
the characteristics of the time-frequency distribution. For example 
if .q( v, r) = 1 then the distribution formed is the Wigner-Ville 
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distribution. If the integration with respect to v is performed, then 
the equation becomes: 

Pz(t, f) = J J G(t, r)z(u + ~)z*(u - ~)e-j2'71Ir dudr (2) 

This distribution (pz) is related by Fourier transforms to the tin,te­
lag representation Rz ( t, r) , the Doppler-frequency representatl~n 
Tz(V,f), and the Doppler--delay representation, Az(v,r) as shown m 
figure 7.1. 

7Pjl,fl~ 

R'(I~ ~,fJ 

AAv, '1') 

Figure 7.1. Relationships between continuous time representations. 

The equivalent discrete time relationships, related by discrete 
Fourier transforms are Rz(n, m), pAn, k), Tz(l, k), AAl, m), as shown 
in figure 7.2. 

)/P'("kJ~ 

R.(n, m) rAI, k) 

~A AAI,m) 

Figure 7.2. Relationships between discrete time representations. 

The expression to be used for discrete time implementation of these 
transforms is the discrete time equivalent of equation 2, and is shown 
in equation 3. 

M M 
pz(n, k) = L L G(p, m)z(n+p+m)z*(n+p-m)e-j41l'mk/N (3) 

m=-Mp=-M 

This can also be expressed as: 

(4) 
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where (~) denotes the discrete time convolution, and fm-+k denotes the 
discrete Fourier transform from time (n) to frequency (k). 

2 Analytic signal calculation 

In most practical cases, the signals to be analysed consist only of real 
values. In these cases it is necessary, as a first step towards signal 
analysis, to form the corresponding analytic signal, as explained in 
[3]. 

The direct method of producing the analytic signal is to use its 
definition: a signal with no negative frequency components. That is, 
form the Fourier transform of the signal, set the negative frequency 
values to zero, and perform the inverse Fourier transform. Unfortu­
nately, finite data length effects (windowing) cause this method to 
produce undesirable ripples in the signal. Setting the negative fre­
quency components to zero has the same effect in the time domain as 
any naive frequency domain filtering operation: the resulting response 
has sizable ripples for any non-harmonic frequencies. 

Another method is to use a Hilbert transform filter to produce 
the required complex component of the signal, which when added to 
the real part produces the desired analytic signal. This is shown in 
equation 5. 

z(n) = x(n) + jH[x(n)] (5) 

where HO is the Hilbert transform [11], and has the ideal impulse 
response shown in equation 6. 

{ 
2 sin2 (7rn/2) 

( ) for n =I 0 
h n = 7rn 

. 0, for n = 0 
(6) 

The Hilbert transform can be implemented as a finite-impulse 
response (FIR) digital filter, which may be more efficient than the 
Fourier technique., depending on the length of the signal to be 
transformed, and the length of the filter impulse response used. 
Although an ideal Hilbert transform filter has an infinite impulse 
response length, in practise an FIR filter length of 79 samples has 
been shown to provide an adequate approximation[4]. 

This filter could be a rectangular-windowed version of the infinite 
length filter, or it could be an optimal implementation calculated 
using one of the filter design algorithms, such as the Remez-exchange 
algorithm. This produces a filter which is optimal in a minimax or 
Chebyschev sense [I1J. 
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3 General approach to computation of TFDs 

The discrete-time definition of Cohen's class of time-frequency distri­
butions given in equation 3 forms the basis of the general approach to 
implementation of time-frequency distributions. This approach can 
be expanded into three steps: 

1. Form the bilinear product Kz(n, m) = zen + m)z*(n - m). This 
is known as the 'bilinear kernel' or just 'kernel' where meaning 
is obvious. 

2. Convolve the kernel with the desired determining function' 
G(n, m) in the n (time) dimension. 

3. Calculate the discrete Fourier transform of this result, to 
produce the time slice of the desired distribution. 

These steps will now be elaborated on, and issues arising from 
implementation on computing systems mentioned. The next section, 
section 4, presents an example of some of the optimizations that can 
be applied to these techniques for a specific example of Cohen'sdass, 
the Wigner-Ville distribution. 

3.1 Calculation of the bilinear kernel 
It can be easily shown that the bilinear kernel has Hermitian 
symmetry: 

{ 
zen + m)z*(n - m) 

Kz(n, m) = K;(n, -m) 
for m 2: 0 
for m < 0 

(7) 

This means that values of the kernel need only be calculated for 
positive time lags. 

It is normally not necessary to store the calculated kernel values 
in an array, as each will only be used once. (Of course there are 
exceptions to this rule, such as when a sliding analysis window is 
used, with a large overlap between successive windows.) Since the 
kernel array would be rectangular, twice as long (in the n direction) 
as wide (the m direction), storage requirements for the kernel would 
increase with the square of the problem size. In a finite storage system 
this will reduce the useful analysis window length. 

The alternative is to calculate the kernel values as they are 
required, and this is the way the code in section 3.4 works. This 
code includes the concurrent convolution with the kernel specification 
function, G(n, m), which will be described in section 3.2 below, and 
so is best studied after that section has been read. 
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3.2 Convolution in the n (time) direction 

This is simply the matrix multiplication of the weighting function 
values G(n,m) with the bilinear kernel values Kz(n,m). This must 
be performed for each time instant for which output is required. 

In an actual implementation, either the kernel matrix or the 
selection function matrix may be calculated at the point of use (in 
the convolution). This can save memory space and sometimes time. 
If the kernel values are only going to be used once, then a considerable 
memory saving can be made by not storing them at all (remember, 
they are complex, so would require a very large array to store). 
Conversely, if the selection function is trivial then this need not be 
stored either. 

Since the selection function G(n, m) is 8(n) for the Wigner-Ville 
distribution, the convolution step does not really occur at all. 

Most common bilinear transforms exhibit symmetry in both the 
m and n directions, and this fact can be used to reduce both 
computation and storage requirements. In the code fragment shown 
in section 3.4, this symmetry is used by multiplying the same G(n, m) 
value with the required two bilinear kernel values at the same 
time. The delay axis symmetry of G and the corresponding kernel 
Hermitian symmetry allow the uppet half of the result matrix R to be 
calculated from the lower half through conjugation, rather than direct 
calculation. Care must be taken that symmetry exists around the R ( 1) 
element, rather than including it. That is, R(FFTLEN)=conjg(R(2», 
not conjg(R(1», where FFTLEN is the data length of the Fourier 
transform to be used. 

3.3 Discrete Fourier transform 

The discrete Fourier transform of each time-slice of the distribution 
is calculated using a fast-Fourier transform routine (FFT). Examples 
of this can be found in [11 J. The most important point to note is that 
the use of one of the fast algorithms puts restrictions on the length 
of each data' segment (usually to a power of two). This may require 
zero-padding of the filtered kernel before performing the transform. 
Another point to note is that these routines operate only on positive 
time and frequency values, rather than the positive and negative values 
expected by simple translation from the continuous domain. That is, 
rather than representing frequencies from -~fs to ~is, with the zero 
frequency value appearing in the middle of the array, frequencies from 
o to is are used, with the zero frequency value appearing as the first 
element in the array. This has absolutely no effect on the algorithms or 
calculations, due to the cyclic nature of the discrete Fourier transform, 
but does affect the way values are referred to. The 'nega.tive' frequency 
values are stored at the 'top' of the arra.y, and are usually referenced 



168 Time-Frequency Signal Analysis 

with indices like: FFTLEN+1-i. 
The FFT routine referred to in the code fragments in this chapter 

performs calculations in place, and requires both length and order 
parameters: 

subroutine FFT(A,mf,FFTLEN) 
c A is an array of complex 
c mf is the calculation order, FFTLEN=2**mf 
c FFTLEN is the length of the array, a power of 2 

The code to find the next power of two greater than or equal to 
the length of a signal is a simple loop: 

c 

6 

7 

calculate FFTLEN, the minimum (2**mj) .ge. lwin 
mf=O 
FFTLEN=l 
if (FFTLEN.ge.lwin) goto 7 

mf=mf+1 
FFTLEN=FFTLEN+FFTLEN 
goto 6 

continue 

3.4 Arbitrary transform code fragment 
This routine performs the convolution of the bilinear kernel with the 
distribution specification matrix G, for a signal window of length 
2 x hlf + 1, centered on element 0 (see below). It then takes the Fourier 
transform of the result, producing one time-slice of the distribution. 

G is known to be symmetrical in both time and lag dimensions, 
and so values are only used from the positive quadrant. 

It is also known that the resulting spectrum is real, so the result 
of the convolution must have Hermitian symmetry. Thus half of the 
RO values are computed directly, the others from symmetry. (R is the 
array used to store the kernel products for different lags.) 

Finally, it is known that the z array origin is not situated at the 
beginning of the signal array, but is at least 2 x hlf from either end. 
Thus negative array indices may be used, and a substantial complexity 
reduction may be realized, as no special cases are introduced at the 
beginning and end of the signal (see section 3.5). 

subroutine transform(z,G,FFTLEN,mf,hlf,KERNMAX,R) 
complex z(1), RCi) 

2 

1 

1 
2 

Algorithms for Time-Frequency Signal Analysis 169 

real G(KERNMAX,KERNMAX) 
integer FFTLEN,mf,hlf,KERNMAX,m,p 

do 1 m=O,hlf 
R(m+1)=G(1,m+1)*z(m)*conjg(z(-m» 
do 2 p=l,hlf 

R(m+1)=R(m+1) +G(p+1,m+l)* ( 
z(p+m)*conjg(z (p-m) + z( -p+m) *conjg(z( --p-m» 
) 

if (m. gt. 0) R(FFTLEN-m+1) =conjg (R(m+l) ) 
continue 

c make sure any points not containing calculated values aTe set 
c to zero, as the FFT length may be gTeater than the window: 

do 3 m=hlf+2,FFTLEN-hlf 
3 R(m)=(O.O,O.O) 

call FFT(R,mf,FFTLEN) 
return 
end 

3.5 Notes on implementation techniques 

The code presented to perform the convolution with the kernel in 
section 3.4 used negative indices into the signal array z, which ~ay 
seem strange, and may not work with a compiler that generates code 
to check array bounds, but is more efficient than the alternatives. 
The same effect ca~ be achieved (a little less efficiently) by passing 
the whole of the sIgnal (z) array, and also an index i to indicate 
the center of the analysis window, which must then be added into all 
references to z. That is, the first line of code inside the outer loop in 
section 3.4 would change from: 

R(m+1)=G(1,m+1)*z(m)*conjg(z(-m» 
to: 

R(m+l)=G(1,m+l)*z(i+m)*conjg(z(i-m» 

. Both. implementation techniques have a problem when the analysis 
wmdow IS not wholly contained within the extent of the signal, as in 
that case some of the values used in calculations must be zero. There 
are a number of ways to solve this problem: 
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(I The obvious solution is to check each array index before 
accessing the value, and return zero if the access is outside the 
array bounds. This is inefficient, since it requires a lot of extra 
work in the inner loops of the convolution. 

(I Another technique is to move the range checking outside the 
loops, so that the indices never exceed the array bounds. This 
can be quite efficient, especially where the analysis window is 
very long. In that case the time required to do the checking, and 
the reduced symmetry available may be offset by the reduction 
in the number of computations required at the ends of the signal. 

(I The technique used here is to pad the signal in the signal array 
with sufficient zero values that the array will not be indexed 
out of bounds. Thus the correct windowing effect is achieved, 
without any bounds checking within the convolution loops. Here 
the reduced overhead in the 'working' loops makes up for the 
extra 'dead' iterations involving computation with zero values. 

This approach is shown in the code fragment below, extracted 
frorp. a Choi-Williams distribution program. It reads the data into the 
signal array, converts the signal to an analytic signal (with a call to 
SIGANA), and then produces nplts spectra using an analysis window 
of length lwin centered points with a time separation of res samples. 

c make hif max (2*hlf+l .le. lwin) 
hlf=(lwin+l)/2-1 

c 
c 
c 

10 

5 

c 

read the signal 
this is where the zero-padding buffers are built at either 

end ... 
do 10 i=l,LWINMAX-l 

z(i)=(O.O,O.O) 
z(n+LWINMAX+i)=(O.O,O.O) 

do 5 i=LWINMAX,LWINMAX+n-l 
read (1, *) x 
z(i)=cuaplx(x,O.O) 

form the analytic signal: (and get nl as power of 2 .ge. n) 
call SIGANA(n,z(LWINMAX), .false. ,nl) 

do 8 ii=O,nplts-l 
t=ii*res+hlf+LWINMAX 
call transform(z(t),G,FFTLEN,mf,hlf,KERNMAX,choi) 

do 9 i=i, FFTLEN 

9 
8 
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write(2,*) real(choiCi» 
continue 

Table 7.1 Some TFDs and their determining functions G ( n, m) 

Time-Frequency Representation G(n,m) 

Windowed Discrete WVD ., 
ben) mE [-(M-l) (M-l)] 

2 ' 2 

0 otherwise 

Smoothed WVD using a rectangular window 1 n E [-(P-l) (P-l)] 
p 2 ' 2 

of odd length P 0 otherwise 

Rihaczek-Margenau ~[b(n + m) + b(n - m)] 

STFT using a Rectangular Window of odd 1 1m + nl ~ (P;-l) P 
length P, 0 otherwise 

1 Iml ~Inl 
Born-J ordan-Cohen Iml+l 

0 otherwise 

Choi-Williams (parameter IT) ~ e-un2j4m2 
2m 

3.6 Code fragments to generate G(n,m) 

Thi~ sectiOI~. shows example code fragments to generate the distri­
butIOn specIfication matrix G( n, m) for the functions specified in ta­
ble 7.l. 

. Note that for many of these distributions, this computation tech­
mque ?f con,"olving the bilinear kernel with the G( n, m) array is obvi­
ously mefficlent, because most of the values of G( n, m) are zero, and 
th~ others are a constant (e.g., Wigner-Ville distribution smoothed 
~lg~er-yille distri?utio~, Rihaczek-Margenau, and STFT). For these 
dlstnb~tIOns, algorlthm Improvements yield much higher performance. 
The Wlgner-Ville distribution is the only one for which such an im­
provement will be demonstrated. 
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G(n,m) for Choi-Williams distribution 

c 

2 

3 

c 

4 

calculate the distribution specification matrix "0" 
do 2 i=O,hlf 

G(i+1,1)=0 
G(1,1)=1.0 

do 4 j=1,hlf 
wt=O.O 
do 3 i=O,hlf 

G(i+1,j+1)= exp(-(sigma*i*i)/(4*j*j» 
wt= wt+2*G(i+1,j+1) 

wt=wt-G(l, j+1) 
normalize array so that we know 2.:n G(n,j) = 1.0 

do 4 i=O,hlf 
G(i+1,j+1)=G(i+1,j+1)/wt 

In this routine, the variable 'wt' is used to ensure that the sum 
along every constant 'j' (parallel to the time axis) is exactly one, a 
condition necessary to preserve the marginals of the distribution, as 
described in [2], Property 2-7. These are repeated here: 

This is obtained if 

n 

L:pz(n, k) = Iz(n)12 
k 

G(n,O) = 8(n) and L: G(n, m) = 1 
n 

This condition would not necessarily be met otherwise, due to finite 
precision in the calculations. It should be noted that the Choi­
Williams distribution selection function: 

G( ) - JrJ/7f _(y-n2/4m2 
n,m ---e 2m 

J I 
I 

does not meet these criteria, and does not hold for m = 0, at which 
point the rule G(n, 0) = 8(n) must be imposed. 

G(n,m) for Born-Jordan-Cohen distribution 

c calc'ulate the distribution specification matrix "0" 
do 4 i=O,hlf 
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2 

3 

4 

wt=1.0/(real(i)+1.0) 
do 2 j=O,i 

G(i+1,j+1)= wt 
do 3 j=i+1,hlf 

G(i+1,j+1)= 0.0 
continue 

G( n,m) for STFT 

c calculate the distribution specification matrix "0" 
wt=1.0/(real(2*hlf-l» 

2 

3 
4 

do 4 i=O,hlf 
do 2 j=O ,hlf-i 

G(i+l,j+l)= wt 
do 3 j=hlf-i+1,hlf 

G(i+1,j+1)= 0.0 
continue 

G( n,m) for Rihaczek-Margenau distribution 

c calculate the distribution specification matrix 
do 2 i=O,hlf 

do 2 j=O ,hlf 
2 G(i+l,j+1)= 0.0 

do 3 i=l,hlf 
3 G(i+1,i+1)= 0.5 

G(l, 1)=1. 0 

G(n,m) for smoothed WVD 

"0" 

Note: p is half the length of the smoothing region, calculated in a 
similar manner to the calculation of hlf from lwin. 

c calculate the distribution specification matrix "0" 
wt=1.0/real(2*p-l) 
do 4 i=O,hlf 

do2 j=O ,p-l 
2 G(i+l,j+l)= wt 

do 3 j=p,hlf 
3 G(i+l,j+1)= 0.0 
4 continue 
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3.7 Effect of windowing 
Time-windowed distributions will often be calculated in preference to 
full-length distributions. Two reasons for this. practice are: 

• To reduce unnecessary computation, when it is known that the 
signals of interest have a limited time-extent within the data 
collected; or 

• When the data stream is continuous (real-time analysis). For 
this case, it is impractical to collect all of the data before 
analysis, as results are required on early sections before later 
sections have been collected. 

Instead of performing all of the operations on the entire signal, only 
sections of the signal are read into the data arrays at once, displacing 
previous values, and the calculations are repeated for each 'window'. 
If the windows are overlapped, then some data must be retained, and 
shifted forward within the data arrays by an amount equal to the 
time-displacement of the window. 

4 Wigner-Ville distribution implementation 

Although covered in conjunction with the other bilinear time-frequency 
distributions in the previous section, the implementation of the Wigner­
Ville distribution will be presented again here, as an example of how 
to optimize the general calculation for special cases. 

There are a number of optimizations applicable to the calculation 
of the Wigner--Ville distribution (some of these also apply to the 
calculation of other TFDs): 

1. The array G( n, m) is trivial, and need not be stored or calcu­
lated. Instead, its effect can be incorporated into the algorithm. 

2. The bilinear kernel has Hermitian symmetry, and so only values 
for positive lags need be calculated (This applies for all kernels.) 

3. Two result spectra can be calculated by each Fourier transform. 
This is possible because the spectra are known to be real, the 
Fourier transform is known to be a linear operator, and the 
fast Fourier transform routine being used operates exclusively 
on complex data. 
The best way to use this optimization is to multiply the second 
set of lags by j, so that the resulting spectrum-slice will appear 
in the imaginary part of the Fourier transform result. That is: 
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4. Where the distribution will be calculated for every time value 
there is another optimization, presented by Eilouti and Khadr~ 
[~l. Here a recursive technique is used to calculate the analytic 
sIgnal for successive windows. This will not be described here . 

5. The formulation of the discrete Wigner-Ville distribution (and 
all of the other distributions in Cohen's class) presented here 
produces a result with a frequency scaling of f = M where 
th t h · . 2M' 

oer ec mques, such as the short-tIme Fourier transform result 
in a scaling of f = ';;. The consequence of this is that the 
resulting transforms are twice as long as one might expect. To 
overcome this Sun, Li, Sekhar and Sclabassi [12J have shown 
how to pr~duce a transform with the usual length, and a saving 
of a~proxlInately half the computations. Since this technique 
reqUIres the replacement of the fast Fourier transform with their 
own 'fast Fourier transform in part' (FFTP) it will not be 
described further here. ' 

Only the code for the outer loop and the transform routine will 
be presented. It is assumed that the signal array 'z' and input and 
out~ut files have been attended to by the surrounding code in a similar 
fashIOn to that presented in section 3.5. 

c 
c 
c 
c 
c 

c 
c 
c 
c 
c 

9 

11 
8 

nplts=n/res 

since we're using the 'do two transforms at once' 
optimization, nplts must be even, make it so (possibly 
at the expense of the last plot: 

nplts=(nplts/2)*2 

Here is the outer loop of the actual distribution calculation: 
Call the distribution routine for each two windows of the 
signal. The signal array z() is passed with a time ojJ.set t , , 
so that the transform2() routine can operate as though t was always 
zero. 

do 8 ii=O,nplts/2-1 
t=ii*res*2+hlf+LWINMAX 
call transform2 (z(t) ,z(t+res) ,FFTLEN,mf,hlf,wvd) 
do 9 i=l,FFTLEN 

write (2 ,*) real(wvdCi» 
do 11 i=l,FFTLEN 

write(2,*) aimag(wvd(i) 
continue 
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999 

close (2) 

return 
end 

c -------------------
subroutine transform2(zl,z2,FFTLEN,mf,hlf,R) 
connplex zi(i), z2(1), R(i) 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

connplex vi, v2 
integer FFTLEN,mf,hlf,m 

This routine forms the bilinear lag array for two kernel 
time-slices at once, for lag values up to hlf. (i. e., using 
a window of length 2*hlf+l centered on elements 0 and res.) 

The second set of lag values (those around res) are added 
into the lag array in an 'odd 'fashion, as opposed to the 
'even' fashion that the first set were inserted. 

Finally, the Fourier transform of the lag array is taken, 
forming the two time-slices at once, in the real and imaginary 

parts of the array. 

This is achieved by multiplying the second array of lags by 
j before performing the Fourier transform. Since this is a 
linear operator, this also rotates the resulting spectrum into 

the imaginary plane. 

Finally, it is known that the z array origin is not situated 
at the beginning of the signal array, but is at least 2*hlf 
from either end. Thus negative array indices may be used, and 
a substantial complexity reduction may be realized, as no 
special cases are introduced at the beginning and end of the 

signal (see section 3.5) 

vi=zl(O)*conUg(zl(O)) 
v2=z2(O)*conjg(z2(O)) 
R(1)=vl+cnnplx(-ainnag(v2),real(v2)) 
do 1 m=i,hlf 

vl=zi(m)*conjg(zi(-m)) 
v2=z2(m)*conjg(z2(-m)) 

1 

c 
c 

3 

5 
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R(m+i)=vi+cnnplx(-ainnag(v2),real(v2)) 
R(FFTLEN-m+i)=c°nUg(vi)+cnnplx(ainnag(v2),real(v2)) 

continue 

make sure any points not containing calculated values are set 
to zero, as the FFT length may be greater than the window: 

do 3 m=hlf+2,FFTLEN-hlf 
R(m)=(O.O,O.O) 

call FFT(R,mf ,FFTLEN) 
return 
end 

Other· methods 

While the general approach presented will allow calculation of most 
time-frequency distributions, it does not cope with all possibilities 
and. fo.r s~me popular cases it is not the most efficient approach: 
OptimIzatIOns of the method for the Wigner-Ville distribution have 
already been noted. If work is to center on one of these other 
tech~iques, then more computationally efficient approaches may be 
c~nsidered. Some techniques not covered by the general technique 
wIll ~e commented on 15riefly in this section, and references will be 
provIded for source~ of further information. 

5.1 The wavelet transform 
This is a linear transform, as opposed to the bilinear distributions 
discuss~d in t~is chapter, and has the interesting property of time 
resolutIOn whIch is a function of frequency. See [7) for more 
information. 

5.2 Cross-Wigner-Ville distribution 
~he most significant differences between the implementation tech­
mques for the Cross-Wigner-Ville distribution and those already de­
scribed are: 

• the necessity to read and store two data streams· , 
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• the necessity to provide storage for complex numbers m the 
output matrix; 

• the loss of some of the symmetry optimizations that could be 
performed with the bilinear transforms. 

Once these are taken into account, all of the presented techniques 
and program structure still apply. The cross Wigner-Ville distribution 
is discussed in the chapter by Boles in this volume [5]. 

5.3 Short-time Fourier transform 
The short-time Fourier transform (STFT) is a special case because it 
can be efficiently calculated by taking the spectrum of windows of the 
data. The program structure will be somewhat similar, from the point 
of view of data input, output and windowing. Instead of calculation 
of the bilinear kernel, and convolution with the relevant determining 
function, all that is necessary is to form the Fourier transform of each 
window of data, and output the squared magnitude of each frequency 
point. Some care is necessary, if windowing is required. Unlike the 
bilinear transforms noted, this technique will produce both positive 
and negative frequency values (which will be zero for analytic signals), 
and so only half of the calculated frequency vector need be output. 

Since the Fourier transform approach assumes signal stationarity 
over the period of the window, care must be taken to optimize the 
window length for signals that are not stationary. Where linear 
frequency modulated signals are involved, the optimum window length 
is (~; )-~. Wi.ndows shorter than this cause unnecessary spreading of 
the signal due to the width of the window in the frequency domain. 
Longer windows cause a smearing of the signal within the window due 
to the non-stationarity of the frequency law contained within it. 

5.4 Parametric methods 
All of the parametric spectrum estimation techniques can be used for 
time-frequency spectrum analysis in the same manner that the Fourier 
transform is used: by the assumption of short time stationarity. For a 
very detailed discussion of these methods, consult the books by Kay 
and Marple [9,10]. 

The higher resolution offered by these techniques can also be 
applied to the bilinear distributions, by replacing the final Fourier 
transform with a parametric spectrum calculation. This generally 
requires a much greater amount of computation. An algorithm is 
described by Whitehouse, Boashash and Speiser in [13]. 
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5.5 The Q-distribution 
A time-frequency technique that will not be covered in depth here is 
the Q-distribution of Altes [1], so called because it shares the constant­
Q or proportional bandwidth property of the Wavelet transform 
although it is based on the bilinear Wigner-Ville distribution rathe; 
than a linear transform. The paper [1] describes how this ~aybe 
done efficiently, after which the calculation would proceed as for the 
Wigner-Ville. 

6 Description of the TFSA package 

TFSA is th~'c~frent name of a package of signal analysis tools built 
up over a period of time by B. Boashash and his students. Its primary 
function is to produce time-frequency representations and plots from 
time series, although it has a number of auxiliary functions. Currently 
the spectrum analysis tools include the short-time Fourier transform 
the Wigner-Ville distribution, an auto-regressive (parametric) model 
based spectrum estimator, Wigner-Ville distribution modified to 
use an auto-regressive model spectrum estimator, Choi-Williams 
distribution, Born-Jordan-Cohen distribution and ZAM distribution 
[14]. 

It also has a suite of test signal generation routines with which 
a wide variety of test signals, including Gaussian white noise can be 
produced and manipulated. 
. The package consists of a large number of stand alone programs 

lmked by common file formats and an interactive menu/form based 
front end, which simplifies and speeds the use of these programs 
dramatically. The code fragments presented in this chapter were 
extracted from this package, which is constantly being updated. It 
is available for a small cost from the authors, and may be ordered 
with the order form which appears at the back of the book. 

7 Summary 

In this chapter we have presented a general approach to the calculation 
of the time-frequency energy distributions based on Cohen's class of 
distributions. The principle steps of this approach are: 

1. Produce the analytic signal from the real data sequence to be 
analysed (section 1). 

2. Calculate the bilinear kernel values (section 
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3. Convolve the bilinear kernel with the distribution specification 
function G(n, m), (sections 3.2, 3.6). 

4. Take the discrete Fourier transform with respect to lag (m) for 
each time instant (section 3.3). 

This process was demonstrated for the case of the Choi-Williams 
distribution in the code fragments in sections 3.4 and 3.5. 

This algorithm can be simplified and optimized quite significantly 
for a number of common members of Cohen's class, due to extra 
properties of the kernel. The Wigner-Ville distribution was presented 
as an example of how the kernel selection function G(n, m) can be 
incorporated into the algorithm, rather than being stored or calculated 
(see section 4). 

References were presentedfdr a number of other popular time­
frequency signal analysis techniques which do not fit into this frame­
work, in section 5. 

The final section (6) briefly described a signal analysis package 
written by the authors and their colleagues which utilizes most of the 
techniques presented. 
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