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Licence agreement

This toolbox (recently renamed TFSAP) is a companion to the book “"Time-Frequency Signal Analysis
and Processing: A Comprehensive Reference” (see Chapter 17). Prof. B. Boashash grants you the right
to install and use the enclosed software programs on your computer provided that proper acknowl-
edgments are included in any reports or publications arising from its use. You may copy the software
into any machine readable form for backup or archival purposes in support of your use of the Software
on the single computer. You may transfer the Software and licence agreement to another party if the
other party agrees to accept the terms and conditions of the Agreement, and if the Software remains
unmodified by you. YOU WILL NOT: 1. Sublicence the Software; 2. Copy or transfer the Software in
whole or in part, except as expressly provided for in the wording above; 3. Incorporate the Software
in whole or in part into any commercial product. Although considerable effort has been expended to
make the programs in TFSA 7.0 correct and reliable, we make no warranties, express or implied, that
the programs contained in this package are free of error, or are consistent with any particular standard
of merchantability, or that they will meet your requirements for any particular application. The authors
disclaim all liability for direct or consequential damages resulting from your use of this package.

Non-compete

Prof. B. Boashash, reserves the right to revoke this License Agreement if any of your Deliverables is
deemed to compete substantially with any of TESAP’s functions. Prof. B. Boashash, shall be the sole
arbiter for deciding as to whether or not your Deliverable passes this Non-Compete clause. Contact
Prof. B. Boashash immediately if you have reason to believe that any of your Deliverables fails this
restriction.

MATLAB is a trademark of The MathWorks, Inc.

UNIX is a trademark of American Telephone and Telegraph Company:.
MS-DOS and MS-Windows are trademarks of Microsoft Corporation.
TFSA is the former name of the current TFSAP toolbox.

Support policy

It is the intent of Prof. Boashash to continue to update TFSAP to reflect new ideas and algorithms, and
to correct bugs which may be discovered. Bug reports are welcome, and should contain sufficient in-
formation to reliably reproduce the aberrant behaviour. Our address for matters concerning the TFSAP
package is:

TFSAP
c/o Prof. B. Boashash

tfsap.research@gmail.com>

For fast technical support, contact the maintainer at:
tfsap.research@gmail.com>.
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Part I

TFSAP! 7.0: Tutorial

'The name "TFSA” has been replaced by "TFSAP” to take into account new advances in TF processing. P stands for
"processing”.



Chapter 1

TESAP Tutorial

The following four part tutorial takes a step-by-step approach to the use and understanding of time-
frequency signal analysis and processing. It also has an adjunct purpose in that it familiarises the user
with TFSAP 7.0 for MATLAB. The tasks presented below illustrate various aspects of time-frequency
analysis, which it is hoped, will also develop the user’s interpretation abilities, since the approach taken
is from a practical viewpoint.

Before commencing this tutorial it is recommended that users first familiarize themselves with Chapter
17 of the 2" Edition TFSAP book. Described in this part is the GUI, which contains the pop-up menus
and interface fields which control the various functions/analysis tools available. The GUI parameters
are to be varied when undertaking some of the tasks outlined below, and observance made of their
resulting effect. Such hands-on work is the best and easiest way to understand and gain experience
with the package.

1.1 Tutorial 1

In this tutorial the user is introduced to non-stationary signals, time-frequency distributions (TFDs)
and the concept of the instantaneous frequency (IF).

1.1.1 Non-stationary signals and time-frequency distributions (TFDs)

Time-frequency distributions (TFDs) are useful for displaying the time-frequency content of a signal. In
order to better understand the concept of TFDs and their use, the following steps should be completed,
using the TFSAP Main Menu:

1. Enter the Signal Generation sub-item, and generate a linear FM signal, of arbitrary stop and
start frequencies. The signal generation procedure described in Chapter 17 should be consulted
if difficulties arise in doing this. This type of signal may be easily explained through an oral
example — imagine singing a note and steadily increasing the pitch.

2. Analyse the signal using a Wigner-Ville distribution (WVD) and a spectrogram (by accessing the
Bilinear TF Analysis menu sub-item). Display the two-dimensional function and observe the
distribution of signal energy in time and frequency. A number of display formats should be
investigated, however the Tfsapl format is recommended. The advantages of such a display for
a signal that has a time-varying spectra should become soon evident.
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3. Vary the analysis window length (Lag window length) for the TFDs, and examine what effect
this has on the time and frequency resolution of the resulting distribution.

This procedure should be repeated for different signal types and then different TFDs. Many of these
TFDs, for example the B distribution have parameters which control the form of the final distribution.
Consult the relevant sections of part 3 - TFSAP 7.0: Reference Guide in order to better understand the
effect that changes in these parameters has on the resulting distributions.

Then add noise to the signal and repeat the exercise. Observe the effect the noise has on the (¢, f)
representation as the signal-to-noise ratio (SNR) decreases. At a certain SNR many TFDs will fail to
resolve the time-frequency content of the linear FM signal.

1.1.2 The instantaneous frequency (IF)

The IF is an important quantity that in many cases enables single parameter characterisation of non-
stationary signals. The hands-on work from the previous section should have laid the foundations for
understanding the IF. The simple signals considered there, and the time-frequency visualisation lucidly
illustrate the intuitive nature of IF description. The variation of the frequency over the time evolution
of the signal is essentially the IF — this is what one would have considered (possibly without realising),
in establishing a “mental picture” of the signal.

The IF Estimation pop-up of the TFSAP 7.0 package contains many different routines for estimating
the IF of a signal. These routines should now be employed to estimate the IF of some test signals. In
addition to this, noise (available in the Signal Generation module) should also now be added to the
signals to demonstrate the relative noise performance of the various estimators.

Firstly the Signal Generation pop-up should be accessed in order to generate the test signals. The
linear FM, cubic FM and stepped FM are suggested first. Be sure to consider each type of signal by
itself and without noise. Then select a few IF estimators (e.g. the peak of the WVD, weighted phase
difference and adaptive LMS). Use these techniques to estimate the IF of the test signals. Observe that,
as more noise is added, the performance of these procedures varies markedly.

Then, what happens if you add two linear FM signals together and estimate the IF of the result?

1.1.3 Whale data

A record of whale data is provided with the TFSAP 7.0 package (this can be found under the Signal
Generation menu item, by selecting the Demo Signals option in the Signal Type field. This data
contains 7000 data points and was collected at a sample rate of 8 kHz and is called whalel. Use the
TFSAP 7.0 Visualisation routine or the MATLAB plot command in order to observe this data in the
time domain. By viewing only short segments of say 512 data points at a time you may be better able
to discern the temporal characteristics of the signal. Use the MATLAB command line to do this. As an
example, to view the first 512 data points type plot(whale1(1:512)).

Observe that it is difficult to infer the time-frequency content from these shorter segments. Now cal-
culate the power spectrum of the complete signal using the psde utility. Be sure to set the FFT length
fft_len and segment length seg_len fields to appropriate values (e.g. set both to the data length in order
to calculate the periodogram). Observe that although the spectral content of the signal is displayed, no
information is given as to what time specific spectral components are present.

Analyse the signal using some of the TFDs available. Use a window length of about 127 data points,
and a time resolution of 100 initially. Observe how the time-frequency content of the signal is clearly
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displayed. A single signal component whose IF changes with time is presented. Estimate this IF using
some of the IF estimation tools available. Try the RLS (in Adaptive) and Peak of the WVD first. For
the RLS be sure to try different forgetting factors (suggested range 0.5-0.9875). Why does the forgetting
factor of 0.5 give such a noisy IF estimate?

1.2 Tutorial 2

In this tutorial the user will become more familiar with TFDs by using them to analyse a range of
signals. The effect of cross-terms due to signal and noise will also be explored.

1.2.1 TFDs and cross-terms

By now, it should be clear that TFDs do not always yield exactly the expected distribution of signal
energy in the time-frequency plane. The example of the two linear FM signals should have dramatically
illustrated this point. The problem arises due to the quadratic signal product that is formed when
calculating any quadratic TFD. This ensures that there are extra terms created (cross-terms) between
any two separate signal components. The position and form of these cross-terms varies depending on
the type of TFD selected. One should now generate two sinusoids and explore a variety of TFDs to see
how the cross-terms manifest themselves. Then employ three sinusoids and see how many cross-terms
eventuate.

Next generate a linear FM signal and add noise (try Gaussian noise with 3dB, 0dB and -3dB signal-to-
noise ratios). Analyse these signals first with the WVD and vary the data window length. Observe how
the noise and cross-terms mask the signal auto-term. Next analyse the same signals using the spectro-
gram and MBD. For the spectrogram observe the effect that the window length has on the resolution of
the IF component. For the CWD vary the smoothing parameter in order to observe how the cross-terms
are reduced to give the IF component.

Two additional signals are provided with the TFSAP 7.0 package. The first is a synthetic signal contain-
ing a variety of components. This signal is called signall. The second signal was produced by a large
brown bat! (Eptesicus fuscus). This signal was sampled at 142 kHz and is called bat1.

First analyse the synthetic signal by applying a few TFDs (i.e. spectrogram, WVD, and CWD). Vary the
window length and other pertinent parameters in order to try reveal the time-frequency content of the
signal. There should be four distinct IF components. These are: (i) a stationary tone at 0.05Hz, (ii) a
linear FM component, (iii) an FM whose IF equals the summation of a linear and sinusoidal component,
and (iv) an impulse at sample number 750.

Next add noise to this synthetic signal and repeat the procedure. Observe how the noise can hinder
the interpretation of the time-frequency content of the signal. In particular component number (iii)
becomes increasingly difficult to resolve as the SNR decreases. Observe also that the stationary tone is
always much easy to find. Why is this so?

Finally, analyse batl data using a selection of TFDs. How many signal components are present in this
signal? What frequency law does each component have? Try estimating the IF of this signal using the
peak of the WVD. Can you explain the result?

!The data was kindly provided by C. Condon, K. White and A. Fang from the University of Illinois.
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1.3 Tutorial 3

In this tutorial polynomial TFDs will be used to analyse data and the effect of cross-terms further
explored. The use of time-scale analysis for detecting transients in real data will also be considered.

1.3.1 Polynomial WVDs (PWVDs)

There is another cross-term effect that is not so obvious. It occurs for single component signals that
possess non-linear frequency modulation. It is essentially the same effect as that which occurs for two
sinusoidal signals summed together, but the cross-terms occur due to intra-component interaction. The
action of the quadratic signal product in quadratic TFDs in effect causes a demodulation, where linear
FM signals are transformed into sinusoids, and mapped into the time-frequency planes based on their
IFs. If, however, the signal’s FM is of higher-than-first, or not a polynomial at all, demodulation is not
complete and cross-terms exist, as per the examples undertaken in the previous section. This may now
be confirmed by generating a quadratic or hyperbolic signal and calculating the WVD. Other TFDs
should also be examined.

Cross-terms of this type are particularly troublesome because they distort the fundamental informa-
tion (namely the time-varying frequency behaviour). It is for this reason that polynomial WVDs have
been developed. Essentially they multiply more (than two) signal terms together to demodulate more
complicated signals. In the Multilinear TF Analysis sub-menu of TFSAP 7.0, there are two PWVDs
available - a 4th order and a 6th order. Thus the 4th order PWVD yields the appropriate IF law for a
signal with frequency modulation up to 4th (polynomial) order with a similar behaviour for the 6th
order PWVD. Linear, quadratic and cubic FM signals can therefore be appropriately reconstituted in
the time-frequency plane using a 4th order PWVD (you should verify this now).

Further experimentation with varying the parameters should also be undertaken (see the manual for
details), as well as investigation of the representation of non-polynomial FM signals like the hyperbolic
and sinusoidal available in the Signal Generation pop-up window. There is an inevitable drawback
to such higher order TFDs, however. As may be expected, they also produce cross-terms. Due to their
multilinear nature, they produce many more cross-terms than traditional quadratic TFDs. The signals
generated previously to examine the cross-term phenomena may now be used to investigate this effect
for PWVDs.

1.3.2 EEG data?

Finally, some EEG data which contains transients in the form of spikes has been provided. This data
has been sampled at a rate of 50 Hz and is called eegl. Use the EMBD, CKD and MDD to analyse this
data. Observe how the transients manifest themselves in the resulting distribution. Then use the Scale
Analysis utility in order to calculate the wavelet transform of this signal. Set the X Axis Label to ‘scale’.
Observe how the transients manifest themselves in the time-scale representation.

2The data were collected at the Royal Brisbane and Womens hospital in Brisbane, Australia as part of several ARC,
NHMRC and QNREF grants.
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1.4 Tutorial 4

In this tutorial the student will become familiar with the discrete wavelet transform and its correspond-
ing time-scale energy distribution known as the scalogram (the proportional bandwidth counterpart of
the spectrogram). The discrete wavelet transform is a linear operation that transforms the input time
domain signal into the wavelet domain. The basis functions of the wavelet domain are called the
wavelets. An important characteristic of wavelets is that, unlike sines and cosines (i.e. the basis func-
tions of the Fourier transform) the individual wavelets are localised in both time and frequency. The
local frequency of wavelets, however, is not linked to the frequency modulation, but to the concept of
scale. Time-Scale analysis using TFSAP 7.0 is restricted to one particular class of complete orthonormal
wavelets introduced by I. Daubechies® (for more details, see Chapter 2 and Section 4.1 of the TESAP
book).

1.4.1 Wavelets

All basis functions of the wavelet domain represent the scaled and translated versions of the basic (or
mother) wavelet. Generate (using MATLAB) unit sample sequences 6[n — 6], §[n — 10] and §[n — 58] each
of length 1024. Then apply the inverse (Daubechies) wavelet transform D4 (filter with 4 taps) to these
three unit sample sequences. What is the result? Repeat the same using D20 wavelet transform and
observe that D20 wavelets are much smoother than D4 wavelets. Can you explain why?

1.4.2 Signal reconstruction

The wavelet transform can be used in signal compression. In order to illustrate this, generate using
MATLAB a sequence of length 1024: e~*("=109) cos 27 fon - u[n — 100] + e=22("=690) cosdn fy - ufn —
600], where o = 0.05 and fy = 0.1. Then apply the wavelet transform to this sequence (D4 filter
with 4 taps). The majority of the wavelet coefficients will be negligible. Set the smallest (in terms of
their absolute values) 512 wavelet coefficients to zero, and reconstruct the original signal. This gives
a compression ratio of 2:1. Calculate the signal-to-noise ratio (SNR) of the reconstructed signal where
SN R = 10log(Ps/P.) where P; is the power of the reconstructed signal and P, is the power of the error
between the reconstructed signal and the original signal. Repeat this for compression ratios of 3:1, 4:1,
5:1 and 6:1. Plot these results. What can you conclude? Repeat this experiment with the D20 wavelet
(filter with 20 taps) and compare the result.

1.4.3 Scalogram

The wavelet transform takes N samples of the input signal and creates N wavelet coefficients. These
N coefficients have to be properly arranged and squared in order to form the time-scale energy distri-
bution known as the scalogram. First generate a sinusoid of 1024 data points and then set the middle
15 points of this signal to zero (this effectively produces a signal which has zero amplitude for a short
while). Use the “scalogram” function of TFSAP 7.0 to generate the time-scale representation. Experi-
ment with different wavelets and compare this representation with that given by the spectrogram (vary
the window length of the spectrogram). Next use the ”scalogram” function to analyse the demo signal

*M. Vetterli and C. Herley, Wavelets and Filter Banks: Theory and Design, IEEE Transactions on Signal Processing, Vol. 40
No. 9, September 1992.
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test signal (‘signall’). Try all three types of the wavelet transforms (D4, D12 and D20), and compare
the results.

1.5 Summary

These four tutorials have provided a unique introduction to time-frequency signal analysis and the
toolbox TESAP 7.0 for MATLAB. They have been designed in order for the new user to experiment with
this type of analysis in a generally unrestrictive way, where some guidelines pointing out significant
features and properties were given. This allows the user to personally discover (often through trial and
error) the advantages and intuitive notions of time-frequency signal analysis. Such hands-on knowl-
edge and experience is the best place to start one’s journey into this realm of non-stationary signal
analysis.

1.6 Answers to questions

e Q. What happens if you add two linear FM signals together and estimate the IF of the result?
A. The signal is no longer mono-component, and depending on the type of IF estimator used
the results will be quite different. The concept of the IF was developed for the mono-component
signal case, making interpretation of the results of the IF estimation algorithms applied to the
multicomponent case quite difficult.

e Q. Why does the forgetting factor of 0.5 give such a noisy IF estimate?
A. The lower the forgetting factor the less importance is placed on past data values (i.e., less
memory is utilised). Therefore the algorithm is better able to track fast changing components, but
will however tend to be affected by noise. Since the amplitude of the mono-component signal
varies considerably, the SNR of the signal is often quite low. This causes the estimate to have a
high variance.

¢ Q. How many signal components are present in this signal? What frequency law does each com-
ponent have?
A. There are three components each with a hyperbolic law.

o Q.Try estimating the IF of this signal using the peak of the WVD. Can you explain the result?
A. At any time the signal component with the largest amplitude will be selected as the IF estimate
when using the peak of the WVD.

e Q. What is the result of applying the wavelet transform to the three unit sequences?
A. Three of the 1024 possible wavelet functions in the complete orthonormal basis are produced.

e Q. Explain why the D20 wavelets are much smoother than the D4 wavelets?
A. For a higher number of wavelet filter coefficients it is necessary that a higher order of moments
vanish (in order to formulate enough equations). For the case of p vanishing moments this is
known as the approximation condition of order p. Hence the D20 wavelets will have higher-
order continuous derivatives.

e Q. Plot these results. What can you conclude?
A. The signal-to-noise ratio decreases as the compression ratio increases. Since the D20 is a
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smoother wavelet than the D4 it will have a higher numerical accuracy and so will give better
compression performance.
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Chapter 2

Technical Reference

2.1 TFSAP 7.0 MATLAB Functions

Function Description Page
ambf  Ambiguity function 12
analyt  Generates the analytic signal of a real input signal 14
cmpt Generate TFD of a signal based on Compact Support Kernels 15
gsig Generates various test signals 16
Ims Least mean square adaptive IF estimation 18
mdd Multidirectional Distribution (mdd) 19
pde Generalised and weighted phase difference IF estimation 20
psde Computes the power spectral density 21
pwvd4  4th order kernel polynomial Wigner-Ville distribution 23
pwvdé  6th order kernel polynomial Wigner-Ville distribution 24
pwvpe  Peak of 6th order polynomial Wigner-Ville distribution IF estimation 26
quadknl Generates quadratic class time-lag kernels 27
quadtfd Generates various quadratic class TFD’s 30
rihaczek  Rihaczek distribution 32
rls Recursive least square adaptive IF estimation 34
sfpe Peak of spectrogram IF estimation 35
spec Direct implementation of STFT and Spectrogram distributions 36
specSM  Enhanced spectrogram using the S-method 38
stft Short-time Fourier Transform (Stft) 39
synthesize Synthesizes a time-domain signal from time-frequency distribution 41
tfsa7 Opens GUI interface 43
tfsapl =~ TFSAP time-frequency plot 44
unphase Recovers the phase of a signal 47
wd Wigner Distribution 48
wiall TFSAP waterfall plot 49
wlet Wavelet (Time-Scale) Analysis 50
wvd Wigner-Ville distribution 51
wvpe  Peak of Wigner-Ville distribution IF estimation 53
xwvd  Cross Wigner-Ville distribution 54
zce Zero-crossing IF estimation 55

10
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Internal Function Description

flatwf Used in tfsapl to create TESAP plot

getWin Convert window ID to window string

goodfonts Select appropriate font types and sizes

helpdata Help information

oploy Function to find coefficients for polynomial
tfsademo TFSAP 7.0 demo file

tfsahelp Help frame

tfsamain Main TFSAP frame

tfsamenu Handles the menus in the main frame

tfsaopen Sets up main frame

tfsa_plot2d TFSAP vector plot frame

tfsa_wrn Handles warnings displayed on command line
uif_base Template frame called by other uif_* frames
uif_btfd Callback to manage the bilinear TFD frame

uif_defs Declared constants used in uif_* frames

uif_dirtfd Direct method of implementation of some TFDs frame
uif_gsig Callback to manage the test signal generation frame
uif_ife Callback to manage the instantaneous frequency estimation frame
uif mtfd Callback to manage the multi-linear tfd frame
uif_plot Callback to manage the plotting frame

uif_synth Callback to manage the synthesis frame

uif_ts Callback to manage the time-scale frame

uideflts Default values for all uicontrols

unphase Recovers phase of the analyic input signal

The internal TFSAP 7.0 functions support the package and are not meant for use by the user and are
listed here for reference only.

11
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ambf

Purpose

Computes the ambiguity function of an input signal.

Synopsis

af = ambf(signal);

Parameters
tfrep The computed time-frequency distribution (ambiguity function) of a signal. size(af)
will return [a, b], where a is the next largest power of two above window _length,
and b is floor(length(signal) /time_res) - 1.
signal An analytic signal is required for this function, however, if signal is real, a default
analytic transformer routine will be called from this function before computing
tfrep.
Description

The ambiguity function (AF) implemented in the TFSAP package is the symmetric ambiguity
function, also known as Sussman ambiguity function. The AF for the continuous case is defined as

A.(0,7) = /_OO z (t + %) z* (t - %) e~ I2m0t gy

o0

For the implementation, we take the Fourier transform of the kernel K. (¢t,7) = z (t + §) 2* (¢t — %) for

each lag 7, i.e.,
M

A(0.k) = > z(n+k)z*(n— k)e 720,
n=—M
where the signal, z(n), is defined for n = [-M : M]. The lag, k, is chosen so that the product of the
shifted sequences z(n + k) and z*(n — k) be non-zero. This results in k = [-M : M].

Therefore, the algorithm is as follows. For the first value of the lag, k&, we compute the kernel

K.(n,k) = z(n+ k)z*(n — k) and then take the FFT of the sequence. We choose the second value of the
lag, compute the kernel and take the FFT of the sequence. We repeat the procedure for all values of the
lag. The result of each FFT is stored in a matrix (as a line column) for the particular value of the lag.
The matrix gives the AF.

Figure 2.1 shows the image of the absolute value of the ambiguity function of a linear FM signal.

12
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Absolute Value of Ambiguity Function

40

Lag(s)

-40

-04 -0.3 -0.2 -0.1 0.1 0.2 0.3 04 0.5

0
Doppler(Hz)

Figure 2.1: Absolute value of the ambiguity function of a linear FM signal, as generated by ambf and
displayed using image.
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analyt
Purpose

Compute analytic signal of a real input signal.

Synopsis

output = analyt(signal);

Parameters
output Generated analytic signal (complex).
signal Input real one dimensional signal.
Description

This function computes the analytic version of a real signal.

14
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cmpt

Purpose

Generate Time-Frequency Distributions based on Compact Support Kernels.

Synopsis

tfd = cmpt( signal, kernel [, kernel options]);

Parameters

tfd

signal

kernel

kernel options

Description

tfd is the computed time-frequency distribution. Size of the TFD will be [M, N],
where M is the next largest power of two of signal length, and N is length of the
signal.

Input one dimensional signal to be analysed.

The determining kernel function. kernel is a string defining a predefined kernel.
Predefined types:

"csk’: Compact Support Kernel
‘ecsk’: Extended Compact Support Kernel

Parameters to control shape and spread of kernel.

"esk’
C: parameters C controls the shape of compact support kernel
D: parameters D controls the spread of compact support kernel
"ecsk’
C: parameters C controls the shape of extended compact support kernel
D, E: parameters D, E controls the spread of extended compact support kernel

This function computes Time-Frequency Distributions of any signal based on Compact Support

Kernels.
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gsig
Purpose

Generate various time and frequency-varying test signals

Synopsis
output = gsig( data_typel, f1, f2, num_samples, sig_type);

output = gsig( data_type2, cf, mf, num_samples, sig_type, fdev);
output = gsig( data_type3, f1, f2, num_samples, sig_type, ns);

Parameters

output Generated signal.

data_typel One of:

‘lin” Linear FM
‘quad’ Quadratic FM
‘cubic’ Cubic FM
‘hyp’ Hyperbolic FM
with
fl Start frequency (normalised, where sampling frequency = 1).
2 End frequency (normalised, where sampling frequency = 1).
data_type2 ‘sin’ Sinusoidal FM
with
cf The central frequency (normalised, where sampling frequency = 1).
mf The modulation frequency (normalised, where sampling frequency =1).
fdev The frequency deviation.
data_type3 ‘step’ Stepped FM
with
fl The start frequency (normalised, where sampling frequency = 1).
f2 The end frequency (normalised, where sampling frequency =1).
ns The number of steps.
sig_type For real data set sig_type=1 otherwise the result is complex.

num_samples  Length of signal to be produced.

16
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Description

This function generates various test signals including uniformly distributed white noise. The signals
generated can then be analysed using tools available within TESAP 7.0, or saved to disk! for use at a
later date.

Examples

Generate a 512 point stepped real FM signal, with 3 steps between 10 Hz and 40 Hz, where the
sampling frequency is 200Hz:

signal = gsig( ’step’, 0.05, 0.2, 512, 1, 3);

This signal is shown in Figure 2.2, and is used in several other examples in the manual.

1

0.8

0.6

0.4

0.2

Amplitude
o
———

_1 Il Il Il Il Il Il Il
50 100 150 200 250 300 350 400 450 500

Sample Number

Figure 2.2: Stepped linear FM signal generated by gsig.

1Use the MATLAB save command to do this.
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Ims
Purpose

Estimate the instantaneous frequency of the input signal using the least mean square adaptive
algorithm.

Synopsis

ife = Ims( signal, mu);

Parameters
ife Instantaneous frequency estimate (real).
signal Input one dimensional signal (real or analytic).
mu Adaptation Constant.

Description

This function estimates the instantaneous frequency of an input signal using the least mean square
adaptive algorithm. A one-tap transversal filter is used to achieve this.

Examples

Compute the instantaneous frequency estimate of the signal t ime1 by using the 1ms function with an
adaption constant of 0.8.

ife_lms = 1ms( timel, 0.8);

See Also

rls, pde, sfpe, wvpe, zce

18
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mdd

Purpose

Computes the multi-directional distribution of an input signal.

Synopsis

[tfd, kernel, amb] = mdd( signal, C, D, E, theta, tr);

Parameters
signal Input one dimensional signal to be analyzed.(real or analytic) .
C Slope adjustment parameter for each branch of the multi directional kernel (MDK).
D Half support of the MDK along the direction perpendicular to the i’ branch.
E Half support of the MDK along the direction parallel to the ' branch.
theta Direction of the " branch.
tr Time resolution
kernel MD Kernel
amb Ambiguity domain function
Description

This function generates a (t, f) representation based on the multi-directional kernel.

Examples

Generate a (t, f) distribution of a signal "timel” using multi-directional distribution, with two
branches MDK.

si= gsig(’lin’, 0.05, 0.3, 256, 1);

s2= gsig(’lin’, 0.1, 0.35, 256, 1);

s3= gsig(’lin’, 0.4,0.36, 256, 1);

sig = sl+s2+s3;

C=[0.1 0.1]; D=[0.1 0.1]; E=[0.23 0.5]; theta=[96 64]; tr=2;
tfd_mdd= mdd(sig, C, D, E,theta, tr);
figure;tfsapl(sig,tfd_mdd) ;

See Also

quadtfd, wd, wvd
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pde
Purpose

Estimates the instantaneous frequency of the input signal using general phase difference (FFD, CFD,
4th, 6th orders) and weighted phase difference estimation.

Synopsis

ife = pde( signal, order, [ window _length]);

Parameters
ife Instantaneous frequency estimate (real).
signal Input one dimensional signal (real or analytic).
order Order of the finite phase difference estimator. Available estimator orders are: 1, 2, 4,

6.

window_length Kay smoothing window length in the case of weighted phase difference estimator.

Description
This function estimates the instantaneous frequency of the input signal using either the general phase
difference estimation approach or Kay’s frequency estimator (weighted phase difference estimator).

The order of the phase difference selected should reflect the signal phase law and the signal-to-noise
ratio.

Examples

Compute the instantaneous frequency estimate of the signal t ime1 by using the 4th order general
phase difference estimator.

ife = pde( timel, 4);

Compute the instantaneous frequency estimate of the signal t ime1 by using the Kay smoothing
weighted phase difference estimate with a smoothing window length of 32 data points.

ife = pde( signal, 2, 32);

See Also

Ims, rls, sfpe, wvpe, zce
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psde
Purpose

Estimate the power spectrum of a signal.

Synopsis

PSD = psde(signal, seg_len, fft_len, overlap, window_type);

Parameters
signal The signal one dimensional signal which may be real or complex.
seg-len The length of each segment. NB seg_len must be less than or equal to the fft_len.
fft len The length of the fft. If this is not radix two in will be shifted up to the next radix
two number.
overlap The size of the overlap between the segments.

window_type  The window type can by hamm, hann, bart or rect. The length of window is
determined by the segment length.

Description

Estimates the power spectral density of input data stream. The data is divided into segments. The
periodogram of each segment is calculated and the result is the average of the periodograms.
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rls
Purpose

Estimate the instantaneous frequency of the input signal using the recursive least square adaptive
algorithm.

Synopsis

ife = rls( signal, alpha);

Parameters
ife Instantaneous frequency estimate (real).
signal Input one dimensional signal (real or analytic).
alpha Forgetting factor.

Description

This function estimates the instantaneous frequency of an input signal using the recursive least square
adaptive algorithm. A one-tap transversal filter is used to achieve this.

Examples

Compute the instantaneous frequency estimate of the signal t ime1 by using the r1s function with a
forgetting factor of 0.8.

ife_rls = rls( timel, 0.8);

See Also

Ims, pde, sfpe, wvpe, zce
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pwvd4
Purpose

Computes the polynomial Wigner-Ville distribution

Synopsis

tfrep = pwvd4( signal, lag_win_len, time_res [, fft_length]);

Parameters
tfrep The computed time-frequency distribution. size(tfrep) will return [a, b], where a is
the next largest power of two above lag_win_len, and b is
floor(length(signal)/time_res) - 1.
signal Input one dimensional signal to be analysed. An analytic signal is required for this
function, however, if signal is real, a default analytic transformer routine will be
called from this function before computing tfrep.
lag_win_len The length of the data window used for analysis..
time_res The number of time samples to skip between successive slices of the analysis.
fft length Zero-padding at the FFT stage of the analysis may be specified by giving an
tft length larger than normal. If fft_length is not specified, or is smaller than the
lag_win_len, then the next highest power of two above lag_win_len is used. If
fft_length is not a power of two, the next highest power of two is used.
Description

Computes the polynomial Wigner-Ville distribution (fourth order kernel) of the input signal. An
analytic signal generator is called if the input signal is real. The supplied length of the analysis
window defines whether the “true” pwvd or a pseudo (windowed) pwvd is computed. This function
is fully optimised for speed.

Examples

Compute the PWVD4 of a 1024 point signal using a time-resolution of 20:

tf = pwvd4( signal, 1023, 20);
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pwvdé
Purpose

Computes the polynomial Wigner-Ville distribution

Synopsis

tfrep = pwvd6( signal, lag_win_len, time_res, interp [ fft_length]);

Parameters
tfrep The computed time-frequency distribution. size(tfrep) will return [a, b], where a is
the next largest power of two above lag_win_len, and b is
floor(length(signal)/time_res) - 1.
signal Input one dimensional signal to be analysed. An analytic signal is required for this
function, however, if signal is real, a default analytic transformer routine will be
called from this function before computing tfrep.
lag_win_len The length of the data window used for analysis.
time_res The number of time samples to skip between successive slices of the analysis.
interp Number of times to interpolate the input signal before computing the kernel. If this
value is not a power of 2, it will be replaced by the radix 2 value above it.
fft length Zero-padding at the FFT stage of the analysis may be specified by giving an
fft length larger than normal. If fft_length is not specified, or is smaller than the
lag_win_len, then the next highest power of two above lag_win_len is used. If
tft_length is not a power of two, the next highest power of two is used.
Description

Computes the polynomial Wigner-Ville distribution (sixth order kernel) of the input signal. An
analytic signal generator is called if the input signal is real. The supplied length of the analysis
window defines whether the “true” pwvd or a pseudo (windowed) pwvd is computed. This function
interpolates the signal in the time domain to get the required values of the signal at the fractional time
lags specified by the sixth order kernel. This function is fully optimised for speed.

Examples

Compute the PWVD6 of a 1024 point quadratic FM signal a time-resolution of 10. The interpolation
degree is chosen to be 8.

signal = gsig( ’quad’, 0.1, 0.4, 1024, 1 );

tf = pwvd6( signal, 511, 20, 8, 1024 );
tfsapl( signal, tf, ’TimePlot’, ’on’, ’FreqPlot’, ’on’ );
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The resulting PWVD6 is shown in figure 2.3.
Polynomial-WVD of Quadratic Signal
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Figure 2.3: Sixth order kernel PWVD of a quadratic FM signal. The plot was generated using the
tfsapl utility.
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pwvpe
Purpose

Estimates the instantaneous frequency of the input signal by extracting the peaks of the sixth order
kernel polynomial Wigner-Ville distribution.

Synopsis

ife = pwvpe(signal, lag_win_len, time_res, interp [ fft_length]);

Parameters
ife Instantaneous frequency estimate (real).
signal Input one dimensional signal to be analysed. An analytic signal is required for this
function, however, if signal is real, a default analytic transformer routine will be
called from this function before computing tfrep.
lag_win_len The length of the data window used for analysis.
time_res The number of time samples to skip between successive instantaneous frequency
estimates.
interp Number of times to interpolate the input signal before computing the kernel. If this
value is not a power of 2, it will be replaced by the radix 2 value above it.
tft length Zero-padding at the FFT stage of the analysis may be specified by giving an
fft length larger than normal. If fft_length is not specified, or is smaller than the
lag_win_len, then the next highest power of two above lag_win_len is used. If
fft length is not a power of two, the next highest power of two is used.
Description

Computes the polynomial Wigner-Ville distribution (sixth order kernel) of the input signal and then
takes the peak of this distribution in order to form the instantaneous frequency estimate. An analytic
signal generator is called if the input signal is real. The supplied length of the analysis window
defines whether the “true” pwvd or a pseudo (windowed) pwvd is computed. This function
interpolates the signal in the time domain to get the required values of the signal at the fractional time
lags specified by the sixth order kernel. This function is fully optimised for speed.

See Also

pwvdo6
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quadknl

Purpose

Generate Quadratic Class Time-Lag Kernel Functions

Synopsis

kernel = quadknl( kernel_type, window_length, full kernel [ ,kernel_options] );

Parameters

kernel

kernel_type

window_length

full kernel

kernel_options

The generated time-frequency kernel, indexed as kernel(time, lag).

The kernel is arranged in memory such that the zero time, zero lag point is located
at kernel(1,1), and the positive time-lag quadrant extends to
kernel((window_length+1)/2, (window_length+1)/2). Negative values are indexed
from window_length down to (window _length+1)/2 + 1.

The determining kernel function of type:

‘wvd’ Wigner-Ville

‘smoothed”  Smoothed Wigner-Ville

‘specX’ Spectrogram estimate

m’ Rihaczek-Margenau-Hill

‘cw’ Choi-Williams

‘bjc’ Born-Jordan

‘zam’ Zhao-Atlas-Marks

b’ B-distribution

‘mb’ Modified B-distribution

‘'emb’ Extended Modified B-Distribution

Size of the generated kernel. Kernel will be defined in both time and lag
dimensions from -(window_length/2) to +(window_length/2). See above for
storage map.

A boolean, indicating whether the full kernel is to be generated, or just the first
quadrant (positive time and lag only). Passing 1 indicates the former case, while 0
indicates the latter. In the latter case, the returned size of the kernel will be
(window_length+1)/2 in both dimensions.

Some kernels require extra parameters:
‘smoothed”  kernel_option = length of smoothing window

kernel_option2 = type of smoothing window, one of:
‘rect’, ‘hann’, Thamm’, ‘bart’

‘stft’ kernel_option = type of smoothing window, one of:
‘rect’, ‘hann’, "hamm’, ‘bart’
‘cw’ kernel_option = Smoothing parameter
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‘zam
lb/

mb’
emb’

Description

kernel_option = ZAM ‘a’ parameter

kernel_option = B-distribution smoothing parameter 3
kernel_option = modified B-distribution parameter «
kernel_option = extended modified B-distribution parameter «
kernel_option = extended modified B-distribution parameter

This function allows the user to generate the stand-alone kernel function associated with a particular
quadratic time-frequency distribution.

Examples

Read the value of a 255 point Choi-Williams kernel (smoothing value = 10) at time = 12, lag = -50:

k = quadknl( ’cw’, 255, 1, 10);
val = k(1+12, (255+1)-50);

Note that the 1 added on to the 12 and 255 is necessary because MATLAB matrices begin indexing at 1,
instead of zero. Hence k(1,:) is at time 0, k(2,:) at time 1, ..., k(13,:) at time 12.

Alternatively, since the Choi-Williams kernel is symmetric, we can use:

k = quadknl( ’cw’, 255, 0, 2);

val = k(13, 51);

Figure 2.4 shows the output of the command:

k = quadknl( ’cw’, 63, 1, 10);

mesh (k) ;

Choi-Williams Time-Lag Kernel

Lag(s) 40 -40

Time(s)

Figure 2.4: Time-lag Choi-Williams kernel, as generated by quadknl and displayed using mesh.
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See Also

quadtfd
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quadtfd

Purpose

Generates various quadratic time-frequency distributions.

Synopsis

tfrep = quadtfd( signal, lag_win_len, time_res, kernel [, kernel_options], [fft_length]);

Parameters

tfrep The computed time-frequency distribution. size(tfrep) will return [a, b], where a is
the next largest power of two above lag_win_len, and b is
floor(length(signal)/time_res) - 1.

signal Input one dimensional signal to be analysed. An analytic signal is required for this
function, however, if signal is real, a default analytic transformer routine will be
called from this function before computing tfrep.

lag_win_len This is the lag window length and controls the size of the kernel used for analysis.
The parameter lag_win_len must be odd. The kernel used will be defined from
-(lag-win_len+1)/2 to +(lag_win_len+1)/2 in both time and lag dimensions,
although the time dimension may be further modified by the smoothing window
length for relevant distributions.

time_res The number of time samples to skip between successive slices of the analysis.

kernel The determining kernel function. kernel is a string defining a predefined kernel of
type:

‘wvd’ Wigner-Ville

‘smoothed”  Smoothed Wigner-Ville

‘specX’ Spectrogram estimate

Tm’ Rihaczek-Margenau-Hill

‘cw’ Choi-Williams

‘bjc’ Born-Jordan

‘zam’ Zhao-Atlas-Marks

b’ B-distribution

‘mb’ Modified B-distribution

‘emb’ Extended Modified B-distribution

kernel options Some kernels require extra parameters:

‘smoothed”  kernel_option = length of smoothing window
kernel_option2 = type of smoothing window, one of:
‘rect’, ‘hann’, ‘hamm’, ‘bart’

‘specx’ kernel_option = type of smoothing window, one of:
‘rect’, ‘hann’, "hamm’, ‘bart’
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‘cw’ kernel_option = Smoothing parameter

‘zam’ kernel_option = ZAM ‘a’” parameter

b’ kernel_option = B-distribution smoothing parameter 3

‘mb’ kernel_option = Modified B-distribution parameter o

‘emb’ kernel_option = Extended Modified B-distribution parameters o and 3
fft_length Zero-padding at the FFT stage of the analysis may be specified by giving an

fft length larger than normal. If fft_length is not specified, or is smaller than the
lag_win_len, then the next highest power of two above lag_win_len is used. If
tft_length is not a power of two, the next highest power of two is used.

Description

This function generates various quadratic time-frequency distributions (these are listed under
Parameters- kernel). The code has been optimised for computational efficiency. For example, the use
of symmetry and realness for a particular distribution has been utilised where possible in order to
reduce the number of computations.

Examples

Generate the smoothed Wigner-Ville distribution of signal t 1, using an analysis (lag) window length
of 127, a time resolution of 15 points and a a parameter value of 0.05. This is illustrated in Figure 2.5.

tl = gsig( ’step’,0.05, 0.45, 512, 1, 3 );
tfl = quadtfd( t1, 127, 15, ’mb’, 0.05, 512 );
tfsapl( t1, tfl, ’plotfn’, ’wfall’ );

Modified B-Distribution

Time (s)

Frequency (Hz)

Figure 2.5: Waterfall plot of the Modified B-Distribution of a stepped FM signal.

See Also

quadknl
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rihaczek
Purpose

Calculates the Rihaczek, Levin or windowed-Rihaczek/Levin time-frequency distribution.

Synopsis

tfrep = rihaczek(signal [,time_res] [,fft_length] [,rih_levin] [, window_length] [,window _type]);

Parameters

tfrep The computed time-frequency distribution. size(tfrep) will return [a/2+1, b], where
a is the next largest power of two above signal_length, and b is
floor(length(signal)/time_res) - 1.

signal Input one dimensional signal to be analysed. An analytic signal is required for this
function, however, if signal is real, a default analytic transformer routine will be
called from this function before computing tfrep.

time_res The number of time samples to skip between successive slices of the analysis.

fft_length Zero-padding at the FFT stage of the analysis may be specified by giving an
fft length larger than normal. If fft_length is not specified, or is smaller than the
window_length, then the next highest power of two above window _length is used.
If fft length is not a power of two, the next highest power of two is used.

rih_levin Option to specify whether to return the Rihaczek distribution or the Levin
distribution.

0 Rihaczek (default)
1 Levin

window _length If this parameter is specified then the windowed distribution is used.
window_length must be odd.

window_type  One of 'rect’, 'hann’, "/hamm’, ‘bart’ .

Description

Computes the Rihaczek or windowed-Rihaczek time-frequency distribution. Can also return the
Levin distribution which is simply the real part of the Rihaczek distriubtion. The windowed-Rihaczek
distribution uses the Short-Time Fourier Transform (by calling the spec function) inplace of the
Fourier Transform of the signal. If the input signal is real it is replaced by it’s analytic associate.
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Examples

Compute the Rihaczek distribution of a 128 point signal t ime1 by using the rihaczek function
(time-resolution is set to 1).

tfrep = rihaczek( timel, 1, 128 );

Compute the windowed-Levin distribution of a 128 point signal t ime1 with a 21 point Hamming
window by using the rihaczek function (time-resolution is set to 2).

tfrep = rihaczek( timel, 2, 128, 1, 21, ’hamm’ );

See Also

spec
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rls
Purpose

Estimate the instantaneous frequency of the input signal using the recursive least square adaptive
algorithm.

Synopsis

ife = rls( signal, alpha);

Parameters
ife Instantaneous frequency estimate (real).
signal Input one dimensional signal (real or analytic).
alpha Forgetting factor.

Description

This function estimates the instantaneous frequency of an input signal using the recursive least square
adaptive algorithm. A one-tap transversal filter is used to achieve this.

Examples

Compute the instantaneous frequency estimate of the signal t ime1 by using the r1s function with a
forgetting factor of 0.8.

ife_rls = rls( timel, 0.8);

See Also

Ims, pde, sfpe, wvpe, zce
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sfpe
Purpose

Estimates the instantaneous frequency of the input signal by extracting the peaks of the spectrogram.

Synopsis

ife = sfpe(signal, window_length, time_res [ fft_length]);

Parameters
ife Instantaneous frequency estimate (real).
signal Input one dimensional signal to be analysed. An analytic signal is required for this

function, however, if signal is real, a default analytic transformer routine will be
called from this function before computing tfrep.

window_length The length of the data window used for analysis.

time_res The number of time samples to skip between successive instantaneous frequency
estimates.
fft_length Zero-padding at the FFT stage of the analysis may be specified by giving an

fft length larger than normal. If fft_length is not specified, or is smaller than the
window _length, then the next highest power of two above window _length is used.
If fft length is not a power of two, the next highest power of two is used.

Description
Computes the spectrogram of the input signal and then takes the peak of this distribution in order to

form the instantaneous frequency estimate. An analytic signal generator is called if the input signal is
real. This function is fully optimised for speed.

See Also

quadtfd, Ims, rls, pde, wvpe, zce
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spec
Purpose

Computes the Spectrogram or Short-Time Fourier Transform time-frequency distribution.

Synopsis

tfd = spec(signal, time_res, window _length, window _type, [ fft_length] [,stft_or_spec]);

Parameters

ttd The computed time-frequency distribution. size(tfrep) will return [a/2+1, b], where
a is the next largest power of two above signal_length, and b is
floor(length(signal) /time_res) - 1.

signal Input one dimensional signal to be analysed. An analytic signal is required for this
function, however, if signal is real, a default analytic transformer routine will be
called from this function before computing tfrep.

time_res The number of time samples to skip between successive slices of the analysis.

window_length Length of choosen window.

window_type  One of 'rect’, '"hann’, "lhamm’, ‘bart’ .

fft length Zero-padding at the FFT stage of the analysis may be specified by giving an
fft_length larger than normal. If fft length is not specified, or is smaller than the
window_length, then the next highest power of two above window _length is used.
If fft length is not a power of two, the next highest power of two is used. To avoid
periodic effects for a non-periodic signal, the fft_length should be at least twice the
signal length.

stft_or_spec Returns either Short Time Fourier Transform (STFT) or Spectrogram by specifying:

0 Spectrogram (default)
1 STFT

Description

Computes the Spectrogram or Short-Time Fourier Transform time-frequency distribution. If the input
signal is real it is replaced by it’s analytic associate. The spectrogram can also be computed from the
quadt £d function, however the spec function is fully optimised for speed and is more
computationally efficient.
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Examples

Compute the STFT of a 1024 point signal t ime 1 with a 17 point rectangular window by using the
spec function (time-resolution is set to 20).

tfd = spec( timel, 20, 17, ’rect’, 1, 2048 );

See Also

quadtfd
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specSM

Purpose

Computes the enhanced spectrogram of an input signal, using the S-method.

Synopsis

tfd = specSM(signal, L, wl, wtype, overlap, fftl);

Parameters
signal Input one dimensional signal to be analyzed.(real or analytic) .
L Define the length of frequency window in the specSM equals to (2 L + 1) .
wl Length of chosen window .
wtype One of 'rect’, ’"hann’,’hamm’, ‘bart’.
overlap Number of samples in common between two consecutives windows.
0 <overlap<wl
fftl Zero-padding at the fft stage of the analysis may be specified by giving an fftl
larger than normal. If fftl is not specified then the next highest power of two above
the signal length will be used. If fftl is not a power of two, then the next highest
power of two is used.
Description

This function computes the enhanced spectrogram using S-method. The size of tfd is [a/2+1,b], where
a is the next largest power of two above fftl, and b is (x(%}, where N is the length of the input
signal.

Examples

Generate a (t, f) distribution of a 512 points signal timel using specSM, with a 3 points smoothing
window, hanning window with 63 points and an overlapping of length 60.

timel = gsig(’lin’, 0.1, 0.4, 512, 1);
tfl = specSM( timel, 3, 63, ’hann’, 60, 128);
tfsapl( timel, tfl);

See Also

stft, spec, quadtfd
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stft

Purpose

Computes the time frequency distribution of an input signal using the short time Fourier Transform.
This is a direct implementation using sliding windows and overlap.

Synopsis

[tfd, t, f] = stft (signal,Fe , wl, wtype, overlap [, fftl] [, stft_or_spec])

Parameters
signal Input one dimensional signal to be analyzed.(real or analytic) .
Ee Sampling frequency of the input signal .
wl Length of chosen window .
wtype One of 'rect’, ’"hann’,’hamm’, ‘bart’.
overlap Number of samples in common between two consecutives windows.
0 <overlap<wl
fftl Zero-padding at the fft stage of the analysis may be specified by giving an fftl

larger than normal. If fftl is not specified then the next highest power of two above
the signal length will be used. If fftl is not a power of two, then the next highest
power of two is used.

stft_or_spec Returns either Short Time Fourier Transform (STFT) or Spectrogram by specifying:

0 Spectrogram (default)
1 STFT

Description

This function computes the short time Fourier transform (Stft). The size of tfd is [a/2+1,b], where a is
the next largest power of two above fftl, and b is [Nooverlap] yyhere N is the length of the input signal.

wl—overlap

Examples

Generate a (t, f) distribution of a signal timel using Short time Fourier transform (stft), with hanning
window length of 63 points and an overlap window length of 60.

timel = gsig(’lin’, 0.1, 0.4, 512, 1);
tfl = stft( timel, 1, 63, ’hann’, 60, 128);
tfsapl( timel, tfl);
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See Also

spec, specSM
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synthesize
Purpose

Computes a signal synthesized from a given time-frequency distribution. Can be used for STFT,
Spectrogram and WVD.

Synopsis

signal = synthesize(tfd, analysis_type, window_length [,analysis_params] [,original_signal]);

Parameters
signal Synthesized (complex) signal from given t £d.
ttd Matrix containing the time-frequency distribution for a given signal. Can be either

a STFT, Spectrogram or Wigner-Ville distribution.

analysis_type  Specifies which type of signal synthesis will be applied to the given t £d matrix.
The following analysis types are valid:

If the £ £d is a Short-Time Fourier Transform Distribution:

idft’ Inverse Discrete Fourier Transform method
‘ola’ OverLap-Add method
‘mstft’ Modified Short-Time Fourier Transform method

If the t £d is a Spectrogram Distribution:

‘mspec’ Modified Spectrogram method

If the t £d is a Wigner Ville Distribution:

‘'wvd’ Wigner Ville Distribution method

analysis_params Some of the anaylsis types require parameters:

"idft’ analysis_paramsl = window type
‘ola’ analysis_paramsl = window type
"mstft’ analysis_paramsl = window type
‘mspec’ analysis_paramsl = window type

analysis_params2 = tolerance value for iteration routine

original signal Original signal can be supplied to correct the phase of the synthesized signal.
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Description

Computes a time-domain signal from a give time-frequency distribution.

Examples

To synthesize a signal from a time-frequency distribution, a 128 x 128 point WVD t fd_wvd is
supplied, which is computed as follows:

tfd_wvd = quadtfd( signall, 127, 1, ’wvd’, 128 );

The data window length is specified at 127 points and the original signal signall is supplied to
correct the phase:

synth_signal = synthesize( tfd_wvd, ’wvd’, 127, signall );

To synthesize a signal from a given STFT, which uses a 17 point Hamming window and is computed
as follows:

tfd_stft = quadtfd( signall, 21, ’hamm’, 1, 256 );
Using the overlap-add method, the distribution and window information must be supplied:

synth_signal = synthesize( tfd_stft, ’ola’, 21, ’hamm’ );
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tfsa7

Purpose

Entry routine for the Graphical User Interface (GUI) to TFSAP 7.0

Synopsis

tfsa6

Parameters

none

Description

Use the mouse and keyboard to interact with the GUIL. The GUI simply provides an alternative to
typing TFSAP 7.0 commands on the MATLAB command line. Except as noted below, for each
operation in the GUI there exists an underlying TESAP 7.0 function which is described in this
reference section. Refer to the relevant function description for information on parameters.

Figure 2.6 shows the main menu of the GUI.

Welcome to TFSA

Tools  Visualice  Help Ll

TFSA 7.0

Time Frequency Signal Analysis

Developed by Professor Boualem Boashash

Copyright 1987-2015

Figure 2.6: Main Menu of the TFSAP Graphical User Interface.

43



tf Sapl Reference Guide

tfsapl
Purpose

Time-frequency plotting routine.

Synopsis

p = tfsapl( signal, TFD [, Properties | )

Parameters

signal Time series signal.

TFD Time-frequency matrix.
Returns

The return value "p’ is a vector containing four graphics axis handles,
p(1) is the time signal

p(2) is the power spectrum

p(3) is the time-frequency plot

p(4) is the title information at the top

These can be used to alter the appearence of the plot after it is complete, with set ( p (1),
'Parameter’, wvalue ) commands.

Properities

List of optional properties to set the apperance of the plot. Should be specified as . . .,
"ParameterName’, ’Value’, ....They arenot case sensitive. E.g.

tfsapl( time, TFD, ’TimePlot’, ’'on’, ’'FregPlot’, ’'on’, ’'plotfn’, ’'surf’,
"Title’, ’'Time Frequency Distribution’, ’'FontSize’, 12 )

TimePlot {’on’ | ‘off" }  (default "off")
Plot of time domain signal appears along y-axis

FreqPlot {fon’ | ‘oft’}  (default ‘off’)
Plot of spectrum appears along x-axis

SampleFreq { numeric value }  (default 1)
Set sampling frequency.

Res { numeric value }  (default 1)
Time resolution value.

PlotFn {’surf’, ‘contour’, etc. }  (default ‘tfsapl’)
Name of function that will plot the TFD. It must be a function that takes three
arguments: (xaxis,yaxis,data).
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ExtraArgs

Title
XLabel
YLabel
TFfontSize
Zoom
TFlog
TFGrid
GrayScale
TFShading
TFColourMap
TFInvert
TFLine

TFBackGround

TimeLine

{ string of commands }  ( default ")
Extra arguments for ‘PlotFn’; string of commands that will be executed using the
eval function.

{string } (default”)
String containing title of plot

{string }  ( default Frequency (Hz)")
String containing label for x-axis.

{string }  ( default ‘Time (s)")
String containing label for y-axis.

{numeric } (default14)
Font size in points for ‘Title’, “XLabel” and “YLabel'.

{ vector of length4 } (default[0101])
Start an end magnification of TFD matrix in x and y directions.

{‘on’ | ‘off’ }  (default ‘off")
If “‘on’ the log of the TFD is plotted.

{’on” | ‘off’ }  (default ‘off")
Turn on/off the grid on the TFD plot. (Won't effect “tfsapl” plot)

{’on’ | ‘off’ }  (default ‘off")
Plots will be specified in grayscale overriding any values relating to colour scheme.

{flat’ | ‘interp” | ‘faceted’ } ~ (default ‘faceted”)
Selects the shading type for the TFD plot. (Won't effect “tfsapl” plot)

{‘jet’, ‘bone’, etc }  (default ‘jet")
Colourmap for TFD plot. (Won't effect “tfsapl” plot)

{’on’ | ‘off’ }  (default ‘off")
Invert the colourmap for TFD plot. (Won't effect ‘tfsapl” plot)

{ ‘black’, ‘white’, etc } ~ ( default ‘cyan”)
Line colour for tfsapl plot ONLY.

{ ‘black’, ‘white’, etc } = ( default ‘black”)
Background colour for tfsapl plot ONLY.

{‘black’, ‘white’, etc }  ( default depends of “plotfn”)
Line colour for time domain plot.

TimeBackground { ‘black’, ‘white’, etc }  ( default depends of ‘plotfn”)

TimeGrid

TimeDetails

Background colour for time domain plot.

{’on’ | ‘off’ }  (default ‘off")
Turn on/off grid for time domain plot.

{‘on’ | ‘off’ } = (default’on”)
Turn on/off text displaying sampling information of time signal.
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FreqLine

{ ‘black’, ‘white’, etc }  ( default depends of ‘plotfn”)
Line colour for frequency domain plot.

FreqBackground { ‘black’, ‘white’, etc }  ( default depends of ‘plotfn”)

FreqGrid

FigHandle

Examples

Background colour for frequency domain plot.

{’on’ | “off" }
Turn on/off grid for frequency domain plot.

( default ‘off")

{ handle of figure }  (default none)
Specify figure handle if plots are to go over whats there. Otherwise a new figure
will be created or current figure will be cleared.

signall = gsig( ’sin’, 0.25, 0.02, 128, 1, 1);
tfdl = spec( signall, 2, 31, ’hamm’ );
tfsapl( signall, tfdl, ’Timeplot’, ’on’, ’Fregplot’, ’on’,

’Grayscale’, ’on’, ’Title’, ’Spectrogram of Sinusoidal FM Signal’ );

Figure 2.7 shows the tfsapl plot of a Spectrogram representation of a sinusoidal FM signal.

See Also

wifall
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Figure 2.7: Tfsapl style plot for the sinusoidal FM signal.
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unphase
Purpose

This function recovers the phase of a analytic signal.
Synopsis

phasel = unphase(inputl);

Description

This function recovers the phase of a complex signal. If the signal is real, then the analyt function
should be utilised to render the complex version.

Examples

To recover the phase of the real signal signall first utilise the analyt functioni.e.
ana_sigl = analyt(signall)
Then recover the phase by:

phasel = unphase(ana_sigl)

See Also

analyt
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wd

Purpose

Computes the Wigner distribution of an input signal.

Synopsis

tfrep = wd(signal, [ fft length],time_res);

Parameters
tfrep The computed time-frequency distribution. size(tfrep) will return [a, b], where a is
the next largest power of two above the length of the signal and b is
floor(length(signal)/time_res) - 1.
signal Input one dimensional signal to be analyzed.
time_res The number of time samples to skip between successive slices of the analysis.
fft length Zero-padding at the FFT stage of the analysis may be specified by giving an
fft length larger than normal. In the GUI, if fft_length is not specified , or is smaller
than the length of the signal then the next highest power of two above the length of
the signal is used. If fft_length is not a power of two, the next highest power of two
is used.
Description

Computes the Wigner Distribution of the input signal. If the input signal is an analytic signal the
produced result will be similar to the Wigner-Ville Distribution.

Examples

Compute the WD of a 256 point signal using a time-resolution of 2:

signal = gsig(’lin’,0.1,0.4,256);
tf = wd(signal, 512, 2);

See Also

quadtfd, wvd
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wfall

Purpose

Matrix waterfall plot, usually called from t fsapl function 2.1.

Synopsis

wiall(tfrep’, ...);

Parameters

Refer to MATLAB documentation on waterfall and mesh.

Description

This function is a modification of the standard MATLAB function “waterfall”. The differences are
these:

1. No curtain appears around base of plot.
Axis limits are reduced to x and y data limits.
Graph is shifted so that it starts at x = y = 0, rather thanx =y =1.

Hidden line removal is not used, to prevent visual anomalies which occur with waterfall.

AR

Lines along sides of plot are added.

Note that in this function, as in the original waterfall.m, the data is waterfalled row-wise.

Examples

To obtain a waterfall plot of the time-frequency matrix “tfd”, with lines connecting frequency values:
wfall(tfd’);
or from the t fsapl(see 2.1) function:

tfsapl( timel, tfd, ’plotfn’, ’wfall’ );

See Also

tfsapl, mesh (Standard MATLAB function)

49



Wlet Reference Guide

wlet
Purpose

Forward and inverse fast wavelet transform using Daubechies wavelets

Synopsis

output = wlet( signal [, output_type [, num_coeff [, direction ]]]);

Parameters

signal Time series to be transformed. Signal must be a one-dimensional signal. The two
dimensional signal output from wlet cannot be inverse transformed.

output_type One of:

1 Output is one dimensional, and represents the raw result from the fast
wavelet transform algorithm. This is the default.

2 Output is two dimensional. This output format is convenient for displaying
transformed data as a time-scale matrix.
num_coeff Number of coefficients to use. Possible values are 4, 12 or 20. The default is 20.
direction One of:
1 Transform is forward, from time domain to time-scale domain. This is the
default.
-1 Transform is reverse, from time-scale domain to time domain.

Two dimensional output can only be used with the forward transform, and the
input to both forward and reverse transforms must be one-dimensional.

Description

This function performs the fast wavelet transform. Either forward or reverse transforms may be
performed by setting the direction parameter. The algorithm implements decomposition into
Daubechies wavelets, and uses a pyramidal filtering scheme. The input signal is filtered using
quadrature mirror filters. The high pass output is decimated by 2 and saved in the upper half of the
result vector. The lowpass output is decimated by 2 and is then considered as input. This process is
iterated until the length of the remaining lowpassed signal is smaller than the number of filter
coefficients. The resulting array consists of the concatenation of outputs of each highpass operation,
and the remaining lowpass signal at the time of termination.

Examples

Perform the fast wavelet transform using a 12 coefficient Daubechies wavelet and 1-D output.

output = wlet(signal, 1, 12, 1);
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wvd
Purpose

Computes the Wigner-Ville distribution

Synopsis

tfrep = wvd(signal, lag_win_len, time_res [, fft_length]);

Parameters
tfrep The computed time-frequency distribution. size(tfrep) will return [a, b], where a is
the next largest power of two above lag_win_len, and b is
floor(length(signal)/time_res) - 1.
signal Input one dimensional signal to be analysed. An analytic signal is required for this
function, however, if signal is real, a default analytic transformer routine will be
called from this function before computing tfrep.
lag_win_len The length of the data window used for analysis.
time_res The number of time samples to skip between successive slices of the analysis.
fft length Zero-padding at the FFT stage of the analysis may be specified by giving an
tft length larger than normal. If fft_length is not specified, or is smaller than the
lag_win_len, then the next highest power of two above lag_win_len is used. If
fft_length is not a power of two, the next highest power of two is used.
Description

Computes the WVD of the input signal. An analytic signal generator is called if the input signal is
real. The supplied length of the analysis window defines whether the “true” wvd or a pseudo
(windowed) wvd is computed. This function is similar to the quadt £d function, except that it is fully
optimised for speed and is more computationally efficient.

Examples

Compute the WVD of a 1024 point signal using a time-resolution of 20:

tf = wvd(signal, 1023, 20);

Compute the Pseudo-WVD of a 1024 point signal using time-resolution 20 and lag window width 63:

tf = wvd(signal, 63, 20);
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See Also

quadtfd, xwvd
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wvpe
Purpose

Estimates the instantaneous frequency of the input signal by extracting the peaks of the Wigner-Ville
distribution.

Synopsis

ife = wvpe(signal, lag_win_len, time_res [,fft_length]);

Parameters
ife Instantaneous frequency estimate (real).
signal Input one dimensional signal to be analysed. An analytic signal is required for this
function, however, if signal is real, a default analytic transformer routine will be
called from this function before computing tfrep.
lag_win_len The length of the data window used for analysis.
time_res The number of time samples to skip between successive instantaneous frequency
estimates.
fft length Zero-padding at the FFT stage of the analysis may be specified by giving an
fft length larger than normal. If fft_length is not specified, or is smaller than the
lag_win_len, then the next highest power of two above lag_win_len is used. If
tft_length is not a power of two, the next highest power of two is used.
Description

Computes the Wigner-Ville distribution of the input signal and then takes the peak of this distribution
in order to form the instantaneous frequency estimate. An analytic signal generator is called if the
input signal is real. This function is fully optimised for speed.

See Also

wvd, Ims, 1ls, pde, sfpe, zce
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xwvd
Purpose

Computes the cross Wigner-Ville distribution

Synopsis

tfrep = xwvd( signall, signal2, lag_win_len, time_res [, fft_length]);

Parameters

signall, signal2 Input one dimensional signals to be analysed. These signals must be the same
length.

Refer to wvd for information on other parameters.

Description

Refer to wvd.

Examples

Compute the Cross Wigner-Ville Distribution:

tfrep = xwvd( signall, signal2, 1023, 20);

See Also

wvd

54



zce Reference Guide

Zce
Purpose

Estimates the instantaneous frequency of the input signal using the zero-crossing instantaneous
frequency estimation algorithm.

Synopsis

ife = zce( signal, window _length);

Parameters
ife Instantaneous frequency estimate (real).
signal Input one dimensional signal (real or analytic).

window_length The length of the data window for analysis.

Description

This function estimates the instantaneous frequency of an input signal using the zero-crossing
estimator. The number of crossings within the data length window_length are counted and used to
form the estimate.

Examples

Compute the instantaneous frequency estimate of the signal t ime1 by using a window length of 64.

ife_zce = zce(timel, 64);

See Also

Ims, rls, pde, sfpe, wvpe
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