Chapter 09

Information Theory

Figure 9.3 Classification of codes.

Figure 9.4 Source encoding.

<u>Symbol</u>	Probability	<u>Codeword</u>	<u>Symbol</u>	Probability	<u>Codeword</u>	<u>Symbol</u>	Probability	Codeword
x_1	0.2	000	$x_1 x_1$	0.04	00000	$x_1x_1x_1$	0.008	0000000
<i>x</i> ₂	0.2	001	$x_1 x_2$	0.04	00001	$x_1 x_1 x_2$	0.008	0000001
x_3	0.2	010	$x_1 x_3$	0.04	00010	$x_1 x_1 x_3$	0.008	0000010
x_4	0.2	011	x_1x_4	0.04	00011	$x_1x_1x_4$	0.008	0000011
x_5	0.2	100	$x_{1}x_{5}$	0.04	00100	$x_1 x_1 x_5$	0.008	0000100
(a)			$x_{2}x_{1}$	0.04	00101	$x_1x_2x_1$	0.008	0000101
			$x_{2}x_{2}$	0.04	00110	$x_1 x_2 x_2$	0.008	0000110
			$x_{2}x_{3}$	0.04	00111			÷
			$x_{2}x_{4}$	0.04	01000			
			$x_{2}x_{5}$	0.04	01001			
			x_3x_1	0.04	01010	$x_5 x_4 x_4$	0.008	1110110
			$x_{3}x_{2}$	0.04	01011	$x_5 x_4 x_5$	0.008	1110111
			$x_{3}x_{3}$	0.04	01100	$x_5x_5x_1$	0.008	1111000
			$x_{3}x_{4}$	0.04	01101	$x_5 x_5 x_2$	0.008	1111001
			$x_{3}x_{5}$	0.04	01110	$x_5 x_5 x_3$	0.008	1111010
			x_4x_1	0.04	01111	$x_5 x_5 x_4$	0.008	1111011
			$x_4 x_2$	0.04	10000	$x_5 x_5 x_5$	0.008	1111100
			$x_{4}x_{3}$	0.04	10001	(c)		
			x_4x_4	0.04	10010	(0)		
			$x_{4}x_{5}$	0.04	10011			
			$x_5 x_1$	0.04	10100			
			$x_{5}x_{2}$	0.04	10101			
			$x_{5}x_{3}$	0.04	10110			
			$x_{5}x_{4}$	0.04	10111			
			$x_{5}x_{5}$	0.04	11000			
		(1	b)					

Figure 9.5 Extension codes for Example 9.7: (a) *n*=1 and 5 codewords, (b) *n*=2 and 25 codewords, and (c) *n*=3 and 125 codewords.

Code 1

Code_2

Figure 9.6 Huffman codes for Example 9.8.

5	<u>Symbol</u>	Probability	Codeword	<u>Symbol</u>	<u>Probability</u>	Codeword
	Α	0.9	1	AAAA	0.6561	1
	В	0.1	0	AAAB	0.0729	011
(a)				AABA	0.0729	010
S	Symbol	Probability	Codeword	ABAA	0.0729	001
2	AA	0.81	1	BAAA	0.0729	0000
	AB	0.09	01	AABB	0.0081	000111
	RA	0.09	001	ABAB	0.0081	0001101
	BR	0.01	000	BAAB	0.0081	0001100
(b)	55	0.01	000	ABBA	0.0081	0001011
(-)	Sumbol	Drobobility	Cadaward	BABA	0.0081	0001010
<u>r</u>	<u>5ymbor</u>	0.720	<u>Codeword</u>	BBAA	0.0081	0001001
	AAA	0.729	I 001	ABBB	0.0009	000100011
		0.081	001	BABB	0.0009	000100010
	BAA	0.081	000	BBAB	0.0009	000100001
	ABA	0.081	011	BBBA	0.0009	0001000001
	BBA	0.009	01011	BBBB	0.0001	0001000000
	BAB	0.009	01010	(d)		
	ABB	0.009	01001			
	BBB	0.001	01000			

(c)

Figure 9.7 Huffman coding using extension codes for Example 9.9.

Dictionary Locations		Dictionary Contents	Codewords	
1	0001	0	0000 0	
2	0010	1	0000 1	
3	0011	00	0001 0	
4	0100	000	0011 0	
5	0101	11	0010 1	
6	0110	110	0101 0	
7	0111	0001	0100 1	
8	1000	1100	0110 0	
9	1001	01	0001 1	
10	1010	10	0010 0	
11	1011	010	1001 1	
12	1100	101	1010 1	
13	1101	010	1001 0	
14	1110	0000	0100 0	
15	1111	00011	0111 1	

Figure 9.8 Lempel-Ziv coding algorithm for Example 9.10.

Figure 9.9 Binary symmetric channel (BSC).

Figure 9.10 Entropy, conditional entropy, and mutual information.

Figure 9.11 Channel capacity of a BSC.

Figure 9.12 Bandwidth efficiency diagram.