
The picoProcessor ISA 0.0

Introduction
The picoProcessor (pP) is an 8-bit processor intended for educational purposes. It is similar to 8-bit micropro-
cessors for small embedded applications, but has an instruction set architecture more similar to RISC processors.

The pP has separate instruction and data memories. The instruction memory is 4K instructions in size, and the
data memory is 256 bytes. The pP can also address I/O devices using up to 256 input ports and 256 output ports.

Within the processor there are eight 8-bit general purposes registers, r0 to r7. R0 is always read as zero and ig-
nores writes. There is also a return-address stack of implementation-defined depth (at least four entries), an in-
terrupt return register and Zero (Z) and Carry (C) condition codes.

Instruction Encoding
Instructions in the pP are all 19 bits long, and are encoded in several formats.

ALU Reg-Reg Instructions

This format is used for arithmetic and logical instructions that operate on two register values (r1 and r2). The
result is stored in a destination register (rd). The function code (fn) values are:

The Z condition code is set to 1 if the result is zero, otherwise it is set to 0. For ADD and ADDC, the C condition
code is the carry out of the addition. For SUB and SUBC, C is the borrow out of the subtraction and indicates that
the operation overflowed to a negative result. For logical operations, C is always set to 0.

ALU Reg-Immed Instructions

This format is used for arithmetic and logical instructions that operate on a register value (r1) and an immediate
constant value (const). The result is stored in a destination register (rd). The function code (fn) values and the
condition code settings are the same as for ALU Reg-Reg instructions.

Shift Instructions

Instruction Operation fn

ADD Add without carry in 000

ADDC Add with carry in 001

SUB Subtract without carry in 010

SUBC Subtract with carry in 011

AND Bitwise logical and 100

OR Bitwise logical inclusive or 101

XOR Bitwise logical exclusive or 110

MSK Bitwise logical mask (and-not) 111

0 0 fn x x x x xrd r1 r2

2 33 3 3 5

0 1 fn rd r1 const

2 83 3 3

1 1 0 fn x x x x xrd r1 sc

3 32 3 3 5
1



This format is used for shift and rotate instructions that operate on a register value (r1). The number of bit posi-
tions by which the value is shifted or rotated is given by the shift count (sc). The result is stored in a destination
register (rd). The shift function code (fn) values are:

The Z condition code is set to 1 if the result is zero, otherwise it is set to 0. The C condition code is set to the
value of the bit shifted or rotated out of the operand value.

Memory and I/O Instructions

This format is used for memory and I/O load and store instructions. The effective address is calculated by adding
a signed displacement (disp) to the value of a base address register (r1). For memory instructions, the effective
address is used to access the data memory, and for I/O instructions, it is used as the I/O port number. For oad
instructions, rd is the destination register, and for store instruction, rd is the source register. The function code
(fn) values are:

The Z and C condition codes are unaffected by these instructions.

Conditional Branch Instructions

This format is used for conditional branch instructions. The target address is calculated by adding a signed dis-
placement (disp) to the address of the instruction following the branch. If the condition specified by the branch is
true, control is transferred to the instruction at the target address; otherwise control continues with the instruc-
tion following the branch. The function code (fn) values are:

The Z and C condition codes are unaffected by these instructions.

Instruction Operation fn

SHL Shift left 00

SHR Shift right 01

ROL Rotate left 10

ROR Rotate right 11

Instruction Operation fn

LDM Load from memory 00

STM Store to memory 01

INP Input from port 10

OUT Output to port 11

Instruction Operation fn

BZ Branch if zero 00

BNZ Branch if not zero 01

BC Branch if carry 10

BNC Branch if not carry 11

1 0 0 fn rd r1 disp

3 2 3 3 8

1 0 1 fn x xx xx x disp

3 2 6 8
2



Jump Instructions

This format is used for unconditional jump instructions. Control is transferred to the instruction at the target
address (addr). The JSB instruction, however, first pushes the address of the instruction following the JSB onto
the return address stack. For both instructions, the condition codes are unaffected.

Miscellaneous Instructions

This format is used for miscellaneous instructions that have no operands. RET returns from a subroutine by pop-
ping the top of the return address stack to the program counter. RETI restores the saved program counter and
condition code values from the interrupt register. ENAI enables interrupts, and DISI disables interrupts. The
RET, ENAI and DISI instructions do not affect the condition codes.

Interrupt and Reset
The pP has an input for requesting an interrupt. When interrupts are enabled and the interrupt request is active
at the start of an instruction fetch sequence, the program counter and condition codes are copied to the interrupt
register, interrupts are disabled, and control is transferred to program address 1. Interrupt service code should be
located at that address. Note that, since there is only one interrupt register, nested interrupts are not supported.

The interrupt service code must return to the interrupted program by executing a RETI instruction, which re-
stores the saved condition codes and program counter from the interrupt register and re-enables interrupts.

Upon system reset, the pP disables interrupts and starts executing instructions from address 0. In a system that
uses interrupts, the interrupt service code starts at address 1. Thus, the instruction at address 0 would normally
be a jump to initialization code.

1 1 1 0 0 x x

x x

addr

5 2 12

JMP

1 1 1 0 1 addrJSB

1 1 1 1 0 0 x x x x x x x x x x x x x

1 1 1 1 0 1 x x x x x x x x x x x x x

6 13

RET

RETI

1 1 1 1 1 0 x x x x x x x x x x x x xENAI

1 1 1 1 1 1 x x x x x x x x x x x x xDISI
3


	The picoProcessor ISA
	Introduction
	Instruction Encoding
	ALU Reg-Reg Instructions
	ALU Reg-Immed Instructions
	Shift Instructions
	Memory and I/O Instructions
	Conditional Branch Instructions
	Jump Instructions
	Miscellaneous Instructions

	Interrupt and Reset


