module TOPDOWN(input CLK, RST, INT, inout [31:0] BIBUS,
 output RD, AD);

 //instances of functional blocks go here

endmodule
Figure 3.1: Top level of a machine that has not been fully defined

module BLOCKS;

 reg CLK, A, B;

 initial begin
 //non-synthesizable statements
 end

 always_ff @(posedge CLK) begin
 //synthesizable SystemVerilog sequential statements
 end

 always_comb begin
 //synthesizable SystemVerilog combinational statements
 end

 always_latch begin
 //synthesizable SystemVerilog behavioral statements with
 //latched outputs
 end

 always @(*) begin
 //Verilog combinational statements
 end

 always @(A or B) begin
 //Verilog 95 style combinational statements
 end

endmodule
Figure 3.2: Verilog and SystemVerilog functional block statements

module namedblock;

 reg [3:0] COUNT; //module variable COUNT

 always_comb begin: BLOCK1
 reg [7:0] COUNT; //BLOCK1 variable COUNT
 end : BLOCK1

 always_comb begin
 //This block will use the module variable COUNT
 end

endmodule
Figure 3.3: Named block with a local variable

module BADLIST(input A, B, output reg Y, Z);
 always @(A) Y = A ^ B; //XOR, defective sensitivity list
 always @(A, B) Z = A ^ B; //XOR, complete sensitivity list
endmodule

Time 0: A = 0, B = 0, Y = 0, Z = 0
Time 1: A = 0, B = 1, Y = 0, Z = 1
Time 2: A = 1, B = 0, Y = 1, Z = 1
Time 3: A = 1, B = 1, Y = 1, Z = 0
Figure 3.4: Defective sensitivity list and memory effect in simulation.

module shortcicuit(input CLK, RST, D, output reg Q);
/*Design error: this would appear to work in simulation
but would infer two flipflops shorted together in hardware.*/
 always @(negedge RST) Q <= 1'b0;
 always @(posedge CLK) Q <= D;
endmodule
Figure 3.5: Two flipflops with outputs shorted together

Table 3.1: Verilog net types
	Net Type
	Function

	wire
	Normal interconnects between instances

	tri
	Exactly the same as wire

	wand
	Wired AND. Models open drain/open collector devices

	triand
	Exactly the same as wand

	wor
	Wired OR. Used in now-obsolete emitter-coupled logic

	trior
	Exactly the same as wor

	trireg
	Models nets with capacitive storage. Holds last driven value

	tri0
	Nets that pull down when not driven

	tri1
	Nets that pull up when not driven

[bookmark: _GoBack]reg A; //Single bit unsigned register variable
reg [15:0] B, C; //Two 16-bit unsigned vectors, 15 is MSB
reg [0:31] D; //One 32-bit unsigned vector, 0 is MSB
reg signed [15:0] E, F; //Two 16-bit signed vectors
Figure 3.6: Sample register declarations

module SIGNED_ASSIGN (A, X, Y);
 input signed [7:0] A;
 output reg signed [15:0] X, Y;

 always @(A) begin
 X = A; //A will be sign extended to 16 bits
 Y = A[7:0]; //No sign extension
 end
Figure 3.7: Bit selects are always unsigned

 module vectorfill;
 reg [31:0] W;
 reg [15:0] X;
 reg [7:0] Y;
 reg Z;

 always_comb begin
 W = '0; //W will be 32 bits of zeros
 X = '1; //X will be 16 bits of ones
 Y = 'X; //Y will be eight bits of unknown
 Z = 'Z; //Z will be one bit set to high impedance
 end
endmodule
Figure 3.8: Filling a vector with all 0, 1, X or Z values

module array_decs;

 //a one kilobyte register file
 reg [7:0] MEM [0:1023];

 //an array of 100 16-bit integers
 shortint NUMBERS [0:99];

 //an array of 32 one-bit regs
 reg BIT_ARRAY [0:31];

 //declare only the size, not the range
 logic [15:0] SVMEM [512]; //elements will be 0 to 511

endmodule
Figure 3.9: Array declarations

module array_assign(input CLK, RST,
 input [3:0] DATA1, DATA2,
 output reg [3:0] MEM [4]);

 always_ff @(posedge CLK, negedge RST)
	if (!RST) MEM <= '{default:0};
	else MEM <= '{4'hA, DATA1, DATA2, 4'b1010};
endmodule
Figure 3.10: Assigning to all elements of an array with single statements

module array_funcs;
 reg [3:0] MEM[4] [5] [6];
 int A, B, C, D, E, F, G;

 assign A = $left(MEM[2][2][2]);
 assign B = $right(MEM[2][2][2]);
 assign C = $low(MEM[2][2][2]);
 assign D = $high(MEM[2][2][2]);
 assign E = $increment(MEM[2][2][2]);
 assign F = $size(MEM[2][2][2]);
 assign G = $dimensions(MEM);

 initial $display("A = %d, B = %d, C = %d, D = %d, E = %d, F = %d, G = %d",
 A, B, C, D, E, F, G);
endmodule

/* Simulaton Results:
A = 3, B = 0, C = 0, D = 3, E = 1, F = 4, G = 4*/
Figure 3.11: Array Functions

/*Array with output connected to a bidirectional bus.*/

module MEMCELL(input OE, WS, input [7:0] ADDR,
 inout wire [15:0] DATA);

 /*One 16 bit reg variable(DATA_REG), one 16x256 bit array (MEMORY).
 Only MEMORY will infer flipflops. DATA_REG will be a combinational
 decode of the array, but it is still a Verilog reg variable.*/
 reg [15:0] DATA_REG, MEMORY[0 : 255];

 //Registers cannot be connected to an inout port
 assign DATA = OE ? DATA_REG : 16'bz;

 //Select one 16 bit element of the memory array
 always_comb DATA_REG = MEMORY[ADDR];

 //Write to memory on rising edge of write strobe (WS)
 always_ff @(posedge WS) MEMORY[ADDR] <= DATA;
endmodule
Figure 3.12: Memory cell connected to bidirectional bus

module unn;

 union packed {
 reg [7:0] A; //A, B, and C all reference the same space
 bit [7:0] B;
 byte C;
 } AB;

 initial begin
 $monitor("%d: A = %h, B = %h, C = %h", $time, AB.A, AB.B, AB.C);
 AB.A = 8'hAA; //B and C are never directly assigned any values
 #1 AB.A = 8'h55;
 end

/*Simulation Results:
#0: A = aa, B = aa, C = AA
#1: A = 55, B = 55, C = 55*/
endmodule
Figure 3.13: The union will reference the same space for all three names

module unn;

 union packed {
 reg [7:0] A; //A, B, and C all reference the same space
 bit [7:0] B;
 byte C;
 shortint D; //Error: D is a 16-bit value
 } AB;
Figure 3.14: All fields of a packed union must be the same size

module unn2(input CLK, input [7:0] A, output wire [7:0] Z);

 union packed {
 reg [7:0] X;
 bit [7:0] Y;
 } XY;

 assign Z = XY.Y;
 always_ff @(posedge CLK) XY.X <= A;

endmodule
Figure 3.15: Synthesis of module unn2 would yield eight flipflops

module strs2;

 typedef struct {bit WS, OE;} CON;

 struct {bit [15:0] ADDR, DATA;
 CON CBUS;} BUS;

 reg [15:0] MEM [0:1023];

 always_ff @(posedge BUS.CBUS.WS) MEM[BUS.ADDR] <= BUS.DATA;

endmodule
Figure 3.16: A hierarchical system of structures

module strs3(IBUS, DATA);
 typedef struct {bit [15:0] ADDR;
 bit WS, OE;} BUS;
 input BUS IBUS;
 inout [15:0] DATA;

 reg [15:0] MEM [0:1023], DATA_REG;

 assign DATA = IBUS.OE ? DATA_REG : 16'hz;
 always_comb DATA_REG = MEM[IBUS.ADDR];
 always_ff @(posedge IBUS.WS) MEM[IBUS.ADDR] <= DATA;

endmodule
Figure 3.17: Using a structure in a port list

module strs4;

 typedef struct packed {bit WS, OE;} CON;

 struct packed {bit [15:0] ADDR, DATA;
 CON CBUS;} BUS;

 assign BUS = {16'h4, 16'haa, 1'b0, 1'b1};

endmodule
Figure 3.18: Referencing all fields of a structure

module blocking(input [3:0] A, B, C, D,
 output reg [4:0] X, Y, output reg [5:0] Z);

 always_comb begin
 X = A + B;
 Y = C + D;
 Z = X + Y;
 end

endmodule
Figure 3.19: The blocking assignment operator

module sr2(input CLOCK, DATAIN, output reg FF2);
 reg FF1;
 always_ff@(posedge CLOCK) begin
 FF1 = DATAIN;
 FF2 = FF1;
 end
endmodule
Figure 3.20: Faulty use of the blocking assignment operator in a sequential block

module sr2(input CLOCK, DATAIN, output reg FF2);
 reg FF1;
 always_ff@(posedge CLOCK) begin
 FF1 <= DATAIN;
 FF2 <= FF1;
 end
endmodule
Figure 3.23: Code for a shift register using the non-blocking assignment operator

module CS1(input A, B, C, CLOCK, output reg Z);
 reg T1, T2;
 always_comb begin
 T1 = A ^ B;
 T2 = C & T1;
 end

 always_ff@(posedge CLOCK)
 Z <= T2;
endmodule
Figure 3.25: Separate combinational and sequential blocks

module CS2(input A, B, C, CLOCK, output reg Z);
 always_ff @(posedge CLOCK) Z <= C & (A ^ B);
endmodule
Figure 3.26: One sequential block

module CS3(input A, B, C, CLOCK, output reg Z);
 reg T1, T2;
 always_ff@(posedge CLOCK) begin
 T1 = A ^ B;
 T2 = C & T1;
 Z <= T2;
 end
endmodule
Figure 3.27: Legal mixing of assignment operators in a single functional block
module NIX(A, B, C, Z);
 input A, B, C;
 output reg Z;
 always @(A or B or C)
 if (A) Z = A & B;
 else Z <= A | B;
endmodule
Figure 3.28: Illegal mixing of assignment operators

module equality;

 reg [2:0] A, B, C, D;
 integer E, F;
 reg U, V, W, X, Y, Z;

 initial begin
 A = 3'b11z;
 B = 3'b01x;
 C = 3'b11z;
 D = 3'b011;
 E = 3;
 F = 7;

 //Equality operator, no comparison to Z
 U = (A == C); //U = 1'bx
 //Case equality, does compare to Z
 V = (A === C); //V = 1'b1
 //Equality, no comparison to X, either
 W = (B == D); //W = 1'bx
 //Case equality, resolves X is not Z
 X = (B === D); //X = 1'b0
 //Compares integer and vector values
 Y = (D == E); //Y = 1'b1
 //Smaller vector is zero-extended
 Z = (D == F); //Z = 1'b0
 end
endmodule
Figure 3.29: Equality operator examples

module equality2;

 reg [4:0] A, B;
 reg Y, Z;

 initial begin
 A = 5'b1010x;
 B = 5'b00101;
 Y = (A != B); //A is not equal to B even without the last bit
 Z = (A !== B); //Logical and case inequality work the same in this case
 end
endmodule
Figure 3.30: Resolving equality/inequality from determinate bits alone

module wildcards(input [2:0] A, B, output logic [2:0] C, D);
 always_comb begin
 C = (A ==? 3'b10?); //C will be true for A = 100 and 101;
 D = (B !=? 3'b?00); //D will be true whenever the two LSBs of B are not 00
 end
endmodule
Figure 3.31: Synthesizable wildcard case equality and inequality operators

module logicals;
 reg [7:0] A, B;
	reg C;
	always_comb begin
	 A = 8'b01010101; //A has some bits set, so it is true
	 B = 8'b10101010; //Same for B
	 if (A && B) C = 1; //Both A and B are true, so C will be set
	 else C = 0;
	end
endmodule
Figure 3.32: Logical operation, AND of 1 and 1 yielding 1

module logicals2;
 reg [7:0] A;
	reg D, E;
	always_comb begin
	 A = 8'b0000000x;
	 if (A) D = 1;
	 else D = 0;
	 if (!A) E = 1;
	 else E = 0;
	end
endmodule
Figure 3.33: A is neither true nor false. Both D and E will be 0.

module bitwise;
 reg [4:0] A, X;
 reg [3:0] B, V, W, Z;
 reg [2:0] C, D, Y;

 initial begin
 A = 5'b10101;
 B = 4'b010x;
 C = 3'b011;
 D = 3'b11z;

 V = ~B; //Inverse of X is X
 W = A | B; //B will be zero-extended by one bit
 X = A & B; //Indeterminate bit will cause indeterminate output
 Y = C ^ D; //High impedance bit will act like unknown
 Z = B ^~ C; //XNOR, zero extend C
 $strobe("V = %b, W = %b, X = %b, Y = %b, Z = %b", V, W, Y, Y, Z);
 end
endmodule

/*Simulation Results
V = 101x, W = 0101, X = 10x, Y = 10x, Z = 100x
*/
Figure 3.34: Bitwise operators

module reduction;
 reg [7:0] A, B, C;
 reg W, X, Y, Z;
 initial begin
 A = 8'hFF; //All ones
 B = 0; //All zeros
 C = 8'b01100000; //Even number of set bits
 W = &A; //AND reduction: detect max. value
 X = |B; //OR reduction: detect all zeros
 Y = ^C; //XOR reduction: positive parity
 Z = ~^C; //XNOR reduction: negative parity
 $strobe("W = %b, X = %b, Y = %b, Z = %b", W, X, Y, Z);
 end
endmodule

/*Simulation Results:
W = 1, X = 0, Y = 0, Z = 1
*/
Figure 3.35: Reduction operators

module ARITH(input [7:0] A, B, output reg [8:0] SUM, DIF,
 output reg [15:0] PROD, output reg [7:0] QUO, REM,
 output reg [1023:0] EXP);

 always_comb begin
 SUM = A + B; //Addition
 DIF = A - B; //Subtraction
 PROD = A * B; //Multiplication
 QUO = A / B; //Division
 REM = A % B; //Modulus
 EXP = A ** B; //Exponential
 end

endmodule
Figure 3.36: Arithmetic operators

module divzero;
 const int PERIOD = 1;
 reg CLK;
 initial begin
 CLK = 1'b0;
 //Integer division: 1 / 2 = 0
 #(PERIOD / 2) CLK = 1'b1;
 #(PERIOD / 2) CLK = 1'b0;
 #(PERIOD / 2) CLK = 1'b1;
 #(PERIOD / 2) CLK = 1'b0;
 end
endmodule
Figure 3.37: Integer division truncates

for (I = 0; I < LIMIT; I++) //post increment
for (I = 0; I < LIMIT; I--) //post decrement
for (I = 0; I < LIMIT; ++I) //pre increment
for (I = 0; I < LIMIT; --I) //pre decrement
Figure 3.38: Auto increment and decrement operators used in loop controls

always @(posedge CLK, negedge RST)
 if (!RST) CNT <= ‘b0’ //non-blocking assignment
 else CNT++; //blocking assignment
Figure 3.39: Illegal mixing of blocking and non-blocking assignments

module relational;

 integer A, B;
 reg [2 : 0] C;
 reg [1:0] D;
 reg W, X, Y, Z;

 initial begin
 A = 5;
 B = 17;
 C = 3'b11x;
 D = 2'b0z;

 W = (A < B); //True: W = 1'b1
 X = (B <= A); //False: X = 1'b0
 Y = (C < B); //Will not resolve: Y = 1'bx;
 Z = (D >= A); //Will not resolve: Z = 1'bx;
 $strobe("W = %b, X = %b, Y = %b, Z = %b", W, X, Y, Z);
 end
endmodule

/*Simulation Results:
W = 1, X = 0, Y = x, Z = x
*/
Figure 3.40: Relational operator examples

module resolve;

 reg [3:0] A, B;
 reg X, Y, Z;

 initial begin
 A = 4'b1000;
 B = 4'b000x;

 //Relational will return unknown
 X = (A > B); //X = 1'bx
 //Logical equality will resolve A is not equal to B
 Y = (A == B); //Y = 1'b0
 //Case equality will also resolve A is not equal to B
 Z = (A === B); //Z = 1'b0
 end
endmodule
Figure 3.41: Difference in resolution between relational and equality operators

always_ff @(posedge CLK)
 for (int I = 0; I <= MAX; I++) //<= is a relational operator here
 if (ENABLE) OUT <= OP1 + OP2; //but it is the non-blocking assignment operator here
 else OUT <= OUT;
Figure 3.42: <= can mean a relational or an assignment operator

module shift;
 reg signed [7:0] A, W, X, Y, Z;

 initial begin
 A = 8'hFF; //Initialize to 11111111
 W = A >> 2; //Shift right by 2 bits (divide by 4)
 X = A << 2; //Shift left by 2 bits (multiply by 4)
 Y = A >>> 2; //Arithmetic shift right, sign extend
 Z = A <<< 2; //Arithmetic shift left
 $strobe("A = %b, W = %b, X = %b, Y = %b, Z = %b", A, W, X, Y, Z);
 end
endmodule
Figure 3.43: Shift operations

module barrel(A, SHIFT, OUT);
 parameter DIST = 3;
 parameter WIDTH = 2**DIST;
 input [WIDTH - 1 : 0] A;
 input [DIST - 1 : 0] SHIFT;
 output reg [WIDTH - 1 : 0] OUT;

 always @(A, SHIFT) OUT = {A, A} >> SHIFT;
endmodule
Figure 3.44: Barrel shifter using a shift operator

module streaming;
 logic [15:0] A, B, C;
 logic [7:0] D, E;
 initial
 A = 16'h1234;
 always_comb begin
 B = {<<{A}};
 {>>{C}} = A;
 D = {<<{ A[7:0]}};
 {>>{E}} = A;
 $strobe("A = %h, B = %h, C = %h, D = %h, E = %h", A, B, C, D, E);
 end
endmodule

/*Simulation Results:
A = 1234, B = 2c48, C = 1234, D = 2c, E = 12
*/
Figure 3.45: Streaming operation

module adder(A, B, CIN, SUM, COUT);
 input A, B, CIN;
 output reg SUM, COUT;

 always @(A or B or CIN) {COUT, SUM} = A + B + CIN;
endmodule
Figure 3.46: Adder using concatenation

module replication;
 reg [3:0] A;
 reg [7:0] X, Y, Z;

 initial begin
 A = 4'b1010;

 X = {2{A}}; //make two copies of A concatenated together
 Y = {{0{A[3]}}, A}; //zero replication constant
 Z = {{4{A[3]}}, A}; //Extend A's MSB four more bits
 end

endmodule
Figure 3.47: Replication examples

module conditional(input A, B, SEL, EN,
output reg OUT);
 reg C;

 always_comb begin
 C = SEL ? A : B; //creat a multiplexor
 OUT = EN ? C : 1'bz; //create a Tri-state driver
 end
endmodule
Figure 3.48: Conditional operators creating a multiplexor and a Tri-state driver

module conditional2;
 reg [2:0] A, B, C;
 reg SEL;

 always_comb C = SEL ? A : B;

 initial begin
 #0 A = 3'b010; B = 3'b101; SEL = 1'b0;
 #1 SEL = 1'b1;
 #1 SEL = 1'bx;
 #1 B = 3'b011;
 end

initial $monitor($time, "A = %b, B = %b, C = %b, SEL = %b", A, B, C, SEL);

endmodule

/*Simulation Results:
Time 0: A = 010, B = 101, C = 101, SEL = 0
Time 1: A = 010, B = 101, C = 010, SEL = 1
Time 2: A = 010, B = 101, C = xxx, SEL = x
Time 3: A = 010, B = 011, C = 01x, SEL = x
*/
Figure 3.49: Multi-bit multiplexor resolving common bits

module combined;
 reg signed [3:0] A, B, C, X, Y, Z;

 initial begin
 A = 4'b1010;
 B = 4'b0001;
 C = 4'd2;
 X = 4'h5;
 Y = 4'b1;
 Z = 4'b1111;
 X += A; //Add X + A, assign to X
 Y <<= B; //Shift Y left by B bits
 Z >>>= C; //Arithmetic shift right Z by C bits
 end
endmodule
Figure 3.50: Combined assignment operators

