PAGE
4

Implementation notes:

System software requirement: Windows 2000/XP, Code Composer Studio 3.1, and 6713DSK driver

All the C programs are created for TMS320C6713 DSK, the floating-point processor.
Each DSP implementation contains its own folder in which the source code, project, map, interrupt vector, header files, and other files are included except the library files: rts6700.lib, dsk6713bsl.lib, csl6713.lib. The library files (along with the tool such as the code composer studio [CCS]) are provided by the manufacture (Texas Instrument), and must be included before compiling and building the project.
In the laboratory, the input (line-in) is connected to a function generator, while the output (line-out) is connected an oscilloscope to monitor the processed output signal. A pair of the stereo audio cable and coaxial cable with a NBC connector and alligator clips could be used to serve the connection between the line-in and function generator. The other pair of the stereo audio cable and coaxial cable with the NBC connector and alligator clips will connect the line-out to an oscilloscope.
The detailed test procedure is listed in Appendix.
The source codes for all the folders are listed bellow and see comments for more information in each source program.
===
1. c6713dsksample: c6713dsksample.c (test for ADC and DAC channels)
2. c6713dskio: c6713dskio.c (test for dummy DSP input/output equations)

3. firfloat: firf.c (FIR filtering example using the floating-point format)
4. iirfloatDF1: iirfDF1.c (IIR filtering example using the direct form I in the floating-point format)
5. iirfloatDF2: iirfDF2.c (IIR filtering example using the direct form II in the floating-point format)

6. firinteger: firi.c (FIR filtering example using the Q-15 fixed-point format)
7. iirintegerDF1: iiriDF1.c (IIR filtering example using the direct form I in the Q-15 fixed-point format)
8. iirintegerDF2: iiriDF2.c (IIR filtering example using the direct form II in the Q-15 fixed-point format)

9. tonefloatDF1: tonefDF1.c (a single tone generation example using the direct form I in the floating-point format)
10. tonefloatDF2: tonefDF2.c (a single tone generation example using the direct form II in the floating-point format)

11. systemmodeling: adptfirf.c (system modeling example using the LMS adaptive FIR filter)
12. systmodelingProgram10_5: Program10_5.c (modeling analog system using the LMS adaptive FIR filter)

13. noisecancellation: ADFfnc.c (noise cancellation simulation using the LMS adaptive FIR filter)
14. noisecencellationProgram10_6: Program10_7 (noise cancellation using two DSKs. One is used for generating the corrupted signal while the other serves as the adaptive noise canceller)

15. linearquantizer: linearquantizer.c (Real-time simulation of linear quantization)
16. digitalmulaw: digitalmulaw.c (Real-time simulation of mu-law encoding and decoding)
17. downsampling: downsampling.c (playback using the downsampling scheme)

18. downsamplingProgramP12_9: Program12_9.c (the input sampling rate =16 kHz; the output sampling rate =8 kHz by software update)

19. upsampling: upsampling.c (playback using the upsampling scheme)
20. upsamplingProgramP12_10: Program12_10.c (the input sampling rate =8 kHz using software control; the output sampling rate =16 kHz)

21. changesamplingrate: ratechange.c (playback using the sampling rate conversion with a non-integer factor)
==
Appendix: Signal Sampling and ADC/DAC Test for TMS320C6713 DSK
A. Important initial setup procedure and verification
(1) Connect the power cord to DSK6713 and USB cable your computer in which CCStudio is installed, and reboot the computer for your DSK initialization.

(2) Copy “dskc6713sample” folder provided to your pre-created working folder
(3) On your desktop, click on 6713DSK CCStudio

 Click on the Debug/Connect to connect your DSK to the host computer.

(4) Click on Project/Open
Browse to your working folder and open dskc6713sample.pjt
(5) Select rts6700.lib, right click the mouse and select Remove from Project. Repeat for dsk6713bsl.lib and csl6713.lib to remove all the library paths.

(6) Click on Project/Add Files to Project…. Search C:\CCStudio_v3.1\c6000\ and add library support files (rts6700.lib in cgtools\lib, dsk6713bsl.lib in dsk6713\lib, csl6713.lib in csl\lib) back to the project.

(7) From Project/Build Options, select Compiler/Basic/Target version as “C671x(-mv6710)”, Compiler/Advanced/Memory Model as “Far(-mem_modal:data=far)”, Compiler/Preprocessor/Pre-Define Symbol [-d] as “CHIP_6713” in CC Build Options.
Click “linker”, and choose the output as “c6713.out” or your name it.
(8) Connect the function generator to the line input of TMS320C6713 DSK and set the function generator in High-z mode to produce a sine wave with Vpp=2 volts and frequency of 1 kHz. (for the stereo audio cable: tip= right channel, middle ring=left channel, sleeve (bottom)=ground). Connect the line out of the TMS320C6713 DSP to the oscilloscope for the signal verification.

(9) In the left window, click on Source/c6713dsksample.c. This will open up the source code for your DSP coding. Scrolling down to the bottom, you will find the code comment of “// Insert DSP algorithm below” in “interrupt void c_int11()”. Below the comment is the place you will add you DSP codes. Click on Project/Rebuild all to build the sample program. (c6713dsksample.c) for the line-in and line-out application. (Sampling rate initially is set to be 8 kHz)

(10) Once you receive “Build Complete” without error. Click on File/Load Program, then clock on the Debug folder to download the executable file for example, c6713.out
Click on Debug/run to run the program.

(11) Verify that you have a 1 kHz signal displayed on your oscilloscope. Note that Vpp=1 volt approximately. The DSK reduces the voltage range by a factor of two.

(You should do (1) to (11) before every application and then continue to add your new DSP codes)
B. Verification of the DSK sampling rate:
a. Modify the sample program (c6713dsksample.c) for line-in and line-out with each specified sampling rate.

From the beginning portion in c6713dsksample.c, search and choose the specified sampling rate using one of the following control variables:

Uint32 fs=DSK6713_AIC23_FREQ_8KHZ;

Uint32 fs=DSK6713_AIC23_FREQ_16KHZ;

Uint32 fs=DSK6713_AIC23_FREQ_24KHZ;

Uint32 fs=DSK6713_AIC23_FREQ_32KHZ;

Uint32 fs=DSK6713_AIC23_FREQ_44KHZ;

Uint32 fs=DSK6713_AIC23_FREQ_48KHZ;

Uint32 fs=DSK6713_AIC23_FREQ_96KHZ;

Definitions can be found in the header file: dsk6713_aic23.h

b. Build, download, and run the program (the sampling rate initially is set to be 8 kHz).
You can verify the specified sampling rate.
C. Selecting the microphone input
Modify the program to select the microphone input (see below for the header file change), connect the power amplifier speaker to the stereo output of the TMS320C6713 DSK, and rebuild and run program. Verify audio signal.
 In the header file: c6713dskinit.h, set Set-Up Reg. 4 to 0x0015, rebuild, and run the program.

 0x0015, /* Set-Up Reg 4 Analog audio path control */ \

 /* X 0 reserved */ \

 /* STA 0 sidetone attenuation: -6 dB */ \

 /* STE 0 sidetone: disabled */ \

 /* DAC 1 DAC: selected */ \

 /* BYP 0 bypass: off */ \

 /* INSEL 1 input select for ADC: line */ \

 /* MICM 0 microphone mute: disabled */ \

 /* MICB 1 microphone boost: enabled */ \

Switch the control code, 0x0015, back to 0x0011, and rebuild and rerun the program for the line-in/line-out mod.

