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CHAPTER 12 PROBLEMS AND EXERCISES 
 
Problem 1: Consider a PWAS transducer of length 7 mml  , width 1.65 mmb  , thickness 

0.2 mmt  , and material properties as given in Table 12.2. The PWAS is bonded at one end of a 
1-mm thick 1000-mm long aluminum strip with 70 GPaE  , 32700 kg/m  , 0.33  . The 
PWAS length is oriented along the strip. The PWAS is excited with a 3.5-counts tone burst. (i) 
Calculate the first frequency at which the S0 wave propagation is dominant. (ii) Assuming that 
the frequency is adjusted to the value at which the S0 wave propagation is predominant as 
calculated in part (i), calculate the time taken by the wave packet to travel to the other end of the 
strip specimen and come back. Sketch the wave pattern. (iii) Repeat part (ii) assuming that a 
through-the-thickness crack reflector is present at 400 mm from the PWAS. Sketch the wave 
pattern. (iv) Superpose the effects of (ii) and (iii) assuming that the energy is equally partitioned 
between the waves reflecting from the end and reflecting from the crack. Sketch the wave 
pattern. Discuss. 
 

 

Solution 

 

(i) To calculate the tuning frequencies, use the tuning theory developed in textbook Chapter 11. 
For rectangular PWAS, one refers to Section 10.4.5, specifically Eq. (10.110), i.e., 
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 (10.110) (1) 

One could code Eq. (1) or could use the software programs posted on the LAMSS website 
http://www.me.sc.edu/research/lamss/html/software.html . In particular, download and activate 
the following program: 

 

 

After activating the program, one obtains the chart below.  
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Since the problem asks us to find the first tuning frequency, the chart is restricted to lower 
frequencies. In the considered frequency range, only two Lamb wave modes exist, S0 and A0. In 
the chart, the S0 mode is presented in solid line (‘symmetric”), whereas the A0 mode is 
presented in dashed line (“anti-symmetric”).  Examination of this tuning chart indicates that the 
A0 mode goes through a minimum (mode rejection) at 180 kHz. When one mode is rejected, the 
other becomes dominant. Hence, the first frequency at which the S0 mode is dominant is 

0
1 =180 kHzSf . 

============= 

(ii) Assuming that the frequency is tuned at 180 kHz (i.e., when S0 is dominant), we calculate 
the group velocity for this mode at this frequency. By plotting the group velocity, we obtain the 
chart below 
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The chart shows that, in this frequency range, the S0 group velocity (solid line) varies very 

slowly with frequency. The exact value is calculate separately as 0

180 kHz
5387 m/sS

g f
c


 . For 

convenience, we express the speed in mm/μs , i.e., 0

180 kHz
5.387 mm/μsS

g f
c


 . 

Using group velocity, one calculates the round-trip time of flight (TOF) to the end of the strip as 

 
0

2 2 1000 mm
371 s

5.387 mm/ send S
g

L
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c





    (2) 

To calculate the wave reflection process, define the incident forward wave and the reflected 
backward wave as the following continuous waves (CWs: 

 
0( )( , )

Si x t
iu x t Ae   ……incident forward wave (3) 

  0 0( 2 ) ( 2 )( , )
S SR R

i x x t i x x i t
iu x t Be Be e

          ……reflected backward wave (4) 

where Rx  is the reflector position and 0S  is the frequency dependent wavenumber defined as  

 0
0

S
Sc

  ……frequency-dependent wavenumber (5) 

where 0Sc  is the phase velocity of the S0 mode. At this relatively low frequencies, the S0 mode 
is very slowly dispersive, hence we will take a linear approximation of its variation over the 
frequency range of interest. The total wave is the summation of the incident and reflected waves, 
i.e., 

  00 ( 2 )( , ) ( , ) ( , )
SS

Ri x xi x i t
i ru x t u x t u x t Ae B e e       ……complete wave (6) 

For a generic situation, we take 1A  . Assuming perfect reflection at the Rx L  end of the 

strip, we take 1B a  . For a given excitation signal ( )s t , e.g., a tone burst, the solution is 
obtained by performing the convolution between the excitation signal and the CW definition of 
Eq. (6). The convolution is performed in the frequency domain as a multiplication. 
 The resulting wave pattern is shown below; the transmitted incident wave package and 
received reflected wave packet are clearly defined. The TOF can be easily estimated. The 

371 μsendt   value calculated with Eq. (2) matches well the estimation obtained from the chart. 
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(iii) Assuming a through-the-thickness crack reflector at =400 mmcL , we calculate the time of 

flight from the crack reflector as  

 
0

2 2 400 mm
149 s

5.387 mm/ s
c

crack S
g

L
t

c





    (7) 

The wave pattern of the transmitted and received wave packets is shown below. The crackt  can be 

easily estimated. The value calculated with Eq. (7) matches well the estimations obtained from 
the chart. 

 
 

(iv) Assuming equal partition of energy between the end reflection and crack reflection we take 

/ 2end crackB B A  . The superposed plot of the two reflections is shown below. 

Discussion: One sees the reflections from the crack and the reflection from the end. The endt  and 

crackt  can be easily estimated. The values calculated with Eqs. (2) and (7) match well the 

estimations obtained from the chart. 

 
---------------- 
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dt 0.667 s s fNQ
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PROBLEM 12.1 SOLUTION

Units 

kHz 1000 Hz MHz 10
6

Hz krad 10
3
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ms 10
3
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SETTINGS AND CONTROLS
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1
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
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Lc LcL L

Lc 400 mmL 1000 mmd
1

2
mm 0.33 2700

kg

m
3

E 70 GPaAluminum strip 

Specimen properties

x
1
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x
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nx dxnx 0 Nx 1Nx 2dx 1.0 m

definition of the space domain
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S0 and axial wave speed in aluminum strip
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 End reflection analysis

End reflection TOF estimate: cS0g 5.387
mm

s
 t_end

2 L
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S0 waves analysis
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Problem 2: Consider a PWAS transducer of length 7 mml  , width 1.65 mmb  , thickness 
0.2 mmt  , and material properties as given in Table 12.2. The PWAS is bonded at one end of a 

1-mm thick 1000-mm long aluminum strip with E = 70 GPa and  = 2.7 g/cc. The PWAS length 
is oriented along the strip. The PWAS is excited with a 3.5-counts tone burst. (i) Calculate the 
first frequency at which the A0 wave propagation is dominant. (ii) Assuming that the frequency 
is adjusted to the value at which the A0 wave propagation is dominant as calculated in part (i), 
calculate the time taken by the wave packet to travel to the other end of the strip specimen and 
come back. Sketch the wave pattern. (iii) Repeat part (ii) assuming that a through-the-thickness 
crack reflector is present at 400 mm from the PWAS. Sketch the wave pattern. (iii) Repeat part 
(ii) assuming that a through-the-thickness crack reflector is present at 400 mm from the PWAS. 
Sketch the wave pattern. (iv) Superpose the effects of (ii) and (iii) assuming that the energy is 
equally partitioned between the waves reflecting from the end and reflecting from the crack. 
Sketch the wave pattern. Discuss. 
 

Solution 

 

(i) To calculate the tuning frequencies, use the tuning theory developed in textbook Chapter 11. 
For rectangular PWAS, one refers to Section 10.4.5, specifically Eq. (10.110), i.e., 

    0 0( ) ( )0 0
0 0

0 0

( ) ( )
( , ) sin sin

( ) ( )

S A
S A

i x t i x tS Aa S a A
x S A
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a N a N
x t i a e i a e

D D
        

  
   

 
 (10.110) (1) 

One could code Eq. (1) or could use the software programs posted on the LAMSS website 
http://www.me.sc.edu/research/lamss/html/software.html . In particular, download and activate 
the following program: 

 

 

After activating the program, one obtains the chart below.  
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This chart indicates that the first maximum of the A0 is obtained around ~50 kHz. At this 
frequency, the S0 response is relatively weak. Hence, this is the first frequency at which the A0 

mode is dominant, i.e., 0
1 =50 kHzAf 50 kHz. 

 

(ii) Assuming that the frequency is tuned at 50 kHz (i.e., when A0 is dominant), we calculate the 
group velocity for this mode at this frequency. By plotting the group velocity, we obtain the chart 
below 
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The chart shows that, in this frequency range, the A0 group velocity (dash line) varies very 
rapidly with frequency. The exact value is calculate as 0

50 kHz
1355 m/s 1355 mm/μsA

g f
c


  .  

Using group velocity, one calculates the round-trip time of flight (TOF) to the end of the strip as 

 
0

2 2 1000 mm
1476 s

1.355 mm/ send A
g

L
t

c





    (2) 

To calculate the wave reflection process, define the incident forward wave and the reflected 
backward wave as the following continuous waves (CWs: 

 
0( )( , )

Ai x t
iu x t Ae   ……incident forward wave (3) 

 
 0 0( 2 ) ( 2 )( , )

A AR R
i x x t i x x i t

iu x t B e B e e
          ……reflected backward wave (4) 

where Rx  is the reflector position and 0A  is the frequency dependent wavenumber defined as  

 0
0

A
Ac

  ……frequency-dependent wavenumber (5) 

where 0Ac  is the phase velocity of the A0 mode. At this relatively low frequencies, the a0 mode 

is very dispersive and varies like  ; hence we will take a   approximation of its variation 
over the frequency range of interest. The total wave is the summation of the incident and 
reflected waves, i.e., 

  00 ( 2 )( , ) ( , ) ( , )
AA

Ri x xi x i t
i ru x t u x t u x t Ae B e e       ……complete wave (6) 

For a generic situation, we take 1A  . Assuming perfect reflection at the Rx L  end of the 

strip, we take 1B a  . For a given excitation signal ( )s t , e.g., a tone burst, the solution is 
obtained by performing the convolution between the excitation signal and the CW definition of 
Eq. (6). The convolution is performed in the frequency domain as a multiplication. The resulting 
wave pattern is shown below. 
 

 
The transmitted incident wave package and received reflected wave packet are clearly defined. 
The TOF can be easily estimated. The 1476 μsendt   value calculated in Eq. (2) matches with 

CG of the envelope of the plot of the squared dispersed A0 wave signal shown on the graph. 
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 (iii) Assuming a through-the-thickness crack reflector at =400 mmcL , we calculate the time of 

flight from the crack reflector as  

 
0

2 2 400 mm
590 s

1.355 mm/ s
c

crack A
g

L
t

c





    (7) 

The wave pattern of the transmitted and received wave packets is shown below. The crackt  can be 

easily estimated. The value calculated with Eq. (7) matches well with CG of the envelope of the 
plot of the squared dispersed A0 wave signal shown on the graph. 

 
 (iv) Assuming equal partition of energy between the end reflection and crack reflection we take 

/ 2end crackB B A  . The superposed plot of the two reflections is shown below. 

 
Discussion: One sees the reflections from the crack and the reflection from the end. The endt  and 

crackt  can be easily estimated from the CG of the dispersed A0 wave packets shown on the graph. 

The values calculated with Eqs. (2) and (7) match well the estimations obtained from the chart. 

---------------- 
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dt
1

fs
 dt 0.667 s fNQ

fs

2
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tmax 5000 s

im ceil

log
tmax

s







log
dt

s









log 2( )











 im 13 NN 2
im

 NN 8192 NQ
NN

2


Nt NN Nf NQ

T NN dt T 5461s df
1

T
 df 183 Hz

 Display controls:
Tmax 10

6
floor

10
6

T

1000









 1000 Tmax 5000s

fmax 200 kHz

Frequency range: nf 0 Nf f
nf

nf df f
Nf

750 kHz

nf 2  f
nf

 Nf 4712
krad

s


PROBLEM 12.2 SOLUTION

Units

kHz 1000 Hz MHz 10
6

Hz krad 10
3

rad

ms 10
3

s s 10
6

s

nF 10
9

F
pF 10

12
F

m 10
6

m  10
6

 MPa 10
6

Pa GPa 10
9

Pa TPa 10
12

Pa

MN 10
6

N GN 10
9

N

mS 10
3

S S 10
6

S nS 10
9

S

k 10
3

 M 10
6

 G 10
9



SETTINGS AND CONTROLS

fs 1.5 MHz
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Lc LcL L

Lc 400 mmL 1000 mmd
1

2
mm 0.33 2700

kg

m
3

E 70 GPa

Aluminum strip 

Specimen properties

x
1

1000 mm

x
nx

nx dxnx 0 Nx 1Nx 2dx 1.0 m

Definition of the space domain
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Hanning window and its FFT
H t( ) p0 sin 

t t0

2 a






2

 0 t t0 2 aif

0 otherwise



h
nt

H t
nt  HH FFT h( ) HS

nf
HH

nf


c t( ) sin c t t0( )  sc
nt

c t
nt  SC FFT sc( ) carrier signal and its FFT

ss t( ) sin c t t0( )  H t( ) s_
nt

ss t
nt  S FFT s_( ) tone burst signal and its FFT

40 20 0 20 40 60 80 100 120

10

10

time, microsec

s_nt

10
6

tnt

0 100 200 300 400 500 600 700 800
0

0.02

0.04

Snf

10
3

fnf

Hanning smoothed tone burst Nc 3.5 fc 50 kHz c 2  fc

Signal amplitude p0 10

Window size function of central frequency and Ncount a
1

fc
Nc

1

2
 a 35s

Define time range t0 a nt 0 Nt 1 t
nt

t0 nt dt t
Nt 1 5425.7 s

H t( ) p0 0 t t0 2 aif

0 otherwise

 square window
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0

500

1000

cA0nf

cF fnf 

fnf

kHz

cA0
nf

cA0_100kHz
f
nf

100 kHz


cA0_100kHz 954
m

s


cgF fc( ) 1399
m

s
cF fc( ) 699

m

s


Phase velocity interpolation using a 
square root rule

cgF f( ) 2 cF f( )fc 50 kHz

cA0g_50kHz 1355
m

s


cF f( )
E d

2


3  1 
2

 









1

4

2  f

cA0g_50kHz
1332 1378

2

m

s


Flexural wave approximationGroup velocity at 50 kHz

A0 and flexural wave speeds in aluminum strip
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200 0 200 400 600 800 1000 1200

micro-sec

plotting offset control 10

u nx 
IFFT U nx  IFFT to return to the time domain

excitation spectrum x medium transfer function at all x locations U
nf nx S

nf
G

nf nx

G
nf nx e

i nf xnx
medium transfer function for the Nx locations x in space domain 

nf
nf

cA0
nf

wave numbers

 Basic wave propagation analysis

A0 waves analysis
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 End reflection analysis

End reflection TOF estimate: cA0g_50kHz 1.355
mm

s
 t_end

2 L

cA0g_50kHz
 t_end 1476s

End reflection mean the whole signal is returned, hence A=B

A 1 B A G
nf nx A e

inf xnx
 B e

i nf xnx 2 L 


U
nf nx S

nf
G

nf nx u nx 
IFFT U nx  
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u nx 
IFFT U nx  U

nf nx S
nf

G
nf nx

G
nf nx A e

inf xnx
 Ac e

i nf xnx 2 Lc 


cA0g_50kHz 1.355
mm

s


Ac A

t_crack 590 st_crack
2 Lc

cA0g_50kHz
Crack reflection TOF estimate: 

 Crack reflection analysis
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End reflection and crack reflection of axial wave (half-half energy split): 

B
A

2
 Ac

A

2


G
nf nx A e

inf xnx
 B e

i nf xnx 2 L 
 Ac e

i nf xnx 2 Lc 


U
nf nx S

nf
G

nf nx u nx 
IFFT U nx  
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Problem 3: (i) Explain the principles of the time reversal methods. (ii) What difficulties are 
encountered when the time reversal method is applied to Lamb waves and how they might be 
alleviated. 
 

Solution 

 (i) The principles of the time reversal method are covered in some detail in the textbook Section 
12.6.1 and will not be repeated here. 

(ii) As explained in the textbook Section 12.6.2.1, the difficulties that are encountered when the 
time reversal method is applied to Lamb waves are related to the multi-modal character of the 
Lamb waves. Hence, when time reversal is applied, the reconstructed signal presents other wave 
packet besides the original wave packet. For example, if S0 and A0 modes are simultaneously 
present in the Lamb wave, then the reconstructed signal will have three wave packets instead of 
the original one. These difficulties might be alleviated through Lamb wave tuning which may 
result in a single wave packet after time reversal reconstruction. 

----------------------- 

 

 

 

 

 

 

 

Problem 4: Describe how the wave propagation method and PWAS transducers can be used to 
detect the location of an impact on a plate. (i) Highlight the methodology. (ii) List the main 
difficulties to be overcome and explain how they might be alleviated. 
 
Solution 
(i) The principles of detecting an impact on a plate using the wave propagation method and 
PWAS transducers are covered in some detail in the textbook Section 12.8.1 and will not be 
repeated here. 

 

(ii) The main difficulties to be overcome are related to the dispersive nature of the Lamb waves 
generated by the impact events. Being dispersive, the Lamb waves spread out and make difficult 
the correct time-of-flight (TOF) identification. These difficulties may be alleviated through the 
use of a different TOF criterion, e.g., the energy-peak arrival time. 
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