CHAPTER 4 PROBLEMS AND EXERCISES

Problem 1: Find the first, second, and third natural frequencies of in-plane axial vibration of a circular aluminum plate of thickness 0.8 mm , diameter 100 mm , modulus $E=70 \mathrm{GPa}$, Poisson ratio $v=0.33$, and density $\rho=2700 \mathrm{~kg} / \mathrm{m}^{3}$

Solution

Frequency expression is given by Eq. (4.52) in conjunction with Eqs. (4.29), (4.51):

$$
\begin{gather*}
f_{j}=\frac{1}{2 \pi} \frac{c_{L}}{a} z_{j}, \quad j=1,2,3, \ldots \tag{4.52}\\
c_{L}^{2}=\frac{E}{\rho\left(1-v^{2}\right)} \quad \text { (axial wave speed in a plate) } \tag{4.29}\\
z=2.067364 ; \quad 5.395106 ; \quad 8.575401 ; \quad 11.734360 \ldots \tag{4.51}
\end{gather*}
$$

Upon calculations, we get $c_{L}=5394 \mathrm{~m} / \mathrm{s}$ and $f_{1}=35.5 \mathrm{kHz}, f_{2}=92.6 \mathrm{kHz}, f_{3}=147.2 \mathrm{kHz}$

Problem 2: Find all the natural frequencies in the interval 10 kHz to 40 kHz of in-plane axial vibration of a circular aluminum plate of thickness 0.8 mm , diameter 100 mm , modulus $E=70$ GPa, Poisson ratio $v=0.33$, and density $\rho=2700 \mathrm{~kg} / \mathrm{m}^{3}$

Solution

Frequency expression is given by Eq. (4.52) in conjunction with Eqs. (4.29), (4.51):

$$
\begin{gather*}
f_{j}=\frac{1}{2 \pi} \frac{c_{L}}{a} z_{j} \quad j=1,2,3, \ldots \tag{4.52}\\
c_{L}^{2}=\frac{E}{\rho\left(1-v^{2}\right)} \quad \text { (axial wave speed in a plate) } \tag{4.29}\\
z=2.067364 ; \quad 5.395106 ; \quad 8.575401 ; \quad 11.734360 \ldots \tag{4.51}
\end{gather*}
$$

Upon calculations, we get $c_{L}=5394 \mathrm{~m} / \mathrm{s}$ and $f_{1}=35.5 \mathrm{kHz}, f_{2}=92.6 \mathrm{kHz}, f_{3}=147.2 \mathrm{kHz}$ Of these frequencies, only one resides in the interval 10 kHz to 40 kHz , i.e., $f_{1}=35.5 \mathrm{kHz}$.

SOLUTION Problems 4.1 and 4.2

$$
\begin{aligned}
& \text { ORIGIN }:=1 \\
& \begin{array}{ll}
\mathrm{h}:=1 \cdot 10^{-3} & \mathrm{a}:=\frac{1}{2} \cdot 100 \cdot 10^{-3} \\
\mathrm{cL}:=\sqrt{\frac{\mathrm{E}}{\rho \cdot\left(1-v^{2}\right)}} & \mathrm{cL}=5394 \\
\mathrm{n}:=1 . .4 \\
\gamma \mathrm{a}_{1}:=2.067364 & \gamma \mathrm{a}_{2}:=5.395106 \quad \gamma \mathrm{a}_{3}:=8.570^{9} \quad \rho:=2700 \quad v:=0.33 \\
\mathrm{c}:=\mathrm{cL} & \mathrm{f}_{\mathrm{n}}:=\frac{1}{2 \cdot \pi} \cdot \frac{\mathrm{c}}{\mathrm{a}} \cdot \gamma \mathrm{a}_{\mathrm{n}} \\
\mathrm{f}_{\mathrm{n}}= \\
& \\
\hline
\end{array} \quad \gamma \mathrm{a}_{4}:=11.734360 \\
& \hline
\end{aligned}
$$

Problem 3: Find the first, second, and third natural frequencies of out-of-plane flexural vibration of a circular plate aluminum of thickness 0.8 mm , diameter 100 mm , modulus $E=70 \mathrm{GPa}$, Poisson ratio $v=0.33$, and density $\rho=2700 \mathrm{~kg} / \mathrm{m}^{3}$

Solution

Frequency expression is given by Eq. (4.209) in conjunction with Eqs. (4.108) and (4.208):

$$
\begin{gather*}
f_{j}=\frac{\lambda_{j}^{2}}{2 \pi} \sqrt{\frac{D}{\rho h a^{4}}} \quad j=1,2,3, \ldots \tag{4.209}\\
D=\frac{E h^{3}}{12\left(1-v^{2}\right)} \tag{4.108}\\
\lambda=3.011461, \quad 6.205398, \quad 9.370844, \quad 12.525181, \ldots \tag{4.208}
\end{gather*}
$$

where a is the radius of the circular plate. In addition, we recall that $f=\omega / 2 \pi$, and hence Eq. (4.209) becomes

$$
f_{j}=\frac{\lambda_{j}^{2}}{2 \pi} \sqrt{\frac{D}{\rho h a^{4}}} \quad j=1,2,3, \ldots
$$

Upon calculations, we get $D=3.352 \mathrm{Nm}$ and $f_{1}=0.719 \mathrm{kHz}, f_{2}=3.054 \mathrm{kHz}, f_{3}=6.964 \mathrm{kHz}$

SOLUTION Problems 4.3 and 4.4

ORIGIN $:=1$

$$
\mathrm{h}:=0.8 \cdot 10^{-3} \quad \mathrm{a}:=\frac{1}{2} \cdot 100 \cdot 10^{-3} \quad \mathrm{E}:=70 \cdot 10^{9} \quad \rho:=2700 \quad v:=0.33
$$

$D:=\frac{E \cdot h^{3}}{12 \cdot\left(1-v^{2}\right)} \quad D=3.352$
$j:=1 . .8 \quad \lambda:=\left(\begin{array}{c}3.011461 \\ 6.205398 \\ 9.370844 \\ 12.525181 \\ 15.674661 \\ 18.821611 \\ 21.967077 \\ 25.111601\end{array}\right)$

$$
f_{j}:=\frac{1}{2 \cdot \pi} \cdot\left(\frac{D}{\rho \cdot h \cdot a}\right)^{\frac{1}{2}} \cdot\left(\lambda_{j}\right)^{2}
$$

$$
\mathrm{f}_{\mathrm{j}}=
$$

0.719
3.054
6.964
12.441
19.484
28.093
38.267
50.007

$$
\begin{array}{ll}
\mathrm{h}:=1 \cdot 10^{-3} & \mathrm{a}:=\frac{1}{2} \cdot 7 \cdot 10^{-3} \quad \mathrm{E}:=65 \cdot 4 \cdot 10^{9} \quad \rho:=7700 \quad v:=0.35 \\
\mathrm{cL}:=\sqrt{\frac{\mathrm{E}}{\rho \cdot\left(1-v^{2}\right)}} \quad \mathrm{cL}=3111 & \mathrm{~F}(\mathrm{x}):=1-\frac{(1-v)}{\mathrm{x}} \cdot \frac{\mathrm{~J} 1(\mathrm{x})}{\mathrm{J} 0(\mathrm{x})}
\end{array}
$$

find roots of the eigenvalue equation

$$
\begin{aligned}
& F(x):=x \cdot J 0(x)-(1-v) \cdot J 1(x) \\
& x:=2 \quad z_{1}:=\operatorname{root}(F(x), x) \quad z_{1}=2.07950762929693 \quad F\left(z_{1}\right)=0.000000000000000 \\
& x:=5 \quad z_{2}:=\operatorname{root}(F(x), x) \quad z_{2}=5.39892763320741 \quad F\left(z_{2}\right)=-6.10622663543836 \times 10^{-15} \\
& x:=8 \quad z_{3}:=\operatorname{root}(F(x), x) \quad z_{3}=8.57776133292638 \quad F\left(z_{3}\right)=0.000000000000102 \\
& x:=12 \quad z_{4}:=\operatorname{root}(F(x), x) \quad z_{4}=11.7360756926028 \quad F\left(z_{4}\right)=-5.10702591327572 \times 10^{-15} \\
& x:=15 \quad z_{5}:=\operatorname{root}(F(x), x) \quad z_{5}=14.8872198440198 \quad F\left(z_{5}\right)=-0.000000000000428 \\
& x:=18 \quad z_{6}:=\operatorname{root}(F(x), x) \quad z_{6}=18.0350025454700 \quad F\left(z_{6}\right)=-0.000000000000268 \\
& \mathrm{x}:=21 \quad \mathrm{z}_{7}:=\operatorname{root}(\mathrm{F}(\mathrm{x}), \mathrm{x}) \quad \mathrm{z}_{7}=21.1809360637258 \quad \mathrm{~F}\left(\mathrm{z}_{7}\right)=0.000000000000000 \\
& x:=24 \quad z_{8}:=\operatorname{root}(F(x), x) \quad z_{8}=24.3257425526341 \quad F\left(z_{8}\right)=-2.65065747129256 \times 10^{-15} \\
& \mathrm{x}:=27 \quad \mathrm{z}_{9}:=\operatorname{root}(\mathrm{F}(\mathrm{x}), \mathrm{x}) \quad \mathrm{z}_{9}=27.4698110185590 \quad \mathrm{~F}\left(\mathrm{z}_{9}\right)=-2.33146835171283 \times 10^{-15}
\end{aligned}
$$

Problem 4: Find all the natural frequencies in the interval 10 kHz to 40 kHz of out-of-plane flexural vibration of a circular aluminum plate of thickness 0.8 mm , diameter 100 mm , modulus $E=70 \mathrm{GPa}$, Poisson ratio $v=0.33$, and density $\rho=2700 \mathrm{~kg} / \mathrm{m}^{3}$

Solution

Frequency expression is given by Eq. (4.209) in conjunction with Eqs. (4.108) and Table 3.3:

$$
\begin{gather*}
f_{j}=\frac{\lambda_{j}^{2}}{2 \pi} \sqrt{\frac{D}{\rho h a^{4}}} \quad j=1,2,3, \ldots \tag{4.209}\\
D=\frac{E h^{3}}{12\left(1-v^{2}\right)} \tag{4.108}
\end{gather*}
$$

where a is the radius of the circular plate. In addition, we recall that $f=\omega / 2 \pi$, and hence Eq. (4.209) becomes

$$
f_{j}=\frac{\lambda_{j}^{2}}{2 \pi} \sqrt{\frac{D}{\rho h a^{4}}} \quad j=1,2,3, \ldots
$$

The values of λ_{j} are taken from Table 3.3. Upon calculations, we get $D=3.352 \mathrm{Nm}$; the frequencies are $f_{1}=0.719 \mathrm{kHz}, \quad f_{2}=3.054 \mathrm{kHz}, \quad f_{3}=6.964 \mathrm{kHz}, \quad f_{4}=12.441 \mathrm{kHz}$, $f_{5}=19.484 \mathrm{kHz}, \quad f_{6}=28.093 \mathrm{kHz}, \quad f_{7}=38.267 \mathrm{kHz}, \quad f_{8}=50.007 \mathrm{kHz}$. We note that only $f_{4}, f_{5}, f_{6}, f_{7}$ frequencies fall within the interval $10-40 \mathrm{kHz}$.

Hence, the answer to the problem is as follows: The natural frequencies in the interval 10 kHz to 40 kHz of out-of-plane flexural vibration are $f_{4}=12.441 \mathrm{kHz}, f_{5}=19.484 \mathrm{kHz}$, $f_{6}=28.093 \mathrm{kHz}, f_{7}=38.267 \mathrm{kHz}$.

Problem 5: Find the first, second, and third natural frequencies of in-plane axial vibration of a circular plate made of piezoceramic material with thickness 0.2 mm , diameter 7 mm , modulus $E=$ 65.4 GPa , Poisson ratio $v=0.35$, and density $\rho=7700 \mathrm{~kg} / \mathrm{m}^{3}$

Solution

Frequency expression is given by Eq. (4.52) in conjunction with Eqs. (4.29), (4.48):

$$
\begin{gather*}
f_{j}=\frac{1}{2 \pi} \frac{c_{L}}{a} z_{j}, \quad j=1,2,3, \ldots \tag{4.52}\\
c_{L}^{2}=\frac{E}{\rho\left(1-v^{2}\right)} \quad \text { (axial wave speed in a plate) } \tag{4.29}\\
z J_{0}(z)-(1-v) J_{1}(z)=0 \tag{4.48}
\end{gather*}
$$

One has to first find the roots of Eq. (4.48) for $v=0.35$ (these roots are different from the roots listed in Eq. (4.51), which correspond to $v=0.33$). Upon calculations, we get

$$
z=2.079508 ; \quad 5.398928 ; \quad 8.577761 ; \quad 11.736076 \ldots
$$

Then, one uses Eq. (4.29) to get $c_{L}=3111 \mathrm{~m} / \mathrm{s}$; upon substitution into Eq. (4.52), one gets $f_{1}=294.2 \mathrm{kHz}, f_{2}=763.8 \mathrm{kHz}, f_{3}=1213.5 \mathrm{kHz}$

Problem 6: Find all the natural frequencies in the interval 100 kHz to 2 MHz of in-plane axial vibration of a circular plate made of piezoceramic material with thickness 0.2 mm , diameter 7 mm , modulus $E=65.4 \mathrm{GPa}$, Poisson ratio $v=0.35$, and density $\rho=7700 \mathrm{~kg} / \mathrm{m}^{3}$

Solution

Frequency expression is given by Eq. (4.52) in conjunction with Eqs. (4.29), (4.48):

$$
\begin{gather*}
f_{j}=\frac{1}{2 \pi} \frac{c_{L}}{a} z_{j}, \quad j=1,2,3, \ldots \tag{4.52}\\
c_{L}^{2}=\frac{E}{\rho\left(1-v^{2}\right)} \quad \text { (axial wave speed in a plate) } \tag{4.29}\\
z J_{0}(z)-(1-v) J_{1}(z)=0 \tag{4.48}
\end{gather*}
$$

One has to first find the roots of Eq. (4.48) for $v=0.35$ (these roots are different from the roots listed in Eq. (4.51), which correspond to $v=0.33$). We find more roots than in previous problem because we need to get beyond $2,000 \mathrm{kHz}$. Upon calculations, we get
$z=2.079508 ; \quad 5.398928 ; ~ 8.577761$; 11.736076, 14.887220, 18.035003...
Then, one uses Eq. (4.29) to get $c_{L}=3111 \mathrm{~m} / \mathrm{s}$; upon substitution into Eq. (4.52), one gets $f_{1}=294.2 \mathrm{kHz}, f_{2}=763.8 \mathrm{kHz}, f_{3}=1213.5 \mathrm{kHz}, f_{4}=1660.3 \mathrm{kHz}, f_{5}=2106.1 \mathrm{kHz}$
Of these frequencies, only three reside in the interval 100 kHz to $2 \mathrm{MHz}=2,000 \mathrm{kHz}$, i.e., $f_{1}=294.2 \mathrm{kHz}, f_{2}=763.8 \mathrm{kHz}, f_{3}=1213.5 \mathrm{kHz}$,.

