CHAPTER 7 PROBLEMS AND EXERCISES

Problem 1: Consider a PWAS transducer with length $l=7 \mathrm{~mm}$, width $b=1.65 \mathrm{~mm}$, thickness $t=0.2 \mathrm{~mm}$, and material properties as given in Table 7.1.
(i) Find the free capacitance, C, of the PWAS.
(ii) Calculate the voltage, V, measured at PWAS terminals by an instrument with input capacitance $C_{e}=1 \mathrm{pF}$ when the applied strain is $S_{1}=-1000 \mu \varepsilon$.
(iii) Plot the variation of measured voltage with instrument capacitance $C_{e}=0.1 \ldots 10 \mathrm{nF}$ when $S_{1}=-1000 \mu \varepsilon$ (use log scale for C_{e} axis).
(iv) Plot the variation of measured voltage with strain in the range $S_{1}=0 \ldots-1000 \mu \varepsilon$; make a carpet plot of V vs. S_{1} for various values of $C_{e}(0.1 \mathrm{nF}, 1 \mathrm{nF}, 10 \mathrm{nF})$.
(v) Extend to dynamic strain: calculate the voltage V for dynamic strain of amplitude $\hat{S}_{1}=1000 \mu \varepsilon$ with frequency $\mathrm{f}=100 \mathrm{kHz}\left(\right.$ take $C_{e}=1 \mathrm{pF}$)

Solution

(i) Recall the free capacitance C of the PWAS, Eq. (7.7) of the textbook, i.e.,

$$
\begin{equation*}
C=\varepsilon_{33}^{T} \frac{A}{t} \tag{1}
\end{equation*}
$$

Note that the A is the PWAS surface area, i.e., $A=b l=11.55 \mathrm{~mm}^{2}$. Upon calculation, Eq. (1) yields $C=0.894 \mathrm{nF}$.
(ii) To calculate the voltage V measured at PWAS terminals by an instrument with a given input capacitance C_{e}, consider the measuring circuit depicted in Figure 7.5 of the textbook Chapter7 in which the PWAS transducer is connected in to the instrument input capacitance C_{e}., Elementary analysis yields the formula of Eq. (7.46) of Section 7.3.2, i.e.,

$$
\begin{equation*}
V\left(S_{1}, C_{e}\right)=\frac{1}{C_{e}+C\left(1-k_{31}^{2}\right)} \frac{A d_{31}}{s_{11}^{T}} S_{1} \tag{2}
\end{equation*}
$$

It is important to notice that the output voltage depends on both the applied strain S_{1} and the instrument input capacitance C_{e}. For a given strain, the maximum output voltage is obtained when the instrument input capacitance approaches zero (i.e., infinite capacitive impedance at the instrument input). For the numerical case $S_{1}=-1000 \mu \varepsilon$ and $C_{e}=1 \mathrm{pF}$ one gets $V=169 \mathrm{~V}$.
(iii)To plot the variation of measured voltage with instrument capacitance $C_{e}=0.1 \ldots 10 \mathrm{nF}$ when $S_{1}=-1000 \mu \varepsilon$, use Eq. (2) with the value of S_{1} fixed at $S_{1}=-1000 \mu \varepsilon$, as shown in Figure 1 below.

Figure 1 Variation of measured voltage with instrument capacitance C_{e} for a constant applied strain $S_{1}=-1000 \mu \varepsilon$.
(iv)To plot the variation of measured voltage with strain and to make a carpet plot of V vs. S_{1} for various values of C_{e}, use Eq. (2), give to C_{e} the values $0.1 \mathrm{nF}, 1 \mathrm{nF}, 10 \mathrm{nF}$, and plot them overlapped. One obtains the plot in Figure 2 below.

Figure 2 Variation of measured voltage with strain for various values of $C_{e}: 0.1 \mathrm{nF}, 1 \mathrm{nF}$, 10 nF
(v)To extend the analysis to dynamic strain $S_{1}(t)=\hat{S}_{1} e^{i \omega t}$, recall the analysis of Chapter 7, Section 7.3.4 and Eq. (7.71), i.e.,

$$
\begin{equation*}
V(t)=A \frac{d_{31}}{s_{11}^{T}} \frac{1}{Y_{e}+Y_{0}\left(1-k_{31}^{2}\right)} \dot{S}_{1}(t) \tag{3}
\end{equation*}
$$

where $Y(\omega)=i \omega C$ is the PWAS admittance and $Y_{e}(\omega)=i \omega C_{e}$ is the instrument admittance. The strain rate $\dot{S}_{1}(t)$ is calculate as

$$
\begin{equation*}
\dot{S}_{1}(t)=i \omega \hat{S}_{1} e^{i \omega t}=i \omega S_{1}(t) \tag{4}
\end{equation*}
$$

Substitution of Eq. (4) into Eq. (3) yields

$$
\begin{equation*}
V(t)=A \frac{d_{31}}{s_{11}^{T}} \frac{1}{Y_{e}+Y_{0}\left(1-k_{31}^{2}\right)} i \omega S_{1}(t) \tag{5}
\end{equation*}
$$

or, in terms of amplitudes,

$$
\begin{equation*}
\hat{V}=i \omega A \frac{d_{31}}{s_{11}^{T}} \frac{1}{Y_{e}+Y_{0}\left(1-k_{31}^{2}\right)} \hat{S}_{1} \tag{6}
\end{equation*}
$$

At a frequency $f=100 \mathrm{kHz}$, the PWAS admittance is $Y=562 \mu \mathrm{~S}$. The admittance of an instrument of capacitance $C_{e}=1 \mathrm{pF}$ is $Y_{e}=0.628 \mu \mathrm{~S}$. For dynamic strain of amplitude $\hat{S}_{1}=1000 \mu \varepsilon$, Eq. (6) yields the voltage amplitude $\hat{V}=169 \mathrm{~V}$.

$$
\mathrm{kHz}:=1000 \cdot \mathrm{~Hz} \quad \mathrm{pF}:=10^{-12} \cdot \mathrm{~F} \quad \mathrm{~mm}=1 \times 10^{-3} \mathrm{~m} \quad \mathrm{nF}:=10^{-9} \cdot \mathrm{~F} \quad \mu \varepsilon:=10^{-6} \ldots
$$

Given: $\quad \mathrm{L}:=7 \cdot \mathrm{~mm} \quad \mathrm{~b}:=1.65 \cdot \mathrm{~mm} \quad \mathrm{t}:=0.2 \cdot \mathrm{~mm}$
$\varepsilon 0:=8.85 \cdot 10^{-12} \cdot \frac{\mathrm{~F}}{\mathrm{~m}} \quad \varepsilon 33:=1750 \cdot \varepsilon 0 \quad \mathrm{~s} 11:=15.3 \cdot \frac{10^{-12}}{\mathrm{~Pa}} \quad \mathrm{~d} 31:=-175 \cdot 10^{-12} \cdot \frac{\mathrm{~m}}{\mathrm{~V}} \quad \mathrm{k} 31:=0.36$
Solution: $\quad \varepsilon 33=15.487 \frac{\mathrm{nF}}{\mathrm{m}}$

1. Free capacitance

$$
\mathrm{A}:=\mathrm{b} \cdot \mathrm{~L} \quad \mathrm{~A}=11.55 \mathrm{~mm}^{2}
$$

$$
\mathrm{C}:=\varepsilon 33 \cdot \frac{\mathrm{~A}}{\mathrm{t}}
$$

$$
\mathrm{C}=0.894 \mathrm{nF}
$$

2. General expression of voltage at PWAS terminals:

$$
\mathrm{VV}(\mathrm{~S} 1, \mathrm{Ce}):=\frac{\mathrm{A} \cdot \frac{\mathrm{~d} 31}{\mathrm{~s} 11}}{\mathrm{Ce}+\mathrm{C} \cdot\left(1-\mathrm{k} 31^{2}\right)} \cdot \mathrm{S} 1 \quad \mathrm{~d} 31=-1.75 \times 10^{-10} \frac{\mathrm{~m}}{\mathrm{~V}}
$$

3. Voltage for given Ce and S1

$$
\mathrm{VV}(-1000 \cdot \mu \varepsilon, 1 \cdot \mathrm{pF})=169 \mathrm{~V}
$$

4. Voltage vs. instrument capacitance:

Ce_min $:=0.1 \cdot n F \quad$ Ce_max $:=10 \cdot n F \quad \delta C e:=1 \cdot \mathrm{pF} \quad$ Ce $:=C e _m i n, C e _m i n+\delta C e . . C e _m a x$
$\mathrm{VV}(-1000 \cdot \mu \varepsilon, \mathrm{Ce})$

5. Voltage vs. strain for various instrument capacitance

S1_min :=-1000 $\mu \varepsilon \quad$ S1_max $:=0 \quad \delta S 1:=1 \cdot \mu \varepsilon \quad$ S1 $:=\mathrm{S} 1 _m i n$, S1_min $+\delta S 1 . . \mathrm{S} 1 _$max

- What happens if the strain is dynamic? Calculate the voltage V for $S_{1}=1000$ microstrain amplitude with frequency $\mathrm{f}=100 \mathrm{kHz}$? (take $C_{e}=1 \mathrm{pF}$)

$$
\begin{array}{ll}
\begin{array}{l}
\text { Ce }:=1 \cdot \mathrm{pF} \\
\mathrm{f}:=100 \mathrm{kHz} \\
\mathrm{~S} 1:=-1000 \cdot \mu \varepsilon
\end{array} & \omega:=2 \cdot \pi \cdot \mathrm{f} \quad \omega=62810^{3} \cdot \frac{\mathrm{rad}}{\mathrm{~s}} \\
\mathrm{Ye}:=\mathrm{i} \cdot \omega \cdot \mathrm{Ce} \quad & |\mathrm{Ye}|=0.62810^{-6} \cdot \mathrm{~S} \\
\mathrm{Y}:=\mathrm{i} \cdot \omega \cdot \mathrm{C} & |\mathrm{Y}|=56210^{-6} \cdot \mathrm{~S} \\
\mathrm{~S} 1 \mathrm{dot}:=\mathrm{i} \cdot \omega \cdot \mathrm{~S} 1 & \mathrm{~S} 1 \mathrm{dot}=-628.319 \mathrm{i} \mathrm{~Hz} \\
\mathrm{~d} 31=-1.75 \times 10^{-10} \frac{\mathrm{~m}}{\mathrm{~V}} \quad \mathrm{~s} 11=15.310^{-12} \cdot \frac{1}{\mathrm{~Pa}} \quad \mathrm{k} 31^{2}=0.13 \\
\mathrm{VV}:=\mathrm{S} 1 \mathrm{dot} \cdot \mathrm{~d} 31 \cdot \frac{\mathrm{~A}}{\mathrm{~s} 11} \cdot\left[\frac{1}{\mathrm{Ye}+\mathrm{Y} \cdot\left(1-\mathrm{k} 31^{2}\right)}\right] \\
\mathrm{IVV} \mid=169 \mathrm{~V}
\end{array}
$$

Problem 2: Consider a PWAS transducer with length $l=7 \mathrm{~mm}$, width $b=1.65 \mathrm{~mm}$, thickness $t=0.2 \mathrm{~mm}$, and material properties as given in Table 7.1.
(vi) Calculate the approximate value of Young's modulus, Y^{E}, in GPa. What common material is this value close to?
(vii) Calculate the electric field, E_{3}, for an applied voltage $V=100 \mathrm{~V}$. Express the electric field E_{3} in $\mathrm{kV} / \mathrm{mm}$.
(viii) Calculate the strain S_{1} for the simultaneous application of stress $T_{1}=-1 \mathrm{MPa}$ and voltage $V=-100 \mathrm{~V}$.
(ix) Plot on the same chart the variation of strain S_{1} with voltage V for $T_{1}=0 ;-2.5 ;-5 ;-7.5 ;-10 \mathrm{MPa}$
(x) Plot on the same chart the variation of strain S_{1} with stress T_{1} for $V=0,25,50,75,100 \mathrm{~V}$

Solution

(i) To calculate the approximate value of Young's modulus, Y^{E} use the approximate formula

$$
\begin{equation*}
Y_{11}^{E} \approx \frac{1}{s_{11}^{E}} \text {, i.e., } Y_{11}^{E}=65.4 \mathrm{GPa} \tag{1}
\end{equation*}
$$

The value given in Eq. (1) is closed to the elastic modulus of aluminum ($\sim 70 \mathrm{GPa}$)
(ii) To calculate the electric field, E_{3}, between the plates of a conventional capacitor, one divides the voltage by the distance between the plates. In the case of a PWAS, we note that the electrodes are placed on the top and bottom surfaces of the PWAS; hence the electric field is obtained by dividing the voltage by the PWAS thickness, as given by Eq. (7.13), i.e.,

$$
\begin{equation*}
E=-\frac{V}{t} \tag{2}
\end{equation*}
$$

For an applied voltage $V=100 \mathrm{~V}$ and a PWAS thickness $t=0.2 \mathrm{~mm}$, the corresponding electric field is $E_{3}=-0.5 \mathrm{kV} / \mathrm{mm}$.
(iii) To calculate the strain S_{1} for the simultaneous application of stress $T_{1}=-5 \mathrm{MPa}$ and voltage $V=100 \mathrm{~V}$ use the textbook Eqs. (2.22) of Chapter 2 and (7.13) of Chapter 7, i.e.,

$$
\begin{equation*}
S_{1}\left(T_{1}, E_{3}\right)=s_{11}^{E} T_{1}+d_{31} E_{3} \tag{3}
\end{equation*}
$$

Using Eq. (2) into Eq. (3) yields

$$
\begin{equation*}
S_{1}\left(T_{1}, V\right)=s_{11}^{E} T_{1}+d_{31}\left(-\frac{V}{t}\right) \tag{4}
\end{equation*}
$$

For the for the simultaneous application of stress $T_{1}=-1 \mathrm{MPa}$ and voltage $V=-100 \mathrm{~V}$ the strain is $S_{1}=72 \mu \varepsilon$.
(iv)The plot on the same chart the variation of strain S_{1} with voltage V for $T_{1}=0 ;-2.5 ;-5 ;-7.5 ;-10 \mathrm{MPa}$ is show in Figure 3 below.

VV
Figure 3 Variation of strain S_{1} with voltage V for various values of stress T_{1}
(v)The plot on the same chart the variation of strain S_{1} with stress T_{1} for $V=0,25,50,75,100 \mathrm{~V}$ is given in Figure 4 below
$\frac{10^{6} \cdot \mathrm{~S} 1(\mathrm{~T} 1,0 \cdot \mathrm{~V})}{{ }^{6} 0^{6} \cdot \mathrm{~S} 1(\mathrm{~T} 1,25 \cdot \mathrm{~V})}$

$10^{6} \cdot \mathrm{~S} 1(\mathrm{~T} 1,50 \cdot \mathrm{~V})$
$=-\mathrm{F}$
$10^{6} \cdot \mathrm{~S} 1(\mathrm{~T} 1,75 \cdot \mathrm{~V})$

$10^{6} \cdot \mathrm{~S} 1(\mathrm{~T} 1,100 \cdot \mathrm{~V})$

$10^{-6} \cdot \mathrm{~T} 1$
Figure 4 Variation of strain S_{1} with stress T_{1} for various values of voltage V

Units $\quad \mathrm{kHz}:=1000 \cdot \mathrm{~Hz} \quad \mathrm{pF}:=10^{-12} \cdot \mathrm{~F} \quad \mathrm{nF}:=10^{-9} \cdot \mathrm{~F} \quad \mu \varepsilon:=10^{-6} \quad \mathrm{MPa}:=10^{6} \cdot \mathrm{~Pa} \quad \mathrm{GPa}:=10^{9} \cdot \mathrm{~Pa}$

Given:

$$
\begin{aligned}
& \mathrm{L}:=7 \cdot \mathrm{~mm} \quad \mathrm{~b}:=1.65 \mathrm{~mm} \quad \mathrm{t}:=0.2 \cdot \mathrm{~mm} \\
& \varepsilon 0:=8.85 \cdot 10^{-12} \cdot \frac{\mathrm{~F}}{\mathrm{~m}} \quad \varepsilon 33:=1750 \varepsilon 0 \quad \mathrm{~s} 11:=15.3 \cdot 10^{-12} \cdot \frac{1}{\mathrm{~Pa}} \quad \mathrm{~d} 31:=-175 \cdot 10^{-12} \cdot \frac{\mathrm{~m}}{\mathrm{~V}} \quad \mathrm{k} 31:=0.36
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& \text { Vmax }:=100 \cdot \mathrm{~V} \quad \mathrm{VV}:=0 \cdot \mathrm{~V}, 1 \cdot \mathrm{~V} . . \mathrm{Vmax} \quad \mathrm{~T} 1:=0, \delta \mathrm{~T} . . \mathrm{Tmax} \\
& \text { Tmax }:=-10 \cdot \mathrm{MPa} \quad \delta \mathrm{~T}:=-1 \cdot \mathrm{MPa} \quad \text { Close to aluminum Young's modulus }=70 \mathrm{GPa} \\
& \text { YE11: }=\frac{1}{\mathrm{~s} 11} \quad \text { YE11 }=65.4 \mathrm{GPa} \\
& \mathrm{E} 3(\mathrm{VV}):=-\frac{\mathrm{VV}}{\mathrm{t}} \quad \mathrm{E} 3(100 \cdot \mathrm{~V})=-0.500 \frac{\mathrm{kV}}{\mathrm{~mm}} \\
& \mathrm{~S} 1(\mathrm{~T} 1, \mathrm{VV}):=\mathrm{s} 11 \cdot \mathrm{~T} 1+\mathrm{d} 31 \cdot\left(-\frac{\mathrm{VV}}{\mathrm{~m}}\right) \\
& \mathrm{S} 1(-1 \cdot \mathrm{MPa}, 100 \cdot \mathrm{~V})=72.2 \mu \varepsilon
\end{aligned}
$$

VV

