#### INSTRUCTOR MANUAL for the textbook STRUCTURAL HEALTH MONITORING WITH PIEZOELECTRIC WAFER ACTIVE SENSORS, Victor Giurgiutiu, Elsevier Academic Press, 2<sup>nd</sup> Edition, 2014

Notification: this web-based instructor manual is a **living document**. Visit the website frequently to see recent updates.

#### **1** THE USE OF THE BOOK

This book can be used for

- (a) as a textbook for teaching full-length courses as well as short courses
- (b) as a research monograph

The various full-length courses and short courses that can be taught using this book are discussed next.

#### **1.1 FULL-LENGTH COURSES**

The **full-length courses** to which this book can serve as a textbook fall into several categories:

- **Structural health monitoring** (SHM) with emphasis on active SHM methods. For such a novel course, this book would be the primary textbook, since it is self sufficient for this purpose and contains all the required elements
- Active materials and smart structures. For such a novel course, this textbook may need to be complemented with instructor's notes or with reference to other textbooks covering relevant subject matter not covered in this textbook
- Traditional courses on advanced engineering subjects such as, vibrations, wave **propagation in solid media**, etc. For such courses, this textbook may need to be complemented with instructor's notes or with reference to other textbooks covering relevant subject matter not covered in this textbook
  - wave propagation
  - o active materials and smart structures

#### **1.2** SHORT COURSES

Numerous **short courses** can also be taught with this textbook, such as:

- Introduction to structural health monitoring
- Introduction to active materials and smart structures
- E/M Impedance Method for Structural health monitoring
- Wave propagation methods for Structural health monitoring
- In-situ phased arrays for structural health monitoring
- Introduction to vibration
- Introduction to waves in solid media axial waves
- Introductory vibration of continuous structures– vibrations of bars, beams and shafts
- Intermediate vibration of continuous structures vibration of plates
- Intermediate waves in solid media flexural, torsional and 3-D waves
- Guided waves Rayleigh, SH, Lamb, and pipe waves

#### **1.3** LEVEL OF STUDENT INSTRUCTION

The material contained in this textbook can be used for student instruction at three main levels

- 300-400 level courses for undergraduate students. Depending on the specifics of the academic department, such courses may be **mandatory** or **optional**.
- 500 level courses that are addressed to a mixed audience of undergraduate and graduate students. When planning such courses, the instructor should pay attention to make the requirements for graduate students in the class more challenging than the requirements for the undergraduate students (e.g., extra work on the homework assignments, final exam appropriately targeted, etc.).
- 700-800 for an audience of advanced graduate students. Such courses would require familiarity with advanced mathematical tools and a multidisciplinary knowledge base.

Some of the short course that can be taught from this textbook can be also addressed to advanced-placement (AP) high-school students.

For each instructional level, adequate material selection must be made from the textbook. Table 1 presents the author's suggestion on selecting the material; however, the circumstances of such a selection may vary from school to school and the instructor should accordingly make appropriate selections.

### 2 LECTURE PLANS

Sample lecture plans for full-length courses and short courses are given below. These lecture plans are not exhaustive; they simply represent the author's suggestions at the time of writing this instructor manual. Further lecture plans may be introduced in updated editions of this web-based document. The reader is encouraged to check the website frequently for possible updates.

#### 2.1 FULL-LENGTH COURSES

A suggested lecture plan for a full-length advanced course on **Structural health monitoring** (SHM) with emphasis on active SHM methods is given in **Error! Reference source not found.**. The course is structured on a 15-week lecture course with three 1-hour lectures per week (MWF schedule). Provision has been made in the schedule for one day of *National Holiday* and two days of *semester break*. The course is structured into twelve major sections, following the twelve chapters of the book. The book sections that can be used for each class are indicated. It should be noted that the allotted time may differ from section to section in accordance to the emphasis given to different topics. The lecture plan provides for two **scheduled tests** and one **final exam**. Impromptu **short quizzes** may be also necessary to test the audience's progress. Such quizzes can be also administered at instructor's discretion.

In planning this schedule, the following **general principles** have been observed:

- (a) try to have HMWK due on Mondays
- (b) no HMWK on a test week
- (c) in the beginning, plan denser HMWK to get students up to speed fast
- (d) later in the course, space out the HMWK and make more substantial and difficult
- (e) try to avoid overlap between HMWK, tests, and labs, when possible

Twelve **homework assignments** are scheduled in the lecture plan. These homework assignments correspond to the twelve chapters of the book. In each homework, assignments are chosen from the problems and exercises given at the end of each textbook chapter. As a general guidance, the assignments should be chosen in accordance with the instruction level of the course, e.g., introductory, intermediate, and advanced. The lecture plan provided in **Error! Reference source not found.** corresponds to the advanced level.

Five **lab sessions** are scheduled as follows for the following main areas:

- 1. Vibration
- 2. Waves
- 3. PWAS
- 4. SHM based on vibrations
- 5. SHM based on wave propagation

The labs may be devised using the practical experiments described in the book. A list of experiments that can be found in the book is given Table 3. Of course, the instructor has the liberty and is also encouraged to develop other experiments illustrating the basic principles described in the theoretical sections.

### 2.2 SHORT COURSES

A variety of one-week short courses can be taught from this textbook. Several lecture-plan examples are given below. However, several others may be also conceived, and may appear in later editions of this instructor manual. These short courses cover typically five days with three ours in the morning (am) and three hours in the afternoon (pm). The mornings are dedicated to classroom instruction, whereas the afternoons are dedicated to labs and hands-on demos.

## 2.2.1 Short course: Introduction to Structural Health Monitoring (5 day, high-school AP; university freshman May-semester)

| Day   | am – Classroom instruction               | pm – Labs and demos                        |
|-------|------------------------------------------|--------------------------------------------|
| Day 1 | Structural health monitoring             | Group discussion of a major structural     |
|       | principles. Causes of structural failure | failure relevant to the audience           |
|       | and how to prevent it                    |                                            |
| Day 2 | Active materials and piezoelectric       | Measurements of PWAS resonators            |
|       | wafer active sensors (PWAS)              |                                            |
| Day 3 | PWAS modal sensors; the                  | Experiments with the E/M impedance         |
|       | electromechanical (E/M) impedance        | method on small beams                      |
|       | method                                   |                                            |
| Day 4 | PWAS wave transducers                    | Experiments with passive and active use of |
|       |                                          | PWAS wave transducers: impact detection,   |
|       |                                          | pitch-catch; pulse-echo                    |
| Day 5 | Summary and conclusions                  | Review of experiments and homework         |
|       |                                          | Questions and answers session              |

#### 2.2.2 Short course: Introduction to Active Materials and Smart Structures (5 day, highschool AP; university freshman May-semester)

| Day   | am – Classroom instruction             | pm – Labs and demos                          |
|-------|----------------------------------------|----------------------------------------------|
| Day 1 | Overview of active materials and smart | Group discussion of examples of active       |
|       | structures                             | materials used in everyday life (e.g., piezo |
|       |                                        | lighters) and of the perspective of smart    |
|       |                                        | structures improvements on human life        |
| Day 2 | Principles of piezoelectricity         | Simple piezoelectric experiments/demos.      |
|       |                                        | Measurement of direct and converse           |
|       |                                        | piezoelectric response.                      |
| Day 3 | Structure and fabrication of           | Audio-visual instructional material on how   |
|       | piezoelectric ceramics                 | piezoceramics are fabricated and tested      |
|       |                                        | followed by group discussions                |
| Day 4 | Magnetostrictive materials             | Experiments with magnetostrictive sensors    |
|       |                                        | and actuators                                |
| Day 5 | Summary and conclusions                | Review of experiments and homework           |
|       |                                        | Questions and answers session                |

## 2.2.3 Short course: Introduction to Vibration (5 days, high-school AP; university freshman May-semester)

| Day   | am – Classroom instruction            | pm – Labs and demos                 |
|-------|---------------------------------------|-------------------------------------|
| Day 1 | Oscillatory motion                    | Spring-mass oscillator              |
|       | Trigonometric, phasor and complex     | Mass and stiffness measurements     |
|       | representation                        | Frequency estimation                |
|       | Undamped free vibration of a particle | Frequency measurement               |
|       |                                       | Comparison and discussion           |
| Day 2 | Damped free vibration                 | Damped oscillator                   |
|       | Underdamped, critically damped,       | Estimation of frequency and damping |
|       | overdamped vibration                  | from free oscillations              |
|       | Logarithmic decrement                 |                                     |
|       | Undamped forced vibration             |                                     |
| Day 3 | Damped forced vibration               | Forced vibration experiment         |
|       | Frequency response function           | Measurement of frequency response   |
|       | Estimation of system damping from the | function                            |
|       | frequency response function           |                                     |
|       |                                       |                                     |
| Day 4 | Dynamic stiffness and mechanical      | Transmissibility experiment         |
|       | impedance                             | Mechanical-electrical equivalents   |
|       | Transmissibility                      | experiment                          |
|       | Mechanical-electrical equivalents     |                                     |
| Day 5 | Energy methods in vibration analysis  | Energy methods experiment           |
|       | Summary and conclusions               | Measurement of maximum force        |
|       |                                       | Measurement of maximum velocity     |

| Day   | am – Classroom instruction              | pm – Labs and demos                          |
|-------|-----------------------------------------|----------------------------------------------|
| Day 1 | Wave equation                           | Spring analogy experiment                    |
|       | D'Alembert solution to wave equation    | Simulation of D'Alembert solution            |
|       | The initial value problem for wave      | Experimentation with various initial values  |
|       | propagation                             |                                              |
| Day 2 | Strain waves and stress waves           | Instrumented free bar experiment             |
|       | Particle velocity vs. wave velocity     | <ul> <li>end impact excitation</li> </ul>    |
|       | Acoustic impedance of the medium        | <ul> <li>piezoelectric excitation</li> </ul> |
|       |                                         | Measurement of time of flight for multiple   |
|       |                                         | reflections; estimation of wave speed        |
| Day 3 | Wave propagation at interfaces          | Split Hopkinson bar experiment               |
|       | Split Hopkinson bar                     | Free and built-in reflections                |
| Day 4 | Separation of variables solution to the | Tone-burst propagation in free bar           |
|       | wave equation                           | Standing waves identification through        |
|       | Harmonic waves                          | frequency sweeps                             |
|       | Standing waves                          |                                              |
| Day 5 | Power and energy:                       | Review of experiments and homework           |
|       | • Axial wave energy                     | Questions and answers session                |
|       | • Axial wave power                      |                                              |
|       | Summary and conclusions                 |                                              |

# 2.2.4 Short course: Introduction to Waves (5 day, high-school AP; university freshman May-semester)

Table 1: Textbook material selection suggestion by level of instruction (300-400 represents undergraduate audience; 500 represents combined graduate/undergraduate audience; 700-800 represents advanced graduate audience)

|                                                                | Instru | ictiona | l level |
|----------------------------------------------------------------|--------|---------|---------|
|                                                                | 300-   | 500     | 700-    |
|                                                                | 400    |         | 800     |
| Chapter 1: Introduction                                        |        |         |         |
| 1.1 Structural health monitoring principles and concepts       | Х      | Х       | Х       |
| 1.2 Structural fracture and failure                            | Х      | Х       | Х       |
| 1.2.1 Review of linear elastic fracture mechanics principles   |        | Х       | Х       |
| 1.2.2 Fracture mechanics approach to crack propagation         |        | Х       | Х       |
| 1.3 Aircraft structural integrity program (ASIP0               |        |         | Х       |
| 1.3.1 Terminology                                              | Х      | Х       | Х       |
| 1.3.2 Damage tolerance and fracture control                    |        | Х       | Х       |
| 1.3.3 Component life prediction                                | Х      | Х       | Х       |
| 1.3.4 Airframe life prediction                                 |        | Х       | Х       |
| 1.3.5 Aircraft usage                                           |        | Х       | Х       |
| 1.3.6 In-service NDI/NDE                                       |        | Х       | Х       |
| 1.3.7 ASIP inspection intervals                                |        |         | Х       |
| 1.3.8 Fatigue tests and life-cycle prognosis                   |        | Х       | Х       |
| 1.4 Improved diagnosis and prognosis through structural health | Х      | Х       | Х       |
| monitoring                                                     |        |         |         |
| 1.5 About this book                                            | Х      | Х       | Х       |
|                                                                |        |         |         |
| Chapter 2: Electroactive and magnetoactive materials           |        |         |         |
| 2.1 Introduction                                               | Х      | Х       | Х       |
| 2.2 Piezoelectricity                                           | Х      | Х       | Х       |
| 2.2.1 Actuation equations                                      |        | Х       | Х       |
| 2.2.2 Sensing equations                                        |        |         | Х       |
| 2.2.3 Stress equations                                         |        |         | Х       |
| 2.2.4 Actuator equations in terms of polarization              |        |         | Х       |
| 2.2.5 Compressed matrix notations                              | Х      | Х       | Х       |
| 2.2.6 Piezoelectric equations in compressed matrix notations   | Х      | Х       | Х       |
| 2.2.7 Relations between the constants                          | Х      | Х       | Х       |
| 2.2.8 Electromechanical coupling coefficient                   |        | Х       | Х       |
| 2.2.9 Higher order models of the electroactive response        | Х      | Х       | Х       |
| 2.3 Piezoelectric phenomena                                    | Х      | Х       | Х       |
| 2.4 Perovskite ceramics                                        | Х      | Х       | Х       |
| 2.4.1 Spontaneous strain and spontaneous polarization of the   |        |         |         |
| Perovskite structure                                           |        |         |         |
| 2.4.2 Induced strain and induced polarization                  | Х      | Х       | Х       |
| 2.4.3 Poling of polycrystalline perovskite ceramics            |        | Х       | Х       |
| 2.4.4 Common perovskite ceramics                               | X      | Х       | X       |
| 2.4.5 Piezoelectric ceramics                                   | X      | X       | Х       |

| 2.4.6 Electrostrictive ceramics                                       | Х | Х | Х |
|-----------------------------------------------------------------------|---|---|---|
| 2.4.6.1 Relaxor ferroelectrics                                        |   | Х | Х |
| 2.4.6.2 Constitutive equations of electrostrictive ceramics           |   | Х | Х |
| 2.5 Piezopolymers                                                     | Х | Х | Х |
| 2.5.1 Piezopolymers properties and constitutive equations             |   | Х | Х |
| 2.5.2 Typical piezopolymer applications                               | Х | Х | Х |
| 2.6 Magnetostrictive materials                                        | Х | Х | Х |
| 2.6.1 Magnetostrictive equations                                      |   | Х | Х |
| 2.6.2 Linearized equations of piezomagnetism                          | Х | Х | Х |
| 2.7 Summary and conclusions                                           | Х | Х | Х |
|                                                                       |   |   |   |
| Chapter 3: vibration of solids and structures                         |   |   |   |
| 3.1 Introduction                                                      | Х | Х | Х |
| 3.2 Single degree of freedom vibration analysis                       | Х | Х | Х |
| 3.2.1 Free vibration of a 1-dof system                                | Х | Х | Х |
| 3.2.1.1 Oscillatory motion                                            | Х | Х | Х |
| 3.2.1.1.1 Phasor representation of oscillatory motion                 | Х | Х | Х |
| 3.2.1.1.2 Complex representation of oscillatory motion                | Х | Х | Х |
| 3.2.1.2 Undamped free vibration                                       | Х | Х | Х |
| 3.2.1.2.1 General solution of free undamped vibration                 | Х | Х | Х |
| 3.2.1.2.2 General solution for given initial displacement and initial | Х | Х | Х |
| velocity                                                              |   |   |   |
| 3.2.1.3 Damped free vibration                                         | Х | Х | Х |
| 3.2.1.3.1 General solution of free damped vibration                   | Х | Х | Х |
| 3.2.1.3.2 Effect of damping on vibration response                     | Х | Х | Х |
| 3.2.1.3.3 Logarithmic decrement, $\delta$                             | Х | Х | Х |
| 3.2.1.3.4 Hysteretic damping                                          |   |   |   |
| 3.2.2 Forced vibration of a particle                                  | Х | Х | Х |
| 3.2.2.1 Undamped forced vibration                                     | Х | Х | Х |
| 3.2.2.1.1 Dynamic amplification factor                                | Х | Х | Х |
| 3.2.2.2 Damped forced vibration                                       | Х | Х | Х |
| 3.2.2.2.1 Steady-state damped forced vibration solution               | Х | Х | Х |
| 3.2.2.2.2 Dynamic stiffness and mechanical impedance                  |   | Х | Х |
| 3.2.2.3 Frequency response function                                   | Х | Х | Х |
| 3.2.2.2.4 Estimation of system damping from the frequency response    | Х | Х | Х |
| function                                                              |   |   |   |
| 3.2.2.2.4.1 Quadrature phase method for damping estimation            |   | Х | Х |
| 3.2.2.2.4.2 Resonance peak method for damping estimation              |   | Х | Х |
| 3.2.2.2.4.3 Quality factor method for damping estimation              |   | Х | Х |
| 3.2.2.5 Mechanical-electrical equivalents                             | Х | Х | Х |
| 3.2.3 Energy methods in 1-dof vibration analysis                      | Х | Х | Х |
| 3.2.3.1 Undamped 1-dof vibration analysis by energy methods           | Х | Х | X |
| 3.2.3.1.1 Derivation of the equation of motion by energy methods      | Х | Х | Х |
| 3.2.3.1.2 Estimation of the natural frequency by energy methods       | Х | Х | Х |
| 3.2.3.1.3 Effect of gravitational field on energy methods formulation | X | X | X |

| of vibration analysis                                            |   |   |
|------------------------------------------------------------------|---|---|
| 3.2.3.2 Damped 1-Dof vibration analysis by energy methods        | Х | Х |
| 3.2.3.2.1 Derivation of the damped 1-dof equation by energy      | X | Х |
| methods                                                          |   |   |
| 3.2.3.2.2 Power and energy associated with damped 1-dof response | Х | Х |
| to harmonic excitation                                           |   |   |
| 3.3 Axial vibration of a bar                                     | Х | Х |
| 3.3.1 Free axial vibration of a pin-pin bar                      | Х | Х |
| 3.3.1.1 Natural frequencies                                      | Х | Х |
| 3.3.1.2 Modeshapes                                               | Х | Х |
| 3.3.1.3 Orthogonality of modeshapes                              | Х | Х |
| 3.3.1.4 Modal mass and stiffness; modal coefficients             | Х | Х |
| 3.3.1.5 Normalization of modeshapes; normal modes                | Х | Х |
| 3.3.1.5.1 Normalization with respect to length                   | Х | Х |
| 3.3.1.5.2 Normalization with respect to mass                     | Х | Х |
| 3.3.1.6 Orthonormal modes                                        | Х | Х |
| 3.3.1.7 Rayleigh quotient                                        | Х | Х |
| 3.3.2 Other boundary conditions                                  | Х | Х |
| 3.3.2.1 Free-free bar                                            | Х | Х |
| 3.3.2.2 Fixed-free bar                                           | Х | Х |
| 3.3.3 Forced axial vibration of a bar                            | Х | Х |
| 3.3.3.1 Modal expansion theorem                                  | Х | Х |
| 3.3.3.2 Modal expansion method for length-normalized modes       | Х | Х |
| 3.3.3.3 Response by modal analysis                               | Х | Х |
| 3.3.3.4 Generalized coordinates and modal equations              | Х | Х |
| 3.3.4 Axial vibration energy in a bar                            | Х | Х |
| 3.4 Flexural vibration of a beam                                 | Х | Х |
| 3.4.1 Free flexural vibration of a pin-pin beam                  | Х | Х |
| 3.4.1.1 Natural frequencies                                      | Х | Х |
| 3.4.1.2 Modeshapes                                               | Х | Х |
| 3.4.1.3 Orthogonality of modeshapes                              | Х | Х |
| 3.4.1.4 Modal mass and stiffness; modal coefficients             | Х | Х |
| 3.4.1.5 Normalization of modeshapes; normal modes                | Х | Х |
| 3.4.1.5.1 Normalization with respect to length                   | Х | Х |
| 3.4.1.5.2 Normalization with respect to mass                     | Х | Х |
| 3.4.1.5 Orthonormal modes                                        | Х | Х |
| 3.4.2 Other boundary conditions                                  | Х | Х |
| 3.4.2.1 Free-free beam                                           | Х | Х |
| 3.4.2.2 Cantilever beam                                          | Х | Х |
| 3.4.2.3 Numerically-stable flexural modes formulation            |   | Х |
| 3.4.2.3.1 Numerically-stable free-free flexural modes            |   | X |
| 3.4.2.3.2 Numerically-stable cantilever flexural modes           |   | Χ |
| 3.4.3 Forced flexural vibration of a beam                        | Х | X |
| 3.4.3.1 Modal expansion theorem                                  | Χ | Χ |
| 3.4.3.2 Modal expansion method for length-normalized modes       | X | X |

| 3.4.3.4 Generalized flexural excitation       X       X         3.5 Torsional vibration of a shaft       X       X         3.5.1 Free torsional vibration of a shaft       X       X         3.5.1.1 Natural frequencies and modeshapes modes for fixed-fixed boundary conditions       X       X         3.5.1.2 Other boundary conditions       X       X       X         3.5.1.2 Other boundary conditions       X       X       X         3.5.2 Forced torsional vibration of a shaft       X       X       X         3.5.2.1 Modal expansion theorem.       X       X       X         3.5.2.1 Modal expansion theorem.       X       X       X         3.6.3 Free SH vibration of an clastic strip       X       X       X         3.6.1 Free SH vibration of an clastic strip       X       X       X         3.6.1.2 Other boundary conditions       X       X       X         3.6.2 Forced SH vibration of an elastic strip       X       X       X         3.6.2 Porced SH vibration of a beam       X       X       X         3.6.2 Porced SH vibration of a beam       X       X       X         3.6.2 Porced SH vibration of plates       X       X       X         4.1 Modul expansion method       X       X                                                                                                                                                       | 3.4.3.3 Response by modal analysis                                   |   | Х | Х |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---|---|---|
| 3.5 Torsional vibration of a shaft       X       X         3.5.1 Free torsional vibration of a shaft       X       X         3.5.1.1 Natural frequencies and modeshapes modes for fixed-fixed       X       X         3.5.1.2 Other boundary conditions       X       X       X         3.5.1.2 Other boundary conditions       X       X       X         3.5.2 Forced torsional vibration of a shaft       X       X       X         3.5.2.1 Modal expansion theorem.       X       X       X         3.6.1.6 Free SH vibration of an elastic strip       X       X       X         3.6.1.1 Natural frequencies and modeshapes for fixed-fixed boundary conditions       X       X       X         3.6.1.2 Other boundary conditions       X       X       X       X         3.6.2 Forced SH vibration of an elastic strip       X       X       X       X         3.6.2 Forced SH vibration of a beam       X       X       X       X       X         3.6.2 Forced SH vibration of plates                                                                                                                                                        | 3.4.3.4 Generalized flexural excitation                              |   | Х | Х |
| 3.5.1 Free torsional vibration of a shaft       X       X         3.5.1.1 Natural frequencies and modeshapes modes for fixed-fixed       X       X         boundary conditions       X       X         3.5.1.2 Other boundary conditions       X       X         3.5.2.1 Modal expansion theorem.       X       X         3.5.2.2 Response by modal analysis       X       X         3.6.3 Shear horizontal (SH) vibration of an elastic strip       X       X         3.6.1.1 Natural frequencies and modeshapes for fixed-fixed boundary conditions       X       X         3.6.1.2 Other boundary conditions       X       X       X         3.6.1.2 Other boundary conditions       X       X       X         3.6.1.2 Other boundary conditions       X       X       X         3.6.2.1 Response by modal analysis       X       X       X         3.6.2.1 Modal expansion method       X       X       X         3.6.2.2 Response by modal analysis       X       X       X         3.7 Shear vertical (SV) vibration of a beam       X       X         3.8 Summary and conclusions       X       X       X         4.1 Introduction       X       X       X         4.3 Axial vibration of rectangular plates       X                                                                                                                                                      | 3.5 Torsional vibration of a shaft                                   |   | Х | Х |
| 3.5.1.1 Natural frequencies and modeshapes modes for fixed-fixed       X       X         boundary conditions       X       X         3.5.1.2 Other boundary conditions       X       X         3.5.2 Forced torsional vibration of a shaft       X       X         3.5.2.1 Modal expansion theorem.       X       X         3.5.2.2 Response by modal analysis       X       X         3.6.1 Free SH vibration of an elastic strip       X       X         3.6.1 Free SH vibration of an elastic strip       X       X         3.6.1.1 Natural frequencies and modeshapes for fixed-fixed       X       X         boundary conditions       X       X       X         3.6.1.7 Creed SH vibration of an elastic strip       X       X         3.6.2 Forced SH vibration of a beam       X       X         3.6.2.1 Modal expansion method       X       X         3.6.2 Response by modal analysis       X       X         3.7 Shear vertical (SV) vibration of a beam       X       X         3.8 Summary and conclusions       X       X       X         4.1 Introduction       X       X       X         4.2 Elasticity equations for plate vibrations       X       X         4.3.2 Axial vibration of guare plates       X                                                                                                                                                    | 3.5.1 Free torsional vibration of a shaft                            |   | Х | Х |
| boundary conditionsX3.5.1.2 Other boundary conditionsXX3.5.2. Forced torsional vibration of a shaftXX3.5.2.1 Modal expansion theorem.XX3.5.2.2 Response by modal analysisXX3.5.2.1 Response by modal analysisXX3.6.1.1 Free SH vibration of an elastic stripXX3.6.1.1 Natural frequencies and modeshapes for fixed-fixed<br>boundary conditionsXX3.6.1.2 Other boundary conditionsXX3.6.2.1 Other boundary conditionsXX3.6.2.2 Response by modal analysisXX3.6.2.1 Rodal expansion methodXX3.6.2.2 Response by modal analysisXX3.7 Shear vertical (SV) vibration of a beamXX3.8 Summary and conclusionsXX4.1 IntroductionXX4.2 Elasticity equations for plate vibrationsXX4.3.1 Axial vibrations of rectangular platesXX4.3.2 Axial vibration of square platesXX4.4.1 Axial vibrations of circular platesXX4.4.2.1 Equation of motionXX4.4.3 Forced axial vibration of circular platesXX4.4.3 Forced axial vibration of circular platesXX4.4.3 Axial vibration of motionXX4.5.1 Equation of motionXX4.5.2 Response by modal analysisXX4.3.3 Straight-crested axial vibration of circular platesXX4.4.4 Axi                                                                                                                                                                                                                                                                       | 3.5.1.1 Natural frequencies and modeshapes modes for fixed-fixed     |   | Х | Х |
| 3.5.1.2 Other boundary conditions       X       X         3.5.2 Forced torsional vibration of a shaft       X       X         3.5.2 I Modal expansion theorem.       X       X         3.5.2 Response by modal analysis       X       X         3.6 Shear horizontal (SH) vibration of an elastic strip       X       X         3.6.1 Free SH vibration of an elastic strip       X       X         3.6.1.1 Natural frequencies and modeshapes for fixed-fixed boundary conditions       X       X         3.6.1.2 Other boundary conditions       X       X       X         3.6.2.1 Modal expansion method       X       X       X         3.6.2.2 Response by modal analysis       X       X       X         3.6.2.1 Modal expansion method       X       X       X         3.6.2.2 Response by modal analysis       X       X       X         3.6.2.1 Modal expansion method       X       X       X         3.6.2.2 Response by modal analysis       X       X       X         3.6.2.1 Modal expansion for plates       X       X       X         4.1 Marcoduction       X       X       X       X         4.1 Introduction       X       X       X       X         4.3 Axial vibration of circular                                                                                                                                                                          | boundary conditions                                                  |   |   |   |
| 3.5.2 Forced torsional vibration of a shaft       X       X         3.5.2.1 Modal expansion theorem.       X       X         3.5.2.2 Response by modal analysis       X       X         3.6 Shear horizontal (SH) vibration of an elastic strip       X       X         3.6.1 Free SH vibration of an elastic strip       X       X         3.6.1.1 Natural frequencies and modeshapes for fixed-fixed boundary conditions       X       X         3.6.1.2 Other boundary conditions       X       X         3.6.2 Forced SH vibration of an elastic strip       X       X         3.6.2.1 Modal expansion method       X       X         3.6.2.2 Response by modal analysis       X       X         3.7 Shear vertical (SV) vibration of a beam       X       X         3.7 Shear vertical (SV) vibration of a beam       X       X         3.8 Summary and conclusions       X       X         4.1 Introduction       X       X         4.2 Elasticity equations for plate vibrations       X       X         4.3 Axial vibration of square plates       X       X         4.3.1 Axial vibration of square plates       X       X         4.3.2 Axial vibration of square plates       X       X         4.3.3 Straight-crested axial vibration of circular plates <td>3.5.1.2 Other boundary conditions</td> <td></td> <td>Х</td> <td>Х</td>                                  | 3.5.1.2 Other boundary conditions                                    |   | Х | Х |
| 3.5.2.1 Modal expansion theorem.       X       X         3.5.2.2 Response by modal analysis       X       X         3.6 Shear horizontal (SH) vibration of an elastic strip       X       X         3.6.1 Free SH vibration of an elastic strip       X       X         3.6.1.1 Natural frequencies and modeshapes for fixed-fixed boundary conditions       X       X         3.6.1.2 Other boundary conditions       X       X         3.6.2.Forced SH vibration of an elastic strip       X       X         3.6.2.1 Modal expansion method       X       X         3.6.2.2 Response by modal analysis       X       X         3.6.2.1 Modal expansion method       X       X         3.6.2.2 Response by modal analysis       X       X         3.6.2.1 Modal expansion method       X       X         3.6.2.2 Response by modal analysis       X       X         3.6.2.1 Modal expansion method       X       X         3.7 Shear vertical (SV) vibration of a beam       X       X         3.8 Summary and conclusions       X       X         4.1 Introduction       X       X         4.3.1 Axial vibration of rectangular plates       X       X         4.3.1 Axial vibration of square plates       X       X                                                                                                                                                          | 3.5.2 Forced torsional vibration of a shaft                          |   | Х | Х |
| 3.5.2.2 Response by modal analysis       X       X         3.6 Shear horizontal (SH) vibration of an elastic strip       X       X         3.6.1 Free SH vibration of an elastic strip       X       X         3.6.1.1 Natural frequencies and modeshapes for fixed-fixed boundary conditions       X       X         3.6.1.2 Other boundary conditions       X       X         3.6.1.2 Other boundary conditions       X       X         3.6.2.1 Modal expansion method       X       X         3.6.2.2 Response by modal analysis       X       X         3.6.2.1 Modal expansion method       X       X         3.6.2.2 Response by modal analysis       X       X         3.7 Shear vertical (SV) vibration of a beam       X       X         3.7 Shear vertical (SV) vibration of a beam       X       X         3.8 Summary and conclusions       X       X       X         4.1 Introduction       X       X       X         4.2 Elasticity equations for plate vibrations       X       X         4.3 Axial vibration of quare plates       X       X         4.3.1 Axial vibration of square plates       X       X         4.4.1 Axial vibration of circular plates       X       X         4.4.1 Axial vibration of circular plates                                                                                                                                    | 3.5.2.1 Modal expansion theorem.                                     |   | Х | Х |
| 3.6 Shear horizontal (SH) vibration of an elastic strip       X       X         3.6.1 Free SH vibration of an elastic strip       X       X         3.6.1.1 Natural frequencies and modeshapes for fixed-fixed boundary conditions       X       X         3.6.1.2 Other boundary conditions       X       X         3.6.2 Forced SH vibration of an elastic strip       X       X         3.6.2.1 Modal expansion method       X       X         3.6.2.2 Response by modal analysis       X       X         3.7 Shear vertical (SV) vibration of a beam       X       X         3.8 Summary and conclusions       X       X         A.1 Introduction       X       X         4.1 Introduction       X       X         4.2 Elasticity equations for plate vibrations       X       X         4.3 Axial vibration of square plates       X       X         4.3.1 Axial vibration of square plates       X       X         4.3.2 Axial vibration of circular plates       X       X         4.4.1 Axial vibrations of circular plates       X       X         4.3.2 Axial vibration of motion       X       X         4.4.3 Axial vibration of motion       X       X         4.4.1 Axial vibration of motion       X       X                                                                                                                                                      | 3.5.2.2 Response by modal analysis                                   |   | Х | Х |
| 3.6.1 Free SH vibration of an elastic strip       X       X         3.6.1.1 Natural frequencies and modeshapes for fixed-fixed boundary conditions       X       X         3.6.1.2 Other boundary conditions       X       X         3.6.1.2 Other boundary conditions       X       X         3.6.2 Forced SH vibration of an elastic strip       X       X         3.6.2.2 Response by modal analysis       X       X         3.6.2.3 Response by modal analysis       X       X         3.7 Shear vertical (SV) vibration of a beam       X       X         3.8 Summary and conclusions       X       X         Chapter 4: Vibration of plates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.6 Shear horizontal (SH) vibration of an elastic strip              |   | Х | Х |
| 3.6.1.1       Natural frequencies and modeshapes for fixed-fixed boundary conditions       X       X         3.6.1.2       Other boundary conditions       X       X         3.6.1.2       Other boundary conditions       X       X         3.6.2       Forced SH vibration of an elastic strip       X       X         3.6.2.1       Modal expansion method       X       X         3.6.2.2       Response by modal analysis       X       X         3.6.2.1       Modal expansion method       X       X         3.6.2.2       Response by modal analysis       X       X         3.6.3       X       X       X         3.6.2.1       Modal expansion method       X       X         3.6.2.2       Response by modal analysis       X       X         3.6.2.1       Modal expansion method       X       X         3.6.2       Response by modal analysis       X       X         3.6.1       Avaial vibration of plates       X       X         4.1                                                                                                                                                                                                                             | 3.6.1 Free SH vibration of an elastic strip                          |   | Х | Х |
| boundary conditionsXX3.6.1.2 Other boundary conditionsXX3.6.2 Forced SH vibration of an elastic stripXX3.6.2.1 Modal expansion methodXX3.6.2.2 Response by modal analysisXX3.6.2.2 Response by modal analysisXX3.7 Shear vertical (SV) vibration of a beamXX3.8 Summary and conclusionsXXXXX3.8 Summary and conclusionsXXXXX4.1 IntroductionXX4.2 Elasticity equations for plate vibrationsXX4.3 Axial vibration of platesXX4.3.1 Axial vibration equations for rectangular platesXX4.3.2 Axial vibration of square platesXX4.4.1 Axial vibration of square platesXX4.4.2 Axial vibration of circular platesXX4.4.1 Axial vibration of circular platesXX4.4.2 Asignmetric axial vibration of circular platesXX4.4.2.1 Equation of motionXX4.4.2.2 General solutionXX4.4.3.1 Equation of motionXX4.4.3.2 Modal expansion solutionXX4.5.1 Equation of motionXX4.5.1 Equation of the equations for rectangular platesXX4.5.2 General solutionXX4.5.1 Flexural vibrations of rectangular platesXX4.5.1 Flexural vibration of circular platesXX </td <td>3.6.1.1 Natural frequencies and modeshapes for fixed-fixed</td> <td></td> <td>Х</td> <td>Х</td>                                                                                                                                                                                                                              | 3.6.1.1 Natural frequencies and modeshapes for fixed-fixed           |   | Х | Х |
| 3.6.1.2 Other boundary conditions       X       X         3.6.2 Forced SH vibration of an elastic strip       X       X         3.6.2.1 Modal expansion method       X       X         3.6.2.2 Response by modal analysis       X       X         3.6.2.2 Response by modal analysis       X       X         3.7 Shear vertical (SV) vibration of a beam       X       X         3.8 Summary and conclusions       X       X <b>Chapter 4: Vibration of plates</b> X       X         4.1 Introduction       X       X         4.2 Elasticity equations for plate vibrations       X       X         4.3 Axial vibration equations for rectangular plates       X       X         4.3.1 Axial vibration of square plates       X       X         4.3.2 Axial vibration of square plates       X       X         4.3.3 Straight-crested axial vibration of rectangular plates       X       X         4.4.1 Axial vibration equations for circular plates       X       X         4.4.2 Axisymmetric axial vibration of circular plates       X       X         4.4.2 General solution       X       X       X         4.4.2.1 Equation of motion       X       X       X         4.4.3 Forced axisymmetric axial vibration of circular plates                                                                                                                                     | boundary conditions                                                  |   |   |   |
| 3.6.2 Forced SH vibration of an elastic strip       X       X         3.6.2.1 Modal expansion method       X       X         3.6.2.2 Response by modal analysis       X       X         3.6.2.3 Response by modal analysis       X       X         3.7 Shear vertical (SV) vibration of a beam       X       X         3.8 Summary and conclusions       X       X       X         Chapter 4: Vibration of plates       X       X         4.1 Introduction       X       X       X         4.2 Elasticity equations for plate vibrations       X       X       X         4.3 Axial vibration equations for rectangular plates       X       X       X         4.3.3 Straight-crested axial vibration of rectangular plates       X       X       X         4.4.1 Axial vibration equations for circular plates       X       X       X         4.4.2 Axial vibration of forcular plates       X       X       X         4.4.2.1 Equation of motion       X       X       X         4.4.2.2 General solution       X       X       X         4.4.2.3 Natural frequencies and modeshapes for a free circular plate       X       X         4.4.3.3 Forced axisymmetric axial vibration of circular plates       X       X         4.                                                                                                                                               | 3.6.1.2 Other boundary conditions                                    |   | Х | Х |
| 3.6.2.1 Modal expansion methodXX3.6.2.2 Response by modal analysisXX3.7 Shear vertical (SV) vibration of a beamXX3.8 Summary and conclusionsXX3.8 Summary and conclusionsXX4.1 IntroductionXX4.1 IntroductionXX4.2 Elasticity equations for plate vibrationsXX4.3 Axial vibrations of rectangular platesXX4.3.1 Axial vibration equations for rectangular platesXX4.3.3 Straight-crested axial vibration of rectangular platesXX4.4.4 Axial vibration of circular platesXX4.4.1 Axial vibration equations for circular platesXX4.4.2 Axisymmetric axial vibration of circular platesXX4.4.2 Axisymmetric axial vibration of circular platesXX4.4.2 Axisymmetric axial vibration of circular platesXX4.4.3 Forced axisymmetric axial vibration of circular platesXX4.4.3 Porced axisymmetric axial vibration of circular platesXX4.4.3 Porced axisymmetric axial vibration of circular platesXX4.5.1 Flexural vibrations of rectangular platesXX4.5.1 Plexural vibration of displacementsXX4.5.1.2 Derivation of the equations of motionXX4.5.3 Shear forces in terms of displacementsXX4.5.3 General flexural vibration of motionXX4.5.3 General flexural vibration of rectangular platesXX<                                                                                                                                                                                     | 3.6.2 Forced SH vibration of an elastic strip                        |   | Х | Х |
| 3.6.2.2 Response by modal analysis       X       X         3.7 Shear vertical (SV) vibration of a beam       X       X         3.8 Summary and conclusions       X       X         3.8 Summary and conclusions       X       X         4.1 Introduction       X       X         4.1 Introduction       X       X         4.2 Elasticity equations for plate vibrations       X       X         4.3 Axial vibration of rectangular plates       X       X         4.3.1 Axial vibration equations for rectangular plates       X       X         4.3.2 Axial vibration of square plates       X       X         4.3.3 Straight-crested axial vibration of rectangular plates       X       X         4.4.1 Axial vibration equations for circular plates       X       X         4.4.2 Axisymmetric axial vibration of circular plates       X       X         4.4.2 Axisymmetric axial vibration of circular plates       X       X         4.4.2 General solution       X       X       X         4.4.3 Forced axisymmetric axial vibration of circular plates       X       X         4.4.3 Porced axisymmetric axial vibration of circular plates       X       X         4.4.3 Porced axisymmetric axial vibration of circular plates       X       X                                                                                                                        | 3.6.2.1 Modal expansion method                                       |   | Х | Х |
| 3.7 Shear vertical (SV) vibration of a beam       X       X         3.8 Summary and conclusions       X       X         4.1 Introduction       X       X         4.1 Introduction       X       X         4.2 Elasticity equations for plate vibrations       X       X         4.3 Axial vibration of government of ectangular plates       X       X         4.3.1 Axial vibration equations for rectangular plates       X       X         4.3.3 Straight-crested axial vibration of rectangular plates       X       X         4.4.1 Axial vibration equations for circular plates       X       X         4.4.1 Axial vibration of of circular plates       X       X         4.4.1 Axial vibration of oricrular plates       X       X         4.4.2 Comeral solution       X       X         4.4.3 Forced axisymmetric axial vibration of circular plates       X       X         4.4.3 Forced axisymmetric axial vibration of circular plates       X       X         4.4.3 Forced axisymmetric axial vibration of circular plates       X       X         4.4.3 Forced axisymmetric axial vibration of circular plates       X       X         4.4.3 Forced axisymmetric axial vibration of circular plates       X       X         4.5.1 Flexural vibration of motion       X       X </td <td>3.6.2.2 Response by modal analysis</td> <td></td> <td>Х</td> <td>Х</td> | 3.6.2.2 Response by modal analysis                                   |   | Х | Х |
| 3.8 Summary and conclusionsXXXXChapter 4: Vibration of plates4.1 IntroductionXX4.2 Elasticity equations for plate vibrationsXX4.3 Axial vibration of rectangular platesXX4.3.1 Axial vibration equations for rectangular platesXX4.3.2 Axial vibration of square platesXX4.3.3 Straight-crested axial vibration of rectangular platesXX4.4.1 Axial vibration equations for circular platesXX4.4.2 Axisymmetric axial vibration of circular platesXX4.4.2 Axisymmetric axial vibration of circular platesXX4.4.2.2 General solutionXX4.4.3 Forced axisymmetric axial vibration of circular platesXX4.4.3 Forced axisymmetric axial vibration of circular platesXX4.4.3 Forced axisymmetric axial vibration of circular platesXX4.4.3 Forced axisymmetric axial vibration of circular platesXX4.5 I Flexural vibrations of rectangular platesXX4.5.1 Flexural vibration of displacementsXX4.5.1.2 Derivation of the equations for rectangular platesXX4.5.1 A Solution of the equation of motionXXXXXX4.5.1.4 Solution of the equations of motionXXXXXXX.5.2 Straight-crested flexural vibration of rectangular platesXXXXXXXX.                                                                                                                                                                                                                                                    | 3.7 Shear vertical (SV) vibration of a beam                          |   | Х | Х |
| Chapter 4: Vibration of plates4.1 IntroductionX4.2 Elasticity equations for plate vibrationsX4.3 Axial vibrations of rectangular platesX4.3.1 Axial vibration equations for rectangular platesX4.3.2 Axial vibration of square platesX4.3.3 Straight-crested axial vibration of rectangular platesX4.4.4 Axial vibrations of circular platesXXX4.4.1 Axial vibration of circular platesXXX4.4.2 Axisymmetric axial vibration of circular platesXXX4.4.2.1 Equation of motionXXX4.4.2.2 General solutionXXX4.4.3.3 Forced axisymmetric axial vibration of circular platesXXX4.4.2.3 Natural frequencies and modeshapes for a free circular plateXXX4.4.3.1 Equation of motionXXX4.5.1 Flexural vibration solutionXXX4.5.1 Plexural vibration of circular platesXXX4.5.1 Shear forces in terms of displacementsXXX4.5.1 A Solution of the equations of motionXXXXXXXXXXXXXXXXXXXXXXXXXXXXX <tr< td=""><td>3.8 Summary and conclusions</td><td>Х</td><td>Х</td><td>Х</td></tr<>                                                                                                                                                                                                                                                                                                                                                                                                     | 3.8 Summary and conclusions                                          | Х | Х | Х |
| Chapter 4: Vibration of platesX4.1 IntroductionX4.2 Elasticity equations for plate vibrationsX4.3 Axial vibrations of rectangular platesX4.3.1 Axial vibration equations for rectangular platesX4.3.2 Axial vibration of square platesX4.3.3 Straight-crested axial vibration of rectangular platesX4.4 Axial vibrations of circular platesX4.4.1 Axial vibration equations for circular platesX4.4.2 Axisymmetric axial vibration of circular platesX4.4.2 Axisymmetric axial vibration of circular platesX4.4.2.1 Equation of motionXXX4.4.2.2 General solutionXXX4.4.3.3 Natural frequencies and modeshapes for a free circular plateXX4.4.3.1 Equation of motionXXX4.4.3.2 Modal expansion solutionXXX4.5.1 Flexural vibrations of rectangular platesXXX4.5.1.2 Derivation of the equations for rectangular platesXXX4.5.1.3 Shear forces in terms of displacementsXXX4.5.1.4 Solution of the equation of motionXXX4.5.2 Straight-crested flexural vibration of rectangular platesXXX4.5.3 General flexural vibration of rectangular platesXXX4.5.3 General flexural vibration of motionXXX4.5.3 General flexural vibration of rec                                                                                                                                                                                                                                           |                                                                      |   |   |   |
| 4.1 IntroductionXX4.2 Elasticity equations for plate vibrationsXX4.3 Axial vibrations of rectangular platesXX4.3.1 Axial vibration equations for rectangular platesXX4.3.2 Axial vibration of square platesXX4.3.3 Straight-crested axial vibration of rectangular platesXX4.4 Axial vibrations of circular platesXX4.4 Axial vibration equations for circular platesXX4.4.1 Axial vibration equations for circular platesXX4.4.2 Axisymmetric axial vibration of circular platesXX4.4.2.1 Equation of motionXXX4.4.2.2 General solutionXXX4.4.3.4 Forced axisymmetric axial vibration of circular platesXX4.4.3.1 Equation of motionXXX4.4.3.2 Modal expansion solutionXXX4.4.3.1 Equation of motionXXX4.4.3.2 Modal expansion solutionXXX4.5.1 Flexural vibrations of rectangular platesXX4.5.1.1 Moments in terms of displacementsXX4.5.1.2 Derivation of the equations of motionXXXXXX4.5.1.3 Shear forces in terms of displacementsXX4.5.2 Straight-crested flexural vibration of rectangular platesXX4.5.2 Straight-crested flexural vibration of rectangular platesXX                                                                                                                                                                                                                                                                                                     | Chapter 4: Vibration of plates                                       |   |   |   |
| 4.2 Elasticity equations for plate vibrations       X       X         4.3 Axial vibrations of rectangular plates       X       X         4.3.1 Axial vibration equations for rectangular plates       X       X         4.3.2 Axial vibration of square plates       X       X         4.3.3 Straight-crested axial vibration of rectangular plates       X       X         4.3.3 Straight-crested axial vibration of rectangular plates       X       X         4.4 Axial vibrations of circular plates       X       X         4.4.1 Axial vibration equations for circular plates       X       X         4.4.1 Axial vibration equations for circular plates       X       X         4.4.2 Axisymmetric axial vibration of circular plates       X       X         4.4.2.1 Equation of motion       X       X       X         4.4.2.2 General solution       X       X       X         4.4.3.3 Natural frequencies and modeshapes for a free circular plate       X       X         4.4.3.4.3.1 Equation of motion       X       X       X         4.4.3.2 Modal expansion solution       X       X       X         4.4.3.2 Modal expansion solution       X       X       X         4.5.1 Flexural vibrations of rectangular plates       X       X         4.5.1                                                                                                           | 4.1 Introduction                                                     |   | Х | Х |
| 4.3 Axial vibrations of rectangular platesXX4.3.1 Axial vibration equations for rectangular platesXX4.3.2 Axial vibration of square platesXX4.3.3 Straight-crested axial vibration of rectangular platesXX4.4 Axial vibrations of circular platesXX4.4 Axial vibration equations for circular platesXX4.4.1 Axial vibration equations for circular platesXX4.4.2 Axisymmetric axial vibration of circular platesXX4.4.2.1 Equation of motionXX4.4.2.2 General solutionXX4.4.3 Forced axisymmetric axial vibration of circular platesXX4.4.3.1 Equation of motionXX4.4.3.2 Modal expansion solutionXX4.4.3.1 Equation of motionXX4.5.1 Flexural vibration solutionXX4.5.1.1 Moments in terms of displacementsXX4.5.1.3 Shear forces in terms of displacementsXX4.5.2 Straight-crested flexural vibration of rectangular platesXX4.5.3 General flexural vibration of motionXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.2 Elasticity equations for plate vibrations                        |   | Х | Х |
| 4.3.1 Axial vibration equations for rectangular platesXX4.3.2 Axial vibration of square plates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.3 Axial vibrations of rectangular plates                           |   | Х | Х |
| 4.3.2 Axial vibration of square platesX4.3.3 Straight-crested axial vibration of rectangular platesXXX4.4 Axial vibrations of circular platesXXX4.4.1 Axial vibration equations for circular platesXXX4.4.2 Axisymmetric axial vibration of circular platesXXX4.4.2.1 Equation of motionXXX4.4.2.2 General solutionXXX4.4.2.3 Natural frequencies and modeshapes for a free circular plateXXX4.4.3 Forced axisymmetric axial vibration of circular platesXXX4.4.3.1 Equation of motionXXX4.4.3.2 Modal expansion solutionXXX4.5.1 Flexural vibration equations for rectangular platesXXX4.5.1.1 Moments in terms of displacementsXXX4.5.1.3 Shear forces in terms of displacementsXXX4.5.1.4 Solution of the equation of motionXXX4.5.2 Straight-crested flexural vibration of rectangular platesXXX4.5.3 General flexural vibration of rectangular platesXXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.3.1 Axial vibration equations for rectangular plates               |   | Х | Х |
| 4.3.3 Straight-crested axial vibration of rectangular platesXX4.4 Axial vibrations of circular platesXX4.4.1 Axial vibration equations for circular platesXX4.4.2 Axisymmetric axial vibration of circular platesXX4.4.2 Axisymmetric axial vibration of circular platesXX4.4.2.1 Equation of motionXX4.4.2.2 General solutionXX4.4.2.3 Natural frequencies and modeshapes for a free circular plateXX4.4.3 Forced axisymmetric axial vibration of circular platesXX4.4.3.1 Equation of motionXXX4.4.3.2 Modal expansion solutionXXX4.5.1 Flexural vibration equations for rectangular platesXX4.5.1.1 Moments in terms of displacementsXX4.5.1.2 Derivation of the equations of motionXX4.5.1.3 Shear forces in terms of displacementsXX4.5.2 Straight-crested flexural vibration of rectangular platesXX4.5.3 General flexural vibration of motionXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.3.2 Axial vibration of square plates                               |   |   |   |
| 4.4 Axial vibrations of circular platesXX4.4.1 Axial vibration equations for circular platesXX4.4.2 Axisymmetric axial vibration of circular platesXX4.4.2 Axisymmetric axial vibration of circular platesXX4.4.2.1 Equation of motionXX4.4.2.2 General solutionXX4.4.2.3 Natural frequencies and modeshapes for a free circular plateXX4.4.3 Forced axisymmetric axial vibration of circular platesXX4.4.3.1 Equation of motionXXX4.4.3.2 Modal expansion solutionXX4.4.5 Flexural vibrations of rectangular platesXX4.5.1 Flexural vibration equations for rectangular platesXX4.5.1.2 Derivation of the equations of motionXX4.5.1.3 Shear forces in terms of displacementsXX4.5.2 Straight-crested flexural vibration of rectangular platesXX4.5.3 General flexural vibration of rectangular platesXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.3.3 Straight-crested axial vibration of rectangular plates         |   | Х | Х |
| 4.4.1 Axial vibration equations for circular platesXX4.4.2 Axisymmetric axial vibration of circular platesXX4.4.2.1 Equation of motionXX4.4.2.2 General solutionXX4.4.2.3 Natural frequencies and modeshapes for a free circular plateXX4.4.3 Forced axisymmetric axial vibration of circular platesXX4.4.3.1 Equation of motionXXX4.4.3.2 Modal expansion solutionXX4.4.3.1 Equation of motionXX4.4.3.2 Modal expansion solutionXX4.5 Flexural vibration of rectangular platesXX4.5.1 Flexural vibration equations for rectangular platesXX4.5.1.2 Derivation of the equations of motionXX4.5.1.3 Shear forces in terms of displacementsXX4.5.1.4 Solution of the equation of motionXX4.5.2 Straight-crested flexural vibration of rectangular platesXX4.5.3 General flexural vibration of rectangular platesXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.4 Axial vibrations of circular plates                              |   | Х | Х |
| 4.4.2 Axisymmetric axial vibration of circular platesXX4.4.2.1 Equation of motionXX4.4.2.2 General solutionXX4.4.2.3 Natural frequencies and modeshapes for a free circular plateXX4.4.3 Forced axisymmetric axial vibration of circular platesXX4.4.3.1 Equation of motionXXX4.4.3.2 Modal expansion solutionXXX4.4.3.2 Modal expansion solutionXXX4.4.3.1 Equation of rectangular platesXX4.4.3.2 Modal expansion solutionXX4.5.3 Flexural vibrations of rectangular platesXX4.5.1 Flexural vibration equations for rectangular platesXX4.5.1.2 Derivation of the equations of motionXX4.5.1.3 Shear forces in terms of displacementsXX4.5.1.4 Solution of the equation of motionXX4.5.2 Straight-crested flexural vibration of rectangular platesXX4.5.3 General flexural vibration of rectangular platesXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.4.1 Axial vibration equations for circular plates                  |   | Х | Х |
| 4.4.2.1 Equation of motionXX4.4.2.2 General solutionXX4.4.2.3 Natural frequencies and modeshapes for a free circular plateXX4.4.3 Forced axisymmetric axial vibration of circular platesXX4.4.3.1 Equation of motionXXX4.4.3.2 Modal expansion solutionXXX4.4.3.2 Modal expansion solutionXXX4.5 Flexural vibrations of rectangular platesXX4.5.1 Flexural vibration equations for rectangular platesXX4.5.1.1 Moments in terms of displacementsXX4.5.1.3 Shear forces in terms of displacementsXX4.5.1.4 Solution of the equation of motionXX4.5.2 Straight-crested flexural vibration of rectangular platesXX4.5.3 General flexural vibration of rectangular platesXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.4.2 Axisymmetric axial vibration of circular plates                |   | Х | Х |
| 4.4.2.2 General solutionXX4.4.2.3 Natural frequencies and modeshapes for a free circular plateXX4.4.3 Forced axisymmetric axial vibration of circular platesXX4.4.3.1 Equation of motionXX4.4.3.2 Modal expansion solutionXX4.4.3.2 Modal expansion solutionXX4.5 Flexural vibrations of rectangular platesXX4.5.1 Flexural vibration equations for rectangular platesXX4.5.1.1 Moments in terms of displacementsXX4.5.1.2 Derivation of the equations of motionXX4.5.1.3 Shear forces in terms of displacementsXX4.5.1.4 Solution of the equation of motionXX4.5.2 Straight-crested flexural vibration of rectangular platesXX4.5.3 General flexural vibration of rectangular platesXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.4.2.1 Equation of motion                                           |   | Х | Х |
| 4.4.2.3 Natural frequencies and modeshapes for a free circular plateXX4.4.3 Forced axisymmetric axial vibration of circular platesXX4.4.3.1 Equation of motionXX4.4.3.2 Modal expansion solutionXX4.4.3.2 Modal expansion solutionXX4.5 Flexural vibrations of rectangular platesXX4.5.1 Flexural vibration equations for rectangular platesXX4.5.1.1 Moments in terms of displacementsXX4.5.1.2 Derivation of the equations of motionXX4.5.1.3 Shear forces in terms of displacementsXX4.5.1.4 Solution of the equation of motionXX4.5.2 Straight-crested flexural vibration of rectangular platesXX4.5.3 General flexural vibration of rectangular platesXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.4.2.2 General solution                                             |   | Х | Х |
| 4.4.3 Forced axisymmetric axial vibration of circular platesXX4.4.3.1 Equation of motionXX4.4.3.2 Modal expansion solutionXX4.5 Flexural vibrations of rectangular platesXX4.5.1 Flexural vibration equations for rectangular platesXX4.5.1.1 Moments in terms of displacementsXX4.5.1.2 Derivation of the equations of motionXX4.5.1.3 Shear forces in terms of displacementsXX4.5.1.4 Solution of the equation of motionXX4.5.2 Straight-crested flexural vibration of rectangular platesXX4.5.3 General flexural vibration of rectangular platesXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.4.2.3 Natural frequencies and modeshapes for a free circular plate |   | Х | Х |
| 4.4.3.1 Equation of motionXX4.4.3.2 Modal expansion solutionXX4.5 Flexural vibrations of rectangular platesXX4.5.1 Flexural vibration equations for rectangular platesXX4.5.1.1 Moments in terms of displacementsXX4.5.1.2 Derivation of the equations of motionXX4.5.1.3 Shear forces in terms of displacementsXX4.5.1.4 Solution of the equation of motionXX4.5.2 Straight-crested flexural vibration of rectangular platesXX4.5.3 General flexural vibration of rectangular platesXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.4.3 Forced axisymmetric axial vibration of circular plates         |   | Х | Х |
| 4.4.3.2 Modal expansion solutionXX4.5 Flexural vibrations of rectangular platesXX4.5.1 Flexural vibration equations for rectangular platesXX4.5.1.1 Moments in terms of displacementsXX4.5.1.2 Derivation of the equations of motionXX4.5.1.3 Shear forces in terms of displacementsXX4.5.1.4 Solution of the equation of motionXX4.5.2 Straight-crested flexural vibration of rectangular platesXX4.5.3 General flexural vibration of rectangular platesXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.4.3.1 Equation of motion                                           |   | Х | Х |
| 4.5 Flexural vibrations of rectangular platesXX4.5.1 Flexural vibration equations for rectangular platesXX4.5.1 Flexural vibration equations for rectangular platesXX4.5.1.1 Moments in terms of displacementsXX4.5.1.2 Derivation of the equations of motionXX4.5.1.3 Shear forces in terms of displacementsXX4.5.1.4 Solution of the equation of motionXX4.5.2 Straight-crested flexural vibration of rectangular platesXX4.5.3 General flexural vibration of rectangular platesXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.4.3.2 Modal expansion solution                                     |   | Х | Х |
| 4.5.1 Flexural vibration equations for rectangular platesXX4.5.1 Moments in terms of displacementsXX4.5.1.2 Derivation of the equations of motionXX4.5.1.3 Shear forces in terms of displacementsXX4.5.1.4 Solution of the equation of motionXX4.5.2 Straight-crested flexural vibration of rectangular platesXX4.5.3 General flexural vibration of rectangular platesXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.5 Flexural vibrations of rectangular plates                        |   | Х | Х |
| 4.5.1.1 Moments in terms of displacementsXX4.5.1.2 Derivation of the equations of motionXX4.5.1.3 Shear forces in terms of displacementsXX4.5.1.4 Solution of the equation of motionXX4.5.2 Straight-crested flexural vibration of rectangular platesXX4.5.3 General flexural vibration of rectangular platesXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.5.1 Flexural vibration equations for rectangular plates            |   | Х | Х |
| 4.5.1.2 Derivation of the equations of motionXX4.5.1.3 Shear forces in terms of displacementsXX4.5.1.4 Solution of the equation of motionXX4.5.2 Straight-crested flexural vibration of rectangular platesXX4.5.3 General flexural vibration of rectangular platesXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.5.1.1 Moments in terms of displacements                            |   | Х | Х |
| 4.5.1.3 Shear forces in terms of displacementsXX4.5.1.4 Solution of the equation of motionXX4.5.2 Straight-crested flexural vibration of rectangular platesXX4.5.3 General flexural vibration of rectangular platesXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.5.1.2 Derivation of the equations of motion                        |   | Х | Х |
| 4.5.1.4 Solution of the equation of motionXX4.5.2 Straight-crested flexural vibration of rectangular platesXX4.5.3 General flexural vibration of rectangular platesXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.5.1.3 Shear forces in terms of displacements                       |   | Х | Х |
| 4.5.2 Straight-crested flexural vibration of rectangular platesXX4.5.3 General flexural vibration of rectangular platesXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.5.1.4 Solution of the equation of motion                           |   | Х | Х |
| 4.5.3 General flexural vibration of rectangular plates X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.5.2 Straight-crested flexural vibration of rectangular plates      |   | Х | Х |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.5.3 General flexural vibration of rectangular plates               |   | Х | Х |

| 4.5.3.1 Flexural vibration of simply supported rectangular plates      |   |   | Х |
|------------------------------------------------------------------------|---|---|---|
| 4.5.3.2 Flexural vibration of free rectangular plates                  |   |   | Х |
| 4.6 Flexural vibration of circular plates                              |   | Х | Х |
| 4.6.1 Flexural vibration equations for circular plates                 |   |   | Х |
| 4.6.1.1 Equation of motion for flexural vibration of circular plates   |   |   | Х |
| 4.6.1.2 General solution for flexural vibration of a circular plate    |   |   | Х |
| 4.6.2 Flexural vibration of free circular plates                       |   |   | Х |
| 4.6.3 Axisymmetric flexural vibration of circular plates               |   | Х | Х |
| 4.6.3.1 Equation of motion                                             |   | Х | Х |
| 4.6.3.2 General solution                                               |   | Х | Х |
| 4.6.3.3 Natural frequencies and modeshapes for a free circular plate   |   | Х | Х |
| 4.6.4 Forced axisymmetric flexural vibration of circular plates        |   | Х | Х |
| 4.6.4.1 Force summation                                                |   | Х | Х |
| 4.6.4.2 Moment summation                                               |   | Х | Х |
| 4.6.4.3 Equation of motion                                             |   | Х | Х |
| 4.6.4.4 Modal expansion solution                                       |   | Х | Х |
| 4.7 Summary and conclusions                                            | Х | Х | Х |
|                                                                        |   |   |   |
| Chapter 5: Elastic waves in solids and structures                      | Х | Х | Х |
| 5.1 Introduction                                                       | Х | Х | Х |
| 5.2 Overview of elastic wave propagation in solids and structures      | Х | Х | Х |
| 5.3 Axial waves in bars                                                | Х | Х | Х |
| 5.3.1 Axial wave equation                                              | Х | Х | Х |
| 5.3.2 D'Alembert solution of the wave equation                         | Х | Х | Х |
| 5.3.2.1 Change of independent variables                                | Х | Х | Х |
| 5.3.2.2 Solution in terms of the new independent variables $\xi, \eta$ | Х | Х | Х |
| 5.3.2.3 D'Alembert solution in terms of the original variable $x, t$   | Х | Х | Х |
| 5.3.2.4 Alternate forms of the d'Alembert solution                     | Х | Х | Х |
| 5.3.3 Initial value problem of wave propagation                        | Х | Х | Х |
| 5.3.4 Strain waves and stress waves                                    |   | Х | Х |
| 5.3.5 Particle velocity vs. wave speed                                 | Х | Х | Х |
| 5.3.6 Acoustic impedance of the medium                                 | Х | Х | Х |
| 5.3.7 Harmonic waves solution of the wave equation                     | Х | Х | Х |
| 5.3.8 Standing waves                                                   | Х | Х | Х |
| 5.3.9 Power and energy of axial waves                                  | Х | Х | Х |
| 5.3.9.1 Axial wave energy                                              | Х | Х | Х |
| 5.3.9.2 Axial wave power                                               | Х | Х | Х |
| 5.3.9.3 Power and energy of harmonic waves                             |   | Х | Х |
| 5.3.10 Harmonic axial waves at an interface                            |   | Х | Х |
| 5.3.10.1 Interface conditions                                          |   | Х | Х |
| 5.3.10.2 Displacement compatibility                                    |   | Х | Х |
| 5.3.10.3 Force balance                                                 |   | Х | X |
| 5.3.10.4 Interface equations; displacement solution                    |   | Χ | X |
| 5.3.10.5 Stress solution; reflection and transmission coefficients     |   | X | X |

| 5.3.10.6 Special cases                                       | Х | Х |
|--------------------------------------------------------------|---|---|
| 5.3.10.7 Power and energy transmission through the interface | Х | Х |
| 5.3.11 Generic axial waves at an interface                   |   | Х |
| 5.3.11.1 Interface conditions                                |   | Х |
| 5.3.11.2 Force balance                                       |   | Х |
| 5.3.11.3 Displacement compatibility and particle velocity    |   | Х |
| 5.3.11.4 Interface equations                                 |   | Х |
| 5.3.11.5 Interface solution in terms of strain               |   | Х |
| 5.3.11.6 Interface solution in terms of stress               |   | Х |
| 5.4 Flexural waves in beams                                  | Х | Х |
| 5.4.1 Flexural waves equation                                | Х | Х |
| 5.4.2 Dispersion of flexural waves                           | Х | Х |
| 5.4.3 Group velocity                                         | Х | Х |
| 5.4.3.1 Definition of group velocity                         | Х | Х |
| 5.4.3.2 Group velocity of flexural waves                     | Х | Х |
| 5.4.4 Energy velocity                                        | Х | Х |
| 5.4.5 Power and energy of flexural waves in a beam           | Х | Х |
| 5.4.5.1 Flexural wave energy                                 | Х | Х |
| 5.4.5.2 Flexural wave power                                  | Х | Х |
| 5.4.6 Flexural waves at an interface                         |   | Х |
| 5.4.6.1 Interface conditions                                 |   | Х |
| 5.4.6.2Wave derivatives                                      |   | Х |
| 5.4.6.3 Interface equations and their solution               |   | Х |
| 5.4.6.4 Power balance across the interface                   |   | Х |
| 5.5 Torsional waves in a shaft                               | Х | Х |
| 5.6 Shear horizontal (SH) waves in a strip                   | Х | Х |
| 5.7 Shear vertical (SV) waves in a beam                      | Х | Х |
| 5.8 Plate waves                                              | Х | Х |
| 5.8.1 Axial waves in plates                                  | Х | Х |
| 5.8.1.1 Equation of motion for axial waves in plates         | Х | Х |
| 5.8.1.2 Straight-crested axial waves in plates               | Х | Х |
| 5.8.1.3 Straight-crested shear waves in plates               | Х | Х |
| 5.8.1.4 Circular-crested axial waves plate in plates         | Х | Х |
| 5.8.2 Flexural waves in plates                               | Х | Х |
| 5.8.2.1 Equation of motion for flexural waves in plates      | Х | Х |
| 5.8.2.2 Straight-crested flexural waves in plates            | Х | Х |
| 5.8.2.3 Circular-crested flexural waves in plates            | Х | Х |
| 5.8.3 Shear horizontal (SH) waves in a plate                 | Х | Х |
| 5.8.4 Torsional waves in a plate (circular crested SH waves) | Х | Х |
| 5.9 Plane, spherical, and circular wave fronts               | Х | Х |
| 5.9.1 Plane waves                                            | Х | Х |
| 5.9.1 Generic plane waves                                    | Х | Х |
| 5.9.1Harmonic plane waves                                    | Х | Х |
| 5.9.2 Spherical waves                                        | Х | Х |
| 5.9.2.1 Generic spherical waves                              | Х | Х |

| 5.9.3 Circular and cylindrical waves       X       X         5.9.3.1 Generic circular and cylindrical waves       X       X         5.9.3.2 Harmonic circular and cylindrical waves       X       X         5.9.3.2 Harmonic circular and cylindrical waves       X       X         5.10 Bulk waves in an infinite clastic medium       X       X         5.10.1 Eigenvalues of the wave equations; fundamental wave speeds       X       X         5.10.2 Eigenvectors of the wave equations       X       X         5.10.3 Wave potentials       X       X         5.10.4 Dilatational and rotational waves       X       X         5.10.5 Irrotational and equivolume waves       X       X         5.10.6 z-invariant       X       X       X         5.11 Summary and conclusions       X       X       X         Chapter 6: Guided waves       X       X       X         6.1 Introduction       X       X       X         6.2.1 Rayleigh surface waves equations       X       X       X         6.2.2 Boundary conditions       X       X       X         6.3.1 Byth wave speed of the Rayleigh surface wave       X       X         6.3.2 Buondary conditions       X       X         6.3.2 Duondary cond                                                                                                                            | 5.9.2.2 Harmonic spherical waves                                  |   | X | Х |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|---|---|---|
| 5.9.3.1 Generic circular and cylindrical waves       X       X         5.9.3.2 Harmonic circular and cylindrical waves       X       X         5.10 Bulk waves in an infinite elastic medium       X       X         5.10.1 Eigenvalues of the wave equations; fundamental wave speeds       X         S.10.2 Eigenvectors of the wave equations       X         5.10.3 Wave potentials       X         S.10.4 Dilatational and rotational waves       X         S.10.5 Irrotational and equivolume waves       X         S.10.6 z-invariant       X         S.10.5 Irrotational and colusions       X         X       X         S.11 Summary and conclusions       X         Chapter 6: Guided waves       X         6.1 Introduction       X       X         6.2.1 Rayleigh surface waves       X       X         6.2.2 Boundary conditions       X       X         6.3 Sth plate waves       X       X         6.3.2.4 Anticle motion of the Rayleigh surface wave       X       X         6.3.2.1 Symmetric SH modes       X       X         6.3.2.2 Antisymmetric SH modes       X       X         6.3.2.1 Symmetric SH modes       X       X         6.3.3.3 Dispersion of SH waves       X       X </td <td>5.9.3 Circular and cylindrical waves</td> <td></td> <td>X</td> <td>Х</td>                                                 | 5.9.3 Circular and cylindrical waves                              |   | X | Х |
| 5.9.3.2 Harmonic circular and cylindrical waves       X       X         5.10 Bulk waves in an infinite elastic medium       X         5.10.1 Eigenvalues of the wave equations; fundamental wave speeds       X         5.10.2 Eigenvectors of the wave equations       X         5.10.4 Dilatational and rotational waves       X         5.10.5 Irrotational and equivolume waves       X         5.10.6 Lintrotational and equivolume waves       X         5.10.6 <i>x</i> -invariant       X         5.11 Summary and conclusions       X         X       X         6.1 Introduction       X         X       X         6.2.1 Rayleigh surface waves       X         6.2.2 Boundary conditions       X         6.2.3 Wave speed of the Rayleigh surface wave       X         6.3.4 Particle motion of the Rayleigh surface wave       X         6.3.2.1 Symmetric SH modes       X         6.3.3.1 Wave speed dispersion curves       X         6.3.3.1 Wave sequations       X         6.3.3.2 Cut-off frequencies       X         6.3.3.3 Gignificance of imaginary wave numbers; evanescent waves <t< td=""><td>5.9.3.1 Generic circular and cylindrical wave</td><td></td><td>X</td><td>Х</td></t<> | 5.9.3.1 Generic circular and cylindrical wave                     |   | X | Х |
| 5.10 Bulk waves in an infinite clastic medium       X         5.10.1 Eigenvalues of the wave equations; fundamental wave speeds       X         5.10.2 Eigenvectors of the wave equations       X         5.10.3 Wave potentials       X         5.10.4 Dilatational and rotational waves       X         5.10.5 Irrotational and equivolume waves       X         5.10.6 z-invariant       X         5.11 Summary and conclusions       X         X       X         5.11 Summary and conclusions       X         X       X         6.1 Introduction       X         6.2 Rayleigh surface waves       X         6.2.1 Rayleigh surface wave equations       X         6.2.2 Boundary conditions       X         6.2.4 Particle motion of the Rayleigh surface wave       X         6.3.2 I Symmetric SH modes       X         6.3.2.1 Symmetric SH modes       X         6.3.2.1 Symmetric SH modes       X         6.3.2.1 Symmetric SH modes       X         6.3.3.1 Wave speed dispersion curves       X         6.3.3.2 Out-off frequencies       X         6.3.3.3 Significance of imaginary wave numbers; evanescent waves       X         6.3.3.4 Group velocity dispersion curves       X         6.4.1 Lamb wa                                                                                                                      | 5.9.3.2 Harmonic circular and cylindrical waves                   |   | X | Х |
| 5.10.1 Eigenvalues of the wave equations; fundamental wave speeds       X         5.10.2 Eigenvectors of the wave equations       X         5.10.3 Wave potentials       X         5.10.4 Dilatational and rotational waves       X         5.10.5 Irrotational and equivolume waves       X         5.10.6 z-invariant       X         S.11.6 z-invariant       X         S.11.7 Summary and conclusions       X         X       X         Chapter 6: Guided waves       X         6.1 Introduction       X       X         6.2.1 Rayleigh surface waves equations       X         6.2.2 Boundary conditions       X       X         6.2.2 Boundary conditions       X       X         6.3.2 A particle motion of the Rayleigh surface wave       X       X         6.3.3 By plate waves       X       X         6.3.2 Boundary conditions       X       X         6.3.2 A trisymmetric SH modes       X       X         6.3.3 Uispersion of SH waves       X       X         6.3.3.4 Group velocity dispersion curves       X       X         6.3.2 A trisymmetric SH modes       X       X         6.3.3.1 Significance of imaginary wave numbers; evanescent waves       X         6.3.3.1 Wave                                                                                                                                          | 5.10 Bulk waves in an infinite elastic medium                     |   |   | Х |
| 5.10.2 Eigenvectors of the wave equations       X         5.10.3 Wave potentials       X         5.10.4 Dilatational and rotational waves       X         5.10.5 Introtational and equivolume waves       X         5.10.6 z-invariant       X         5.11 Summary and conclusions       X         X       X         5.11 Summary and conclusions       X         X       X         Chapter 6: Guided waves       X         6.1 Introduction       X       X         6.2 Rayleigh surface waves       X         6.2.1 Rayleigh surface waves       X         6.2.2 Boundary conditions       X         6.2.3 Wave speed of the Rayleigh surface wave       X         6.3.4 Particle motion of the Rayleigh surface wave       X         6.3.2 Boundary conditions       X         6.3.2 Doundary conditions       X         6.3.2 Doundary conditions       X         6.3.2 Doundary conditions       X         6.3.2 Doundary conditions       X         6.3.3 Uwe speed dispersion curves       X         6.3.4 Wave speed dispersion curves       X         6.3.5 Uwave speed dispersion curves       X         6.3.3 Uwave speed dispersion curves       X         6.3                                                                                                                                                                  | 5.10.1 Eigenvalues of the wave equations; fundamental wave speeds |   |   | Х |
| 5.10.3 Wave potentials       X         5.10.4 Dilatational and rotational waves       X         5.10.5 Irrotational and equivolume waves       X         5.10.6 z-invariant       X         5.11 Summary and conclusions       X       X         Chapter 6: Guided waves       X         6.1 Introduction       X       X         6.2 Rayleigh surface waves       X       X         6.2.1 Rayleigh surface wave equations       X       X         6.2.1 Rayleigh surface wave equations       X       X         6.2.2 Boundary conditions       X       X         6.2.3 Wave speed of the Rayleigh surface wave       X       X         6.3.3 Wave equation       X       X         6.3.3 Have equation       X       X         6.3.1 SH wave equations       X       X         6.3.2 Boundary conditions       X       X         6.3.2.1 Symmetric SH modes       X       X         6.3.2.2 Antisymmetric SH modes       X       X         6.3.3 Dispersion of SH waves       X       X         6.3.3 L Wave speed dispersion curves       X       X         6.3.3 A Group velocity dispersion curves       X       X         6.4.1 Lamb waves equations of the Lamb wave equa                                                                                                                                                             | 5.10.2 Eigenvectors of the wave equations                         |   |   | Х |
| 5.10.4 Dilatational and rotational waves       X         5.10.5 Irrotational and equivolume waves       X         5.10.6 z-invariant       X         5.11 Summary and conclusions       X       X         5.11 Summary and conclusions       X       X         Chapter 6: Guided waves           6.1 Introduction       X       X       X         6.2 Rayleigh surface waves       X       X         6.2.1 Rayleigh surface waves equations       X       X         6.2.2 Boundary conditions       X       X         6.2.3 Wave speed of the Rayleigh surface wave       X       X         6.3.4 Particle motion of the Rayleigh surface wave       X       X         6.3.5 Bl plate waves       X       X         6.3.2.1 Symmetric SH modes       X       X         6.3.2.1 Symmetric SH modes       X       X         6.3.3.1 Wave speed dispersion curves       X       X         6.3.3.1 Wave speed dispersion curves       X       X         6.3.3.2 Significance of imaginary wave numbers; evanescent waves       X       X         6.3.3.4 Group velocity dispersion curves       X       X         6.4.1 Lamb waves equations       X       X         6.4.2.1 Symmetric so                                                                                                                                                        | 5.10.3 Wave potentials                                            |   |   | Х |
| 5.10.5 Irrotational and equivolume waves       X         5.10.6 z-invariant       X         S.11 Summary and conclusions       X         Chapter 6: Guided waves                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.10.4 Dilatational and rotational waves                          |   |   | Х |
| 5.10.6 z-invariant       X       X         5.11 Summary and conclusions       X       X         Chapter 6: Guided waves           6.1 Introduction       X       X       X         6.1 Introduction       X       X       X         6.1 Introduction       X       X       X         6.2 Rayleigh surface waves       X       X         6.2.1 Rayleigh surface wave equations       X       X         6.2.2 Boundary conditions       X       X         6.2.3 Wave speed of the Rayleigh surface wave       X       X         6.3.4 Particle motion of the Rayleigh surface wave       X       X         6.3.5.1 SH wave equation       X       X         6.3.2 Boundary conditions       X       X         6.3.2.1 Symmetric SH modes       X       X         6.3.2.1 Symmetric SH modes       X       X         6.3.3.1 Significance of imaginary wave numbers; evanescent waves       X       X         6.3.3.3 Significance of imaginary wave numbers; evanescent waves       X       X         6.3.3.4 Group velocity dispersion curves       X       X       X         6.4.1 Lamb waves equations       X       X       X         6.4.2.2 Antisymmetric solu                                                                                                                                                                           | 5.10.5 Irrotational and equivolume waves                          |   |   | Х |
| 5.11 Summary and conclusions       X       X       X         Chapter 6: Guided waves                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.10.6 z-invariant                                                |   |   | Х |
| Chapter 6: Guided waves       X       X         6.1 Introduction       X       X       X         6.2 Rayleigh surface waves       X       X       X         6.2.1 Rayleigh surface wave equations       X       X       X         6.2.2 Boundary conditions       X       X       X         6.2.3 Wave speed of the Rayleigh surface wave       X       X       X         6.2.4 Particle motion of the Rayleigh surface wave       X       X       X         6.3.5 H plate waves       X       X       X         6.3.1 SH wave equation       X       X       X         6.3.2 Doundary conditions       X       X       X         6.3.2.1 Symmetric SH modes       X       X       X         6.3.2.2 Antisymmetric SH modes       X       X         6.3.3.1 Wave speed dispersion curves       X       X         6.3.3.2 Cut-off frequencies       X       X         6.3.3.4 Group velocity dispersion curves       X       X         6.4.1 Lamb waves       X       X         6.4.2.1 Symmetric solution of the Lamb wave equations       X       X         6.4.2.1 Symmetric solution of the Lamb wave equations       X       X         6.4.3.1 Symmetric Lamb wave modes<                                                                                                                                                                | 5.11 Summary and conclusions                                      | Х | X | Х |
| Chapter 6: Guided waves       X       X         6.1 Introduction       X       X       X         6.2 Rayleigh surface waves       X       X       X         6.2.1 Rayleigh surface wave equations       X       X       X         6.2.1 Rayleigh surface wave equations       X       X       X         6.2.2 Boundary conditions       X       X       X         6.2.3 Wave speed of the Rayleigh surface wave       X       X       X         6.2.4 Particle motion of the Rayleigh surface wave       X       X       X         6.3.1 SH wave equation       X       X       X         6.3.1 SH wave equation       X       X       X         6.3.2 Boundary conditions       X       X       X         6.3.2 Boundary conditions       X       X       X         6.3.2 Boundary conditions       X       X       X         6.3.2 Dymetric SH modes       X       X       X         6.3.2 Dymetric SH modes       X       X       X         6.3.3.3 Uave speed dispersion curves       X       X       X         6.3.3.4 Group velocity dispersion curves       X       X       X         6.4.1 Lamb waves equations       X X       X                                                                                                                                                                                                    |                                                                   |   |   |   |
| 6.1       Introduction       X       X       X         6.2. Rayleigh surface waves       X       X       X         6.2.1 Rayleigh surface wave equations       X       X       X         6.2.1 Rayleigh surface wave equations       X       X       X         6.2.1 Rayleigh surface wave equations       X       X       X         6.2.2 Boundary conditions       X       X       X         6.2.3 Wave speed of the Rayleigh surface wave       X       X         6.3.4 Particle motion of the Rayleigh surface wave       X       X         6.3.1 SH wave equation       X       X         6.3.1 SH wave equation       X       X         6.3.2 Boundary conditions       X       X         6.3.2 Boundary conditions       X       X         6.3.2.1 Symmetric SH modes       X       X         6.3.2.2 Antisymmetric SH modes       X       X         6.3.3.3 Uave speed dispersion curves       X       X         6.3.3.1 Wave speed dispersion curves       X       X         6.3.3.4 Group velocity dispersion curves       X       X         6.4.1 Lamb waves equations       X       X         6.4.2 Solutions of the Lamb wave equations; dispersion curves       X                                                                                                                                                              | Chapter 6: Guided waves                                           |   |   |   |
| 6.2 Rayleigh surface waves       X       X         6.2.1 Rayleigh surface wave equations       X       X         6.2.2 Boundary conditions       X       X         6.2.3 Wave speed of the Rayleigh surface wave       X       X         6.2.4 Particle motion of the Rayleigh surface wave       X       X         6.3 SH plate waves       X       X         6.3.1 SH wave equation       X       X         6.3.2 Boundary conditions       X       X         6.3.3 I Symmetric SH modes       X       X         6.3.2.1 Symmetric SH modes       X       X         6.3.3.1 Wave speed dispersion curves       X       X         6.3.3.1 Wave speed dispersion curves       X       X         6.3.3.2 Cut-off frequencies       X       X         6.3.3.4 Group velocity dispersion curves       X       X         6.4 Lamb waves       X       X         6.4.1 Lamb waves equations       X       X         6.4.2 Solutions of the Lamb wave equations; dispersion curves       X         6.4.3.1 Symmetric solution of the Lamb wave equations       X         6.4.3.2 Antisymmetric solution of the Lamb wave equations       X         6.4.3.4 Lamb wave modes       X         6.4.3.5 Section summary                                                                                                                                 | 6.1 Introduction                                                  | Х | X | Х |
| 6.2.1 Rayleigh surface wave equations       X       X         6.2.2 Boundary conditions       X       X         6.2.3 Wave speed of the Rayleigh surface wave       X       X         6.2.4 Particle motion of the Rayleigh surface wave       X       X         6.2.4 Particle motion of the Rayleigh surface wave       X       X         6.3.4 Particle motion of the Rayleigh surface wave       X       X         6.3.5 Hyperbox       X       X         6.3.1 SH wave equation       X       X         6.3.2 Boundary conditions       X       X         6.3.2 Downetric SH modes       X       X         6.3.2.2 Antisymmetric SH modes       X       X         6.3.3.1 Wave speed dispersion curves       X       X         6.3.3.2 Cut-off frequencies       X       X         6.3.3.4 Group velocity dispersion curves       X       X         6.4.1 Lamb waves equations       X       X         6.4.1 Lamb waves equations       X       X         6.4.2 Solutions of the Lamb wave equations; dispersion curves       X         6.4.3.1 Symmetric solution of the Lamb wave equations       X         6.4.3.2 Antisymmetric solution of the Lamb wave equations       X         6.4.3.3 Symmetric Lamb wave modes       X                                                                                                       | 6.2 Rayleigh surface waves                                        |   | X | Х |
| 6.2.2 Boundary conditions       X       X         6.2.3 Wave speed of the Rayleigh surface wave       X       X         6.2.4 Particle motion of the Rayleigh surface wave       X       X         6.3 SH plate waves       X       X         6.3 SH plate waves       X       X         6.3.1 SH wave equation       X       X         6.3.2 Boundary conditions       X       X         6.3.2 Dynametric SH modes       X       X         6.3.2.1 Symmetric SH modes       X       X         6.3.3.1 Wave speed dispersion curves       X       X         6.3.3.1 Wave speed dispersion curves       X       X         6.3.3.2 Cut-off frequencies       X       X         6.3.3.3 Significance of imaginary wave numbers; evanescent waves       X         6.4.1 Lamb waves       X       X         6.4.2 Solutions of the Lamb wave equations; dispersion curves       X         6.4.2.1 Symmetric solution of the Lamb wave equations       X         6.4.3.1 Symmetric solution of the Lamb                                                                                                                                    | 6.2.1 Rayleigh surface wave equations                             |   | X | Х |
| 6.2.3 Wave speed of the Rayleigh surface wave       X       X         6.2.4 Particle motion of the Rayleigh surface wave       X       X         6.3 SH plate waves       X       X         6.3 SH plate waves       X       X         6.3.1 SH wave equation       X       X         6.3.2 Boundary conditions       X       X         6.3.2 Boundary conditions       X       X         6.3.2 Boundary conditions       X       X         6.3.2 Dymetric SH modes       X       X         6.3.2.1 Symmetric SH modes       X       X         6.3.2.2 Antisymmetric SH modes       X       X         6.3.3.1 Wave speed dispersion curves       X       X         6.3.3.1 Wave speed dispersion curves       X       X         6.3.3.2 Cut-off frequencies       X       X         6.3.3.4 Group velocity dispersion curves       X       X         6.4 Lamb waves       X       X         6.4.1 Lamb waves equations       X       X         6.4.2 Solutions of the Lamb wave equations; dispersion curves       X         6.4.2.1 Symmetric solution of the Lamb wave equations       X         6.4.3.1 Symmetric Lamb wave modes       X         6.4.3.2 Antisymmetric Lamb wave modes                                                                                                                                                   | 6.2.2 Boundary conditions                                         |   | X | Х |
| 6.2.4 Particle motion of the Rayleigh surface waveXX6.3 SH plate wavesX6.3 SH plate wavesX6.3.1 SH wave equationX6.3.2 Boundary conditionsX6.3.2 Boundary conditionsX6.3.2.1 Symmetric SH modesX6.3.2.2 Antisymmetric SH modesX6.3.3 Dispersion of SH wavesX6.3.3.1 Wave speed dispersion curvesX6.3.3.2 Cut-off frequenciesX6.3.3.3 Significance of imaginary wave numbers; evanescent wavesX6.3.3.4 Group velocity dispersion curvesX6.4 Lamb wavesX6.4.1 Lamb waves equationsX6.4.2 Solutions of the Lamb wave equations; dispersion curvesX6.4.2.1 Symmetric solution of the Lamb wave equationsX6.4.3.3 Isymmetric solution of the Lamb wave equationsX6.4.3.1 Symmetric Lamb wave modesX6.4.3.2 Antisymmetric Lamb wave modesX6.4.4 Lamb wave group velocityX6.5.2 Pressure Potential For Circular Crested Lamb wavesX6.5.3 Shear Potential For Circular Crested Lamb wavesX                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.2.3 Wave speed of the Rayleigh surface wave                     |   | X | Х |
| 6.3 SH plate waves       X         6.3.1 SH wave equation       X         6.3.2 Boundary conditions       X         6.3.2 Boundary conditions       X         6.3.2.1 Symmetric SH modes       X         6.3.2.2 Antisymmetric SH modes       X         6.3.3.1 Wave speed dispersion curves       X         6.3.3.1 Wave speed dispersion curves       X         6.3.3.2 Cut-off frequencies       X         6.3.3.3 Significance of imaginary wave numbers; evanescent waves       X         6.3.3.4 Group velocity dispersion curves       X         6.4.1 Lamb waves       X         6.4.2 Solutions of the Lamb wave equations; dispersion curves       X         6.4.2.1 Symmetric solution of the Lamb wave equations       X         6.4.3.1 Symmetric solution of the Lamb wave equations       X         6.4.3.1 Symmetric Lamb wave modes       X         6.4.3.2 Antisymmetric Lamb wave modes       X         6.4.4 Lamb wave group velocity       X         6.5.2 Circular crested Lamb waves       X         6.5.1 Circular crested Lamb waves       X         6.5.2 Pressure Potential For Circular Crested Lamb waves       X         6.5.3 Shear Potential For Circular Crested Lamb waves       X                                                                                                                         | 6.2.4 Particle motion of the Rayleigh surface wave                |   | X | Х |
| 6.3.1 SH wave equationX6.3.2 Boundary conditionsX6.3.2 Boundary conditionsX6.3.2 J Symmetric SH modesX6.3.2.2 Antisymmetric SH modesX6.3.3 Dispersion of SH wavesX6.3.3 Dispersion of SH wavesX6.3.3.1 Wave speed dispersion curvesX6.3.3.2 Cut-off frequenciesX6.3.3.3 Significance of imaginary wave numbers; evanescent wavesX6.3.3.4 Group velocity dispersion curvesX6.4.1 Lamb wavesX6.4.1 Lamb waves equationsX6.4.2 Solutions of the Lamb wave equations; dispersion curvesX6.4.2.1 Symmetric solution of the Lamb wave equationsX6.4.3.1 Symmetric solution of the Lamb wave equationsX6.4.3.1 Symmetric Lamb wave modesX6.4.3.2 Antisymmetric Lamb wave modesX6.4.4 Lamb wave group velocityX6.5.5 Section summaryX6.5.1 Circular crested Lamb wavesX6.5.2 Pressure Potential For Circular Crested Lamb wavesX6.5.3 Shear Potential For Circular Crested Lamb wavesX                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.3 SH plate waves                                                |   |   | Х |
| 6.3.2 Boundary conditionsX6.3.2.1 Symmetric SH modesX6.3.2.2 Antisymmetric SH modesX6.3.3 Dispersion of SH wavesX6.3.3.1 Wave speed dispersion curvesX6.3.3.2 Cut-off frequenciesX6.3.3.3 Significance of imaginary wave numbers; evanescent wavesX6.3.3.4 Group velocity dispersion curvesX6.4 Lamb wavesX6.4.1 Lamb waves equationsX6.4.2 Solutions of the Lamb wave equations; dispersion curvesX6.4.2.1 Symmetric solution of the Lamb wave equationsX6.4.3.1 Symmetric solution of the Lamb wave equationsX6.4.3.1 Symmetric Lamb wave modesX6.4.3.2 Antisymmetric Lamb wave modesX6.4.4 Lamb wave group velocityX6.5.5 Circular crested Lamb wavesX6.5.2 Pressure Potential For Circular Crested Lamb wavesX6.5.3 Shear Potential For Circular Crested Lamb wavesX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.3.1 SH wave equation                                            |   |   | Х |
| 6.3.2.1 Symmetric SH modesX6.3.2.2 Antisymmetric SH modesX6.3.3 Dispersion of SH wavesX6.3.3.1 Wave speed dispersion curvesX6.3.3.2 Cut-off frequenciesX6.3.3.3 Significance of imaginary wave numbers; evanescent wavesX6.3.3.4 Group velocity dispersion curvesX6.4 Lamb wavesX6.4.1 Lamb waves equationsX6.4.2 Solutions of the Lamb wave equations; dispersion curvesX6.4.2.1 Symmetric solution of the Lamb wave equationsX6.4.3.1 Symmetric solution of the Lamb wave equationsX6.4.3.1 Symmetric Lamb wave modesX6.4.3.2 Antisymmetric Lamb wave modesX6.4.4 Lamb wave group velocityX6.4.5 Section summaryX6.5.1 Circular crested Lamb wavesX6.5.2 Pressure Potential For Circular Crested Lamb wavesX6.5.3 Shear Potential For Circular Crested Lamb wavesX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.3.2 Boundary conditions                                         |   |   | Х |
| 6.3.2.2 Antisymmetric SH modesX6.3.3 Dispersion of SH wavesX6.3.3.1 Wave speed dispersion curvesX6.3.3.2 Cut-off frequenciesX6.3.3.3 Significance of imaginary wave numbers; evanescent wavesX6.3.3.4 Group velocity dispersion curvesX6.4 Lamb wavesX6.4.1 Lamb waves equationsX6.4.2 Solutions of the Lamb wave equations; dispersion curvesX6.4.2.1 Symmetric solution of the Lamb wave equationsX6.4.3.1 Symmetric solution of the Lamb wave equationsX6.4.3.1 Symmetric Lamb wave modesX6.4.4 Lamb wave group velocityX6.4.5 Section summaryX6.5.1 Circular crested Lamb wavesX6.5.2 Pressure Potential For Circular Crested Lamb wavesX6.5.3 Shear Potential For Circular Crested Lamb wavesX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.3.2.1 Symmetric SH modes                                        |   |   | Х |
| 6.3.3 Dispersion of SH wavesX6.3.3.1 Wave speed dispersion curvesX6.3.3.2 Cut-off frequenciesX6.3.3.3 Significance of imaginary wave numbers; evanescent wavesX6.3.3.4 Group velocity dispersion curvesX6.4 Lamb wavesX6.4.1 Lamb waves equationsX6.4.2 Solutions of the Lamb wave equations; dispersion curvesX6.4.2.1 Symmetric solution of the Lamb wave equationsX6.4.2.2 Antisymmetric solution of the Lamb wave equationsX6.4.3.1 Symmetric Lamb wave modesX6.4.3.2 Antisymmetric Lamb wave modesX6.4.3.4 Lamb wave group velocityX6.4.5 Section summaryX6.5.1 Circular crested Lamb wavesX6.5.3 Shear Potential For Circular Crested Lamb wavesX6.5.3 Shear Potential For Circular Crested Lamb wavesX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.3.2.2 Antisymmetric SH modes                                    |   |   | Х |
| 6.3.3.1 Wave speed dispersion curvesX6.3.3.2 Cut-off frequenciesX6.3.3.3 Significance of imaginary wave numbers; evanescent wavesX6.3.3.4 Group velocity dispersion curvesX6.4 Lamb wavesX6.4.1 Lamb waves equationsX6.4.2 Solutions of the Lamb wave equations; dispersion curvesX6.4.2.1 Symmetric solution of the Lamb wave equationsX6.4.3.1 Symmetric solution of the Lamb wave equationsX6.4.3.1 Symmetric Lamb wave modesX6.4.3.2 Antisymmetric Lamb wave modesX6.4.3.5 Section summaryX6.5 Circular crested Lamb wavesX6.5.1 Circular crested Lamb wavesX6.5.3 Shear Potential For Circular Crested Lamb wavesX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6.3.3 Dispersion of SH waves                                      |   |   | Х |
| 6.3.3.2 Cut-off frequenciesX6.3.3.3 Significance of imaginary wave numbers; evanescent wavesX6.3.3.4 Group velocity dispersion curvesX6.4 Lamb wavesX6.4 Lamb wavesX6.4.1 Lamb waves equationsX6.4.2 Solutions of the Lamb wave equations; dispersion curvesX6.4.2.1 Symmetric solution of the Lamb wave equationsX6.4.2.2 Antisymmetric solution of the Lamb wave equationsX6.4.3.1 Symmetric Lamb wave modesX6.4.3.2 Antisymmetric Lamb wave modesX6.4.4 Lamb wave group velocityX6.4.5 Section summaryX6.5.1 Circular crested Lamb wavesX6.5.2 Pressure Potential For Circular Crested Lamb wavesX6.5.3 Shear Potential For Circular Crested Lamb wavesX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6.3.3.1 Wave speed dispersion curves                              |   |   | Х |
| 6.3.3.3 Significance of imaginary wave numbers; evanescent wavesX6.3.3.4 Group velocity dispersion curvesX6.4 Lamb wavesX6.4 Lamb wavesX6.4.1 Lamb waves equationsX6.4.2 Solutions of the Lamb wave equations; dispersion curvesX6.4.2.1 Symmetric solution of the Lamb wave equationsX6.4.2.2 Antisymmetric solution of the Lamb wave equationsX6.4.3.1 Symmetric solution of the Lamb wave equationsX6.4.3.2 Antisymmetric Lamb wave modesX6.4.3.2 Antisymmetric Lamb wave modesX6.4.3.2 Antisymmetric Lamb wave modesX6.4.3.5 Section summaryX6.4.5 Section summaryX6.5.1 Circular crested Lamb wavesX6.5.2 Pressure Potential For Circular Crested Lamb wavesX6.5.3 Shear Potential For Circular Crested Lamb wavesX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.3.3.2 Cut-off frequencies                                       |   |   | Х |
| 6.3.3.4 Group velocity dispersion curvesX6.4 Lamb wavesX6.4 Lamb wavesX6.4.1 Lamb waves equationsX6.4.2 Solutions of the Lamb wave equations; dispersion curvesX6.4.2.1 Symmetric solution of the Lamb wave equationsX6.4.2.2 Antisymmetric solution of the Lamb wave equationsX6.4.3 Lamb wave modesX6.4.3.1 Symmetric Lamb wave modesX6.4.3.2 Antisymmetric Lamb wave modesX6.4.4 Lamb wave group velocityX6.4.5 Section summaryX6.5.1 Circular crested Lamb wavesX6.5.2 Pressure Potential For Circular Crested Lamb wavesX6.5.3 Shear Potential For Circular Crested Lamb wavesX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.3.3.3 Significance of imaginary wave numbers; evanescent waves  |   |   | Х |
| 6.4 Lamb wavesX6.4.1 Lamb waves equationsX6.4.2 Solutions of the Lamb wave equations; dispersion curvesX6.4.2.1 Symmetric solution of the Lamb wave equationsX6.4.2.2 Antisymmetric solution of the Lamb wave equationsX6.4.3 Lamb wave modesX6.4.3.1 Symmetric Lamb wave modesX6.4.3.2 Antisymmetric Lamb wave modesX6.4.3.5 Section summaryX6.5 Circular crested Lamb wavesX6.5.1 Circular crested Lamb equationsX6.5.3 Shear Potential For Circular Crested Lamb wavesXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.3.3.4 Group velocity dispersion curves                          |   |   | Х |
| 6.4.1 Lamb waves equationsX6.4.2 Solutions of the Lamb wave equations; dispersion curvesX6.4.2.1 Symmetric solution of the Lamb wave equationsX6.4.2.2 Antisymmetric solution of the Lamb wave equationsX6.4.3 Lamb wave modesX6.4.3.1 Symmetric Lamb wave modesX6.4.3.2 Antisymmetric Lamb wave modesX6.4.4 Lamb wave group velocityX6.4.5 Section summaryX6.5.1 Circular crested Lamb wavesX6.5.2 Pressure Potential For Circular Crested Lamb wavesX6.5.3 Shear Potential For Circular Crested Lamb wavesX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.4 Lamb waves                                                    |   |   | Х |
| 6.4.2 Solutions of the Lamb wave equations; dispersion curvesX6.4.2.1 Symmetric solution of the Lamb wave equationsX6.4.2.2 Antisymmetric solution of the Lamb wave equationsX6.4.3 Lamb wave modesX6.4.3.1 Symmetric Lamb wave modesX6.4.3.2 Antisymmetric Lamb wave modesX6.4.4 Lamb wave group velocityX6.4.5 Section summaryX6.5.1 Circular crested Lamb wavesX6.5.2 Pressure Potential For Circular Crested Lamb wavesX6.5.3 Shear Potential For Circular Crested Lamb wavesX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.4.1 Lamb waves equations                                        |   |   | Х |
| 6.4.2.1 Symmetric solution of the Lamb wave equationsX6.4.2.2 Antisymmetric solution of the Lamb wave equationsX6.4.3 Lamb wave modesX6.4.3.1 Symmetric Lamb wave modesX6.4.3.2 Antisymmetric Lamb wave modesX6.4.4 Lamb wave group velocityX6.4.5 Section summaryX6.5 Circular crested Lamb wavesX6.5.1 Circular crested Lamb equationsX6.5.2 Pressure Potential For Circular Crested Lamb wavesX6.5.3 Shear Potential For Circular Crested Lamb wavesX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.4.2 Solutions of the Lamb wave equations; dispersion curves     |   |   | Х |
| 6.4.2.2 Antisymmetric solution of the Lamb wave equationsX6.4.3 Lamb wave modesX6.4.3.1 Symmetric Lamb wave modesX6.4.3.2 Antisymmetric Lamb wave modesX6.4.4 Lamb wave group velocityX6.4.5 Section summaryX6.5 Circular crested Lamb wavesX6.5.1 Circular crested Lamb equationsX6.5.2 Pressure Potential For Circular Crested Lamb wavesX6.5.3 Shear Potential For Circular Crested Lamb wavesX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.4.2.1 Symmetric solution of the Lamb wave equations             |   |   | Х |
| 6.4.3 Lamb wave modesX6.4.3.1 Symmetric Lamb wave modesX6.4.3.2 Antisymmetric Lamb wave modesX6.4.4 Lamb wave group velocityX6.4.5 Section summaryX6.5 Circular crested Lamb wavesX6.5.1 Circular crested Lamb equationsX6.5.2 Pressure Potential For Circular Crested Lamb wavesX6.5.3 Shear Potential For Circular Crested Lamb wavesX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.4.2.2 Antisymmetric solution of the Lamb wave equations         |   |   | Х |
| 6.4.3.1 Symmetric Lamb wave modesX6.4.3.2 Antisymmetric Lamb wave modesX6.4.4 Lamb wave group velocityX6.4.5 Section summaryX6.5 Circular crested Lamb wavesX6.5.1 Circular crested Lamb equationsX6.5.2 Pressure Potential For Circular Crested Lamb wavesX6.5.3 Shear Potential For Circular Crested Lamb wavesX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.4.3 Lamb wave modes                                             |   |   | Х |
| 6.4.3.2 Antisymmetric Lamb wave modesX6.4.3.2 Antisymmetric Lamb wave modesX6.4.4 Lamb wave group velocityX6.4.5 Section summaryX6.5 Circular crested Lamb wavesX6.5.1 Circular crested Lamb equationsX6.5.2 Pressure Potential For Circular Crested Lamb wavesX6.5.3 Shear Potential For Circular Crested Lamb wavesX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.4.3.1 Symmetric Lamb wave modes                                 |   |   | Х |
| 6.4.4 Lamb wave group velocityX6.4.5 Section summaryX6.5 Circular crested Lamb wavesX6.5.1 Circular crested Lamb equationsX6.5.2 Pressure Potential For Circular Crested Lamb wavesX6.5.3 Shear Potential For Circular Crested Lamb wavesX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6.4.3.2 Antisymmetric Lamb wave modes                             |   |   | Х |
| 6.4.5 Section summaryX6.5 Circular crested Lamb wavesX6.5.1 Circular crested Lamb equationsX6.5.2 Pressure Potential For Circular Crested Lamb wavesX6.5.3 Shear Potential For Circular Crested Lamb wavesX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6.4.4 Lamb wave group velocity                                    |   |   | Х |
| 6.5 Circular crested Lamb wavesX6.5.1 Circular crested Lamb equationsX6.5.2 Pressure Potential For Circular Crested Lamb wavesX6.5.3 Shear Potential For Circular Crested Lamb wavesX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.4.5 Section summary                                             |   |   | Х |
| 6.5.1 Circular crested Lamb equationsX6.5.2 Pressure Potential For Circular Crested Lamb wavesX6.5.3 Shear Potential For Circular Crested Lamb wavesX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.5 Circular crested Lamb waves                                   |   |   | Х |
| 6.5.2 Pressure Potential For Circular Crested Lamb wavesX6.5.3 Shear Potential For Circular Crested Lamb wavesX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.5.1 Circular crested Lamb equations                             |   |   | Х |
| 6.5.3 Shear Potential For Circular Crested Lamb waves X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6.5.2 Pressure Potential For Circular Crested Lamb waves          |   |   | Х |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.5.3 Shear Potential For Circular Crested Lamb waves             |   |   | Х |
| 6.5.4 Coherence condition X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6.5.4 Coherence condition                                         |   |   | Х |

| 6.5.5 Displacement and stresses in terms of potentials                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                              |                                                                                             | Х                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| 6.5.5.1 Calculation of dilatation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                              |                                                                                             | Х                                                                                           |
| 6.5.5.2 Calculation of strains                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                              |                                                                                             | Х                                                                                           |
| 6.5.5.3 Calculation of stresses in terms of potentials                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                              |                                                                                             | Х                                                                                           |
| 6.5.5.4 Calculation of stresses in terms of the unknowns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                              |                                                                                             | Х                                                                                           |
| $A_1, A_2, B_1, B_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                              |                                                                                             |                                                                                             |
| 6.5.6 Solution of the Lamb wave equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                              |                                                                                             | Х                                                                                           |
| 6.5.6.1 Symmetric solution of the Lamb wave equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                              |                                                                                             | Х                                                                                           |
| 6.5.6.2 Antisymmetric solution of the Lamb wave equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                              |                                                                                             | Х                                                                                           |
| 6.5.7 Circular crested Lamb wave modes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                              |                                                                                             | Х                                                                                           |
| 6.5.7.1 Symmetric circular crested Lamb wave modes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                              |                                                                                             | Х                                                                                           |
| 6.5.7.2 Antisymmetric circular crested Lamb wave modes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                              |                                                                                             | Х                                                                                           |
| 6.5.8 Asymptotic behavior of circular crested Lamb waves                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                              |                                                                                             | Х                                                                                           |
| 6.5.9 Section summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                              |                                                                                             | Х                                                                                           |
| 6.6 General formulation of guided waves in plates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                              |                                                                                             | Х                                                                                           |
| 6.7 Guided waves in tubes and shells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                              |                                                                                             | Х                                                                                           |
| 6.7.1 Derivation of guided waves equations for cylindrical shells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                              |                                                                                             | Х                                                                                           |
| 6.7.2 General solution for guided waves in cylindrical shells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                              |                                                                                             | Х                                                                                           |
| 6.7.3 Guided-wave modes in cylindrical shells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                              |                                                                                             | Х                                                                                           |
| 6.7.4 Section summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                              |                                                                                             | Х                                                                                           |
| 6.8 Summary and conclusions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Х                                                                            | Х                                                                                           | Х                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                              |                                                                                             |                                                                                             |
| Chanter 7. Piezoelectric wafer active sensors PWAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                              |                                                                                             |                                                                                             |
| Chapter 7. Thezoelectric water active sensors – TWAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                              |                                                                                             |                                                                                             |
| transducers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                              |                                                                                             |                                                                                             |
| 7.1 Introduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | X                                                                            | X                                                                                           | X                                                                                           |
| 7.1 Introduction<br>7.2 PWAS actuators                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | X<br>X                                                                       | X<br>X                                                                                      | X<br>X                                                                                      |
| 7.1 Introduction<br>7.2 PWAS actuators<br>7.2.1 Electric excitation of the PWAS transducer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | X<br>X<br>X                                                                  | X<br>X<br>X                                                                                 | X<br>X<br>X                                                                                 |
| transducers         7.1 Introduction         7.2 PWAS actuators         7.2.1 Electric excitation of the PWAS transducer         7.2.2 PWAS excitation with bias voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | X<br>X<br>X                                                                  | X<br>X<br>X<br>X                                                                            | X<br>X<br>X<br>X                                                                            |
| transducers         7.1 Introduction         7.2 PWAS actuators         7.2.1 Electric excitation of the PWAS transducer         7.2.2 PWAS excitation with bias voltage         7.2.3 PWAS actuator expansion and displacement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | X<br>X<br>X                                                                  | X<br>X<br>X<br>X<br>X<br>X                                                                  | X<br>X<br>X<br>X<br>X<br>X                                                                  |
| transducers         7.1 Introduction         7.2 PWAS actuators         7.2.1 Electric excitation of the PWAS transducer         7.2.2 PWAS excitation with bias voltage         7.2.3 PWAS actuator expansion and displacement         7.3 PWAS stress and strain sensors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | X<br>X<br>X                                                                  | X<br>X<br>X<br>X<br>X<br>X<br>X<br>X                                                        | X<br>X<br>X<br>X<br>X<br>X<br>X                                                             |
| chapter       7.1 Introduction         7.1 Introduction         7.2 PWAS actuators         7.2.1 Electric excitation of the PWAS transducer         7.2.2 PWAS excitation with bias voltage         7.2.3 PWAS actuator expansion and displacement         7.3 PWAS stress and strain sensors         7.3.1 Static stress sensing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | X<br>X<br>X<br>X                                                             | X<br>X<br>X<br>X<br>X<br>X<br>X<br>X                                                        | X<br>X<br>X<br>X<br>X<br>X<br>X<br>X                                                        |
| transducers         7.1 Introduction         7.2 PWAS actuators         7.2.1 Electric excitation of the PWAS transducer         7.2.2 PWAS excitation with bias voltage         7.2.3 PWAS actuator expansion and displacement         7.3 PWAS stress and strain sensors         7.3.1 Static stress sensing         7.3.2 Static strain sensing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | X<br>X<br>X<br>X                                                             | X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X                                              | X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X                                                   |
| chapter       7.1 Introduction         7.1 Introduction         7.2 PWAS actuators         7.2.1 Electric excitation of the PWAS transducer         7.2.2 PWAS excitation with bias voltage         7.2.3 PWAS actuator expansion and displacement         7.3 PWAS stress and strain sensors         7.3.1 Static stress sensing         7.3.2 Static strain sensing         7.3.3 Dynamic stress sensing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | X<br>X<br>X<br>X<br>X                                                        | X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X                                         | X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X                                         |
| chapter       7.1 Introduction         7.1 Introduction         7.2 PWAS actuators         7.2.1 Electric excitation of the PWAS transducer         7.2.2 PWAS excitation with bias voltage         7.2.3 PWAS actuator expansion and displacement         7.3 PWAS stress and strain sensors         7.3.1 Static stress sensing         7.3.2 Static strain sensing         7.3.4 Dynamic strain sensing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | X<br>X<br>X<br>X<br>X                                                        | X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X                          | X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X                     |
| transducers         7.1 Introduction         7.2 PWAS actuators         7.2.1 Electric excitation of the PWAS transducer         7.2.2 PWAS excitation with bias voltage         7.2.3 PWAS actuator expansion and displacement         7.3 PWAS stress and strain sensors         7.3.1 Static stress sensing         7.3.2 Static strain sensing         7.3.3 Dynamic stress sensing         7.3.4 Dynamic strain sensing         7.4 Thickness effects on PWAS excitation and sensing                                                                                                                                                                                                                                                                                                                                                                                                                                                  | X<br>X<br>X<br>X<br>X                                                        | X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X      | X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X                |
| chapter       7.1 Introduction         7.2 PWAS actuators         7.2.1 Electric excitation of the PWAS transducer         7.2.2 PWAS excitation with bias voltage         7.2.3 PWAS actuator expansion and displacement         7.3 PWAS stress and strain sensors         7.3.1 Static stress sensing         7.3.2 Static strain sensing         7.3.3 Dynamic stress sensing         7.3.4 Dynamic stress effects on PWAS excitation and sensing         7.4.1 Thickness effects on PWAS excitation                                                                                                                                                                                                                                                                                                                                                                                                                                   | X<br>X<br>X<br>X<br>X                                                        | X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X | X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X           |
| chapter       7.1 Introduction         7.1 Introduction         7.2 PWAS actuators         7.2.1 Electric excitation of the PWAS transducer         7.2.2 PWAS excitation with bias voltage         7.2.3 PWAS excitation with bias voltage         7.2.3 PWAS actuator expansion and displacement         7.3 PWAS stress and strain sensors         7.3.1 Static stress sensing         7.3.2 Static strain sensing         7.3.3 Dynamic stress sensing         7.3.4 Dynamic strain sensing         7.4 Thickness effects on PWAS excitation and sensing         7.4.1 Thickness effects on PWAS excitation         7.4.2 Thickness effects on PWAS sensing                                                                                                                                                                                                                                                                            | X<br>X<br>X<br>X<br>X                                                        | X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X      | X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X           |
| chapter       7.1 Introduction         7.2 PWAS actuators         7.2.1 Electric excitation of the PWAS transducer         7.2.2 PWAS excitation with bias voltage         7.2.3 PWAS actuator expansion and displacement         7.3 PWAS stress and strain sensors         7.3.1 Static stress sensing         7.3.2 Static strain sensing         7.3.3 Dynamic stress sensing         7.3.4 Dynamic strain sensing         7.4 Thickness effects on PWAS excitation         7.4.1 Thickness effects on PWAS sensing         7.5 Vibration sensing with PWAS transducers                                                                                                                                                                                                                                                                                                                                                                | X<br>X<br>X<br>X<br>X<br>X                                                   | X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X | X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X |
| transducers         7.1 Introduction         7.2 PWAS actuators         7.2.1 Electric excitation of the PWAS transducer         7.2.2 PWAS excitation with bias voltage         7.2.3 PWAS excitation with bias voltage         7.2.3 PWAS actuator expansion and displacement         7.3 PWAS stress and strain sensors         7.3.1 Static stress sensing         7.3.2 Static strain sensing         7.3.3 Dynamic stress sensing         7.4 Thickness effects on PWAS excitation and sensing         7.4.1 Thickness effects on PWAS excitation         7.4.2 Thickness effects on PWAS transducers         7.5 Vibration sensing with PWAS transducers         7.6 Waves sensing with PWAS transducers                                                                                                                                                                                                                            | X<br>X<br>X<br>X<br>X<br>X<br>X<br>X                                         | X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X | X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X |
| transducers         7.1 Introduction         7.2 PWAS actuators         7.2.1 Electric excitation of the PWAS transducer         7.2.2 PWAS excitation with bias voltage         7.2.3 PWAS excitation with bias voltage         7.2.3 PWAS actuator expansion and displacement         7.3 PWAS stress and strain sensors         7.3.1 Static stress sensing         7.3.2 Static strain sensing         7.3.3 Dynamic stress sensing         7.4 Thickness effects on PWAS excitation and sensing         7.4.1 Thickness effects on PWAS excitation         7.4.2 Thickness effects on PWAS sensing         7.5 Vibration sensing with PWAS transducers         7.6 Waves sensing with PWAS transducers         7.7 Installation and quality check of PWAS transducers                                                                                                                                                                 | X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X                               | X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X | X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X |
| transducers         7.1 Introduction         7.2 PWAS actuators         7.2.1 Electric excitation of the PWAS transducer         7.2.2 PWAS excitation with bias voltage         7.2.3 PWAS actuator expansion and displacement         7.3 PWAS stress and strain sensors         7.3.1 Static stress sensing         7.3.2 Static strain sensing         7.3.3 Dynamic stress sensing         7.3.4 Dynamic stress sensing         7.4 Thickness effects on PWAS excitation         7.4.2 Thickness effects on PWAS excitation         7.4.2 Thickness effects on PWAS sensing         7.5 Vibration sensing with PWAS transducers         7.6 Waves sensing with PWAS transducers         7.7 Installation and quality check of PWAS transducers         7.7.1 Screening of piezoceramic wafers used in PWAS fabrication                                                                                                                | X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X                     | X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X | X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X |
| transducers         7.1 Introduction         7.2 PWAS actuators         7.2.1 Electric excitation of the PWAS transducer         7.2.2 PWAS excitation with bias voltage         7.2.3 PWAS excitation with bias voltage         7.3 PWAS actuator expansion and displacement         7.3 PWAS stress and strain sensors         7.3.1 Static stress sensing         7.3.2 Static strain sensing         7.3.3 Dynamic stress sensing         7.3.4 Dynamic strain sensing         7.4.1 Thickness effects on PWAS excitation         7.4.2 Thickness effects on PWAS excitation         7.4.2 Thickness effects on PWAS sensing         7.5 Vibration sensing with PWAS transducers         7.6 Waves sensing with PWAS transducers         7.7 Installation and quality check of PWAS transducers         7.7.1 Screening of piezoceramic wafers used in PWAS fabrication         7.7.1.1 Geometric measurements                         | X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X           | X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X | X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X |
| transducers         7.1 Introduction         7.2 PWAS actuators         7.2.1 Electric excitation of the PWAS transducer         7.2.2 PWAS excitation with bias voltage         7.2.3 PWAS excitation with bias voltage         7.3 PWAS actuator expansion and displacement         7.3 PWAS stress and strain sensors         7.3.1 Static stress sensing         7.3.2 Static strain sensing         7.3.3 Dynamic stress sensing         7.3.4 Dynamic strain sensing         7.4 Thickness effects on PWAS excitation and sensing         7.4.1 Thickness effects on PWAS excitation         7.4.2 Thickness effects on PWAS sensing         7.5 Vibration sensing with PWAS transducers         7.6 Waves sensing with PWAS transducers         7.7 Installation and quality check of PWAS transducers         7.7.1 Screening of piezoceramic wafers used in PWAS fabrication         7.7.1.2 Electrical capacitance measurements  | X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X      | X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X | X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X |
| transducers         7.1 Introduction         7.2 PWAS actuators         7.2.1 Electric excitation of the PWAS transducer         7.2.2 PWAS excitation with bias voltage         7.2.3 PWAS actuator expansion and displacement         7.3 PWAS stress and strain sensors         7.3.1 Static stress sensing         7.3.2 Static strain sensing         7.3.3 Dynamic stress sensing         7.3.4 Dynamic stress sensing         7.4 Thickness effects on PWAS excitation and sensing         7.4.1 Thickness effects on PWAS excitation         7.4.2 Thickness effects on PWAS sensing         7.5 Vibration sensing with PWAS transducers         7.6 Waves sensing with PWAS transducers         7.7 Installation and quality check of PWAS transducers         7.7.1 Screening of piezoceramic wafers used in PWAS fabrication         7.7.1.2 Electrical capacitance measurements         7.7.2 Guidelines for PWAS installation | X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X | X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X | X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X |

| 7.7.2.2 Surface preparation and PWAS installation                                 | Х | Х              | Х                            |
|-----------------------------------------------------------------------------------|---|----------------|------------------------------|
| 7.7.2.3 Post-installation quality checks and PWAS self diagnosis                  | Х | Х              | Х                            |
| 7.8 Durability and survivability of piezoelectric wafer active sensors            | Х | Х              | Х                            |
| 7.8.1 Temperature cycling                                                         | Х | Х              | Х                            |
| 7.8.2 Outdoors environmental exposure                                             | Х | Х              | Х                            |
| 7.8.3 Submersion exposure                                                         | Х | Х              | Х                            |
| 7.8.4 Large strains and fatigue cyclic loading                                    | Х | Х              | Х                            |
| 7.9 Typical use of PWAS transducers in SHM applications                           |   |                |                              |
| 7.10 Summary and conclusions                                                      | Х | Х              | Х                            |
|                                                                                   |   |                |                              |
| Chapter 8: Coupling of PWAS transducers to the monitored                          |   |                |                              |
| structure                                                                         |   |                |                              |
| 8.1 Introduction                                                                  | Х | X              | Х                            |
| 8.2 1-D shear-layer coupling analysis                                             |   | X              | Х                            |
| 8.2.1 Coupling between the PWAS and the structure                                 |   | Х              | Х                            |
| 8.2.2 Shear lag solution                                                          |   | Х              | Х                            |
| 8.2.3 Ideal bonding solution: pin-force model                                     | Х | Х              | Х                            |
| 8.2.4 Effective pin force and for non-ideal bonding                               |   | Х              | Х                            |
| 8.3 2-D Shear-layer analysis for a rectangular PWAS                               |   |                | Х                            |
| 8.3.1 Rectangular PWAS equations                                                  |   |                | Х                            |
| 8.3.2 Approximate solution for 2-D shear lag analysis                             |   |                | Х                            |
| 8.3.3 Extended shear lag analysis for a strip PWAS under plane                    |   |                | Х                            |
| strain conditions                                                                 |   |                |                              |
| 8.3.4 Effective line force and ideal bonding analysis for a                       |   |                | Х                            |
| rectangular PWAS                                                                  |   |                |                              |
| 8.4 Shear-layer analysis for a circular PWAS                                      |   |                | Х                            |
| 8.4.1 Circular PWAS equations in cylindrical coordinates                          |   |                | Х                            |
| 8.4.2 Effective line force and ideal bonding analysis for a circular              |   |                | Х                            |
| PWAS                                                                              |   |                |                              |
| 8.5 Energy transfer between the PWAS and the structure                            |   | X              | Х                            |
| 8.5.1 Energy transfer through the shear-lag model                                 |   | Х              | Х                            |
| 8.5.1.1 Elastic energy in the structure                                           |   | Х              | Х                            |
| 8.5.1.2 Work done by the shear stresses on the structural surface                 |   | Х              | Х                            |
| 8.5.1.3 Elastic energy retained in the PWAS actuator                              |   | Х              | Х                            |
| 8.5.1.4 Elastic energy retained in the shear layer                                |   | Х              | Х                            |
| 8.5.2 Energy transfer through the pin-force model                                 |   | Х              | Х                            |
| 8.5.2.1 Elastic energy in the structure                                           |   |                | Х                            |
| 8.5.2.2 Work done by the shear stresses at the structural surface                 |   |                | Х                            |
| 8.5.2.3 Elastic energy retained in the PWAS actuator                              |   |                | Х                            |
| 8.5.2.4 Work done by the reaction force $F_a$ against the actuator                |   |                | Х                            |
| induced strain <i>E</i> <sub>1</sub>                                              |   |                |                              |
| 8 5 2 5 Energy balance analysis                                                   |   | v              | v                            |
| 0.3.2.3 Energy balance analysis<br>8.5.2.6 Comparison with the shear lag solution |   | $\Lambda$ V    | $\frac{\Lambda}{\mathbf{v}}$ |
| 0.3.2.0 Comparison with the shear lag solution                                    |   | $\Lambda$<br>V | $\frac{\Lambda}{\mathbf{v}}$ |
| o.s.s Conditions for optimum energy transfer                                      |   | $\Lambda$      | Λ                            |

| 8.5.4 Determination of $\tau_a$ from equivalent work principles           |   | Х              | Х           |
|---------------------------------------------------------------------------|---|----------------|-------------|
| 8.6 Summary and conclusions                                               | Х | Х              | Х           |
| Chapter 9: PWAS resonators                                                |   |                |             |
| 9.1 Introduction                                                          | Х | Х              | Х           |
| 9.2 1-D PWAS resonators                                                   | Х | Х              | Х           |
| 9.2.1 Mechanical response                                                 |   | Х              | Х           |
| 9.2.1.1 Solution in terms of the induced strain and induced               |   | Х              | Х           |
| displacement                                                              |   |                |             |
| 9.2.1.2 Tip strain and displacement                                       |   | Х              | Х           |
| 9.2.2 Electrical response                                                 |   | Х              | Х           |
| 9.2.3 Resonances                                                          |   | Х              | Х           |
| 9.2.3.1 Mechanical resonances                                             |   | Х              | Х           |
| 9.2.3.1.1 Antisymmetric resonances ( $\cos \phi = 0$ )                    |   |                |             |
| 9.2.3.1.2 Symmetric resonances ( $\sin \phi = 0$ )                        |   |                |             |
| 9.2.3.2 Electromechanical resonances                                      |   | Х              | Х           |
| 9.2.4 Effect of internal damping                                          |   | Х              | Х           |
| 9.2.5 Summary of 1-D E/M admittance and impedance formulae                | Х | Х              | Х           |
| 9.2.5.1 Longitudinal vibration E/M admittance and impedance               | Х | Х              | Х           |
| 0.2.5.2 Width vibration E/M admittance and impedance formulae             |   | v              | v           |
| 9.2.5.2 With violation E/M admittance and impedance formulae              |   | $\Lambda$<br>V | $\Lambda$ V |
| formulae                                                                  |   | л              | Λ           |
| 9.2.5.4 Admittance and impedance plots                                    |   | Х              | Х           |
| 9.2.6 Experimental results                                                | Х | Х              | Х           |
| 9.2.6.1 Intrinsic E/M impedance and admittance of PWAS                    | Х | Х              | Х           |
| resonators $0.2(2)$ Comparison between measured and colorlated $\Gamma/M$ | v | v              | V           |
| admittance spectra                                                        | Λ | Λ              | Λ           |
| 9 3 Circular PWAS resonators                                              | X | X              | X           |
| 9 3 1 Mechanical response                                                 |   | X              | X           |
| 9 3 1 1 Displacement solution                                             |   | X              | X           |
| 9 3 1 2 Edge displacement                                                 |   | X              | X           |
| 9.3.2 Electrical response                                                 |   | X              | X           |
| 9.3.3 Resonances                                                          |   | X              | X           |
| 9.3.3.1 Mechanical resonances                                             |   | X              | X           |
| 9.3.3.2 Electromechanical resonances                                      |   | X              | X           |
| 9.3.4 Summary of E/M admittance and impedance formulae for                | Х | X              | X           |
| circular PWAS                                                             |   |                |             |
| 9.3.4.1 Radial vibration E/M admittance and impedance formulae            | Х | Х              | X           |
| 9.3.4.2 Thickness vibration E/M admittance and impedance                  |   | Х              | Х           |
| formulae                                                                  |   |                |             |
| 9.3.5 Experimental results                                                | Х | Х              | Х           |
| 9.4 Coupled-field analysis of PWAS resonators                             |   | Х              | Х           |
| 9.4.1 Coupled-field FEM analysis of rectangular PWAS resonators           |   | Х              | Х           |

| 9.4.2 Coupled-field FEM analysis of circular PWAS resonators                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            | Х                                                                                           | Х                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| 9.5 Constrained PWAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            | Х                                                                                           | Х                                                                                           |
| 9.5.1 1-D analysis of a constrained PWAS resonators                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            | Х                                                                                           | Х                                                                                           |
| 9.5.1.1 Mechanical response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | Х                                                                                           | Х                                                                                           |
| 9.5.1.2 Electrical response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | Х                                                                                           | Х                                                                                           |
| 9.5.1.3 Asymptotic behavior                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | Х                                                                                           | Х                                                                                           |
| 9.5.1.3.1 Free PWAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Х                          | Х                                                                                           | Х                                                                                           |
| 9.5.1.3.2 Fully constrained (blocked) PWAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            | Х                                                                                           | Х                                                                                           |
| 9.5.1.3.3 Constrained PWAS under quasi-static conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            | Х                                                                                           | Х                                                                                           |
| 9.5.1.4 Damping effects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            | Х                                                                                           | Х                                                                                           |
| 9.5.1.5 Resonances                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            | Х                                                                                           | Х                                                                                           |
| 9.5.2 2-D analysis of a constrained circular PWAS Resonators                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            | Х                                                                                           | Х                                                                                           |
| 9.5.2.1 Mechanical response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | Х                                                                                           | Х                                                                                           |
| 9.5.2.2 Electrical response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | Х                                                                                           | Х                                                                                           |
| 9.5.2.3 Asymptotic behavior                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | Х                                                                                           | Х                                                                                           |
| 9.5.2.3.1 Free PWAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            | Х                                                                                           | Х                                                                                           |
| 9.5.2.3.2 Fully constrained (blocked) PWAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            | Х                                                                                           | Х                                                                                           |
| 9.5.2.3.3 Constrained PWAS under quasi-static conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            | Х                                                                                           | Х                                                                                           |
| 9.5.2.4 Damping effects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            | Х                                                                                           | Х                                                                                           |
| 9.6 Summary and conclusions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Х                          | Х                                                                                           | Х                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            |                                                                                             |                                                                                             |
| Chapter 10: High-frequency vibration SHM with PWAS modal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |                                                                                             |                                                                                             |
| sensors – the electromechanical impedance<br>method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            |                                                                                             |                                                                                             |
| sensors – the electromechanical impedance<br>method<br>10.1 Introduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | X                          | X                                                                                           | X                                                                                           |
| sensors – the electromechanical impedance<br>method<br>10.1 Introduction<br>10.1.1 Origins of the E/M impedance method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | X<br>X                     | X<br>X                                                                                      | X<br>X                                                                                      |
| sensors – the electromechanical impedance<br>method<br>10.1 Introduction<br>10.1.1 Origins of the E/M impedance method<br>10.1.1.1 Mechanical impedance method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | X<br>X<br>X                | X<br>X<br>X                                                                                 | X<br>X<br>X<br>X                                                                            |
| sensors – the electromechanical impedance<br>method<br>10.1 Introduction<br>10.1.1 Origins of the E/M impedance method<br>10.1.1.1 Mechanical impedance method<br>10.1.1.2 Conventional modal analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | X<br>X<br>X<br>X<br>X      | X<br>X<br>X<br>X                                                                            | X<br>X<br>X<br>X                                                                            |
| sensors – the electromechanical impedance<br>method<br>10.1 Introduction<br>10.1.1 Origins of the E/M impedance method<br>10.1.1.1 Mechanical impedance method<br>10.1.1.2 Conventional modal analysis<br>10.1.2 Genesis of the E/M impedance method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | X<br>X<br>X<br>X<br>X<br>X | X<br>X<br>X<br>X<br>X<br>X                                                                  | X<br>X<br>X<br>X<br>X<br>X                                                                  |
| sensors       –       the electromechanical impedance         10.1 Introduction       10.1 Introduction         10.1.1 Origins of the E/M impedance method       10.1.1.1 Mechanical impedance method         10.1.1.2 Conventional modal analysis       10.1.2 Genesis of the E/M impedance method         10.1.3 Challenges associated with modeling the E/M impedance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | X<br>X<br>X<br>X<br>X<br>X | X<br>X<br>X<br>X<br>X<br>X<br>X<br>X                                                        | X<br>X<br>X<br>X<br>X<br>X<br>X<br>X                                                        |
| sensors       –       the electromechanical impedance         10.1 Introduction       10.1.1 Origins of the E/M impedance method       10.1.1.1 Mechanical impedance method         10.1.1.2 Conventional modal analysis       10.1.2 Genesis of the E/M impedance method       10.1.3 Challenges associated with modeling the E/M impedance method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | X<br>X<br>X<br>X<br>X      | X<br>X<br>X<br>X<br>X<br>X<br>X                                                             | X<br>X<br>X<br>X<br>X<br>X<br>X                                                             |
| sensors       –       the electromechanical impedance<br>method         10.1 Introduction         10.1.1 Origins of the E/M impedance method         10.1.1.1 Mechanical impedance method         10.1.2 Conventional modal analysis         10.1.2 Genesis of the E/M impedance method         10.1.3 Challenges associated with modeling the E/M impedance<br>method         10.2 1-D PWAS modal sensors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | X<br>X<br>X<br>X<br>X      | X<br>X<br>X<br>X<br>X<br>X<br>X<br>X                                                        | X<br>X<br>X<br>X<br>X<br>X<br>X<br>X                                                        |
| sensors       –       the electromechanical impedance<br>method         10.1 Introduction         10.1.1 Origins of the E/M impedance method         10.1.1.1 Mechanical impedance method         10.1.2 Conventional modal analysis         10.1.2 Genesis of the E/M impedance method         10.1.3 Challenges associated with modeling the E/M impedance<br>method         10.2 1-D PWAS modal sensors         10.2.1 Analysis of PWAS transducer mounted on a beam structure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | X<br>X<br>X<br>X<br>X      | X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X                                              | X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X                                              |
| sensors       –       the electromechanical impedance<br>method         10.1 Introduction         10.1.1 Origins of the E/M impedance method         10.1.1.1 Mechanical impedance method         10.1.2 Conventional modal analysis         10.1.2 Genesis of the E/M impedance method         10.1.3 Challenges associated with modeling the E/M impedance<br>method         10.2 1-D PWAS modal sensors         10.2.1 Analysis of PWAS transducer mounted on a beam structure         10.2.2 Dynamics of the beam structural interacting with the PWAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | X<br>X<br>X<br>X<br>X      | X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X                                         | X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X                                    |
| sensors – the electromechanical impedance<br>method<br>10.1 Introduction<br>10.1.1 Origins of the E/M impedance method<br>10.1.1.1 Mechanical impedance method<br>10.1.2 Conventional modal analysis<br>10.1.2 Genesis of the E/M impedance method<br>10.1.3 Challenges associated with modeling the E/M impedance<br>method<br>10.2 1-D PWAS modal sensors<br>10.2.1 Analysis of PWAS transducer mounted on a beam structure<br>10.2.2 Dynamics of the beam structural interacting with the PWAS<br>transducer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | X<br>X<br>X<br>X<br>X      | X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X                                    | X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X                                    |
| sensors       –       the electromechanical impedance<br>method         10.1 Introduction         10.1.1 Origins of the E/M impedance method         10.1.1.1 Mechanical impedance method         10.1.2 Conventional modal analysis         10.1.2 Genesis of the E/M impedance method         10.1.3 Challenges associated with modeling the E/M impedance<br>method         10.2 1-D PWAS modal sensors         10.2.1 Analysis of PWAS transducer mounted on a beam structure         10.2.2 Dynamics of the beam structural interacting with the PWAS<br>transducer         10.2.2.1 Definition of the excitation forces and moments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | X<br>X<br>X<br>X<br>X      | X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X                                    | X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X                                    |
| sensors       –       the electromechanical impedance<br>method         10.1 Introduction         10.1.1 Origins of the E/M impedance method         10.1.1.1 Mechanical impedance method         10.1.2 Conventional modal analysis         10.1.2 Genesis of the E/M impedance method         10.1.3 Challenges associated with modeling the E/M impedance<br>method         10.2 1-D PWAS modal sensors         10.2.1 Analysis of PWAS transducer mounted on a beam structure         10.2.2 Dynamics of the beam structural interacting with the PWAS<br>transducer         10.2.2.1 Definition of the excitation forces and moments         10.2.2.2 Axial vibrations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X<br>X<br>X<br>X<br>X      | X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X                               | X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X                          |
| sensors – the electromechanical impedance<br>method<br>10.1 Introduction<br>10.1.1 Origins of the E/M impedance method<br>10.1.1.1 Mechanical impedance method<br>10.1.2 Conventional modal analysis<br>10.1.2 Genesis of the E/M impedance method<br>10.1.3 Challenges associated with modeling the E/M impedance<br>method<br>10.2 1-D PWAS modal sensors<br>10.2.1 Analysis of PWAS transducer mounted on a beam structure<br>10.2.2 Dynamics of the beam structural interacting with the PWAS<br>transducer<br>10.2.2.1 Definition of the excitation forces and moments<br>10.2.2.2 Axial vibrations<br>10.2.2.3 Flexural vibrations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | X<br>X<br>X<br>X<br>X      | X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X                     | X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X                |
| sensors-theelectromechanicalimpedance10.1Introduction10.1.1Origins of the E/M impedance method10.1.1Mechanical impedance method10.1.1.2Conventional modal analysis10.1.2Genesis of the E/M impedance method10.1.3Challenges associated with modeling the E/M impedancemethodIo.210.21-D PWAS modal sensors10.2.1Analysis of PWAS transducer mounted on a beam structure10.2.2Dynamics of the beam structural interacting with the PWAS<br>transducer10.2.2.1Definition of the excitation forces and moments10.2.2.3Flexural vibrations10.2.2.3Flexural vibrations10.2.3Dynamical structural stiffness of the beam substrate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X<br>X<br>X<br>X<br>X      | X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X           | X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X           |
| sensors       –       the electromechanical impedance<br>method         10.1 Introduction         10.1.1 Origins of the E/M impedance method         10.1.1.1 Mechanical impedance method         10.1.2 Conventional modal analysis         10.1.2 Genesis of the E/M impedance method         10.1.3 Challenges associated with modeling the E/M impedance<br>method         10.2 1-D PWAS modal sensors         10.2.1 Analysis of PWAS transducer mounted on a beam structure         10.2.2 Dynamics of the beam structural interacting with the PWAS<br>transducer         10.2.2.1 Definition of the excitation forces and moments         10.2.2.3 Flexural vibrations         10.2.3 Dynamical structural stiffness of the beam substrate         10.2.4 Electromechanical impedance of the a PWAS mounted on a<br>beam structure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | X<br>X<br>X<br>X<br>X<br>X | X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X      | X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X      |
| sensors       –       the electromechanical impedance<br>method         10.1 Introduction         10.1.1 Origins of the E/M impedance method         10.1.1.1 Mechanical impedance method         10.1.2 Conventional modal analysis         10.1.2 Genesis of the E/M impedance method         10.1.3 Challenges associated with modeling the E/M impedance<br>method         10.2 1-D PWAS modal sensors         10.2.1 Analysis of PWAS transducer mounted on a beam structure         10.2.2 Dynamics of the beam structural interacting with the PWAS<br>transducer         10.2.2.1 Definition of the excitation forces and moments         10.2.2.3 Flexural vibrations         10.2.3 Dynamical structural stiffness of the beam substrate         10.2.4 Electromechanical impedance of the a PWAS mounted on a<br>beam structure         10.2.5 Relation between frequency response function E/M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            | X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X | X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X |
| sensors       –       the electromechanical impedance<br>method         10.1 Introduction         10.1.1 Origins of the E/M impedance method         10.1.1.1 Mechanical impedance method         10.1.2 Conventional modal analysis         10.1.2 Genesis of the E/M impedance method         10.1.3 Challenges associated with modeling the E/M impedance<br>method         10.2 1-D PWAS modal sensors         10.2.1 Analysis of PWAS transducer mounted on a beam structure         10.2.2 Dynamics of the beam structural interacting with the PWAS<br>transducer         10.2.2.1 Definition of the excitation forces and moments         10.2.2.3 Flexural vibrations         10.2.3 Dynamical structural stiffness of the beam substrate         10.2.4 Electromechanical impedance of the a PWAS mounted on a<br>beam structure         10.2.5 Relation between frequency response function, E/M<br>admittance, and E/M impedance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            | X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X | X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X |
| sensors         –         the         electromechanical         impedance           10.1         Introduction         10.1         10.1         10.1         10.1         10.1         10.1         10.1         10.1         10.1         10.1         10.1         10.1         10.1         10.1         10.1         10.1         10.1         10.1         10.1         10.1         10.1         10.1         10.1         10.1         10.1         10.1         10.1         10.1         10.1         10.1         10.1         10.1         10.1         10.1         10.1         10.1         10.1         10.1         10.1         10.1         10.1         10.1         10.1         10.1         10.1         10.1         10.1         10.1         10.1         10.1         10.1         10.1         10.1         10.1         10.1         10.1         10.1         10.1         10.1         10.1         10.1         10.1         10.1         10.1         10.1         10.1         10.1         10.1         10.1         10.1         10.1         10.1         10.1         10.1         10.1         10.1         10.1         10.1         10.1         10.1         10.1         10.1         10.1 <td< td=""><td>X<br/>X<br/>X<br/>X<br/>X<br/>X</td><td>X<br/>X<br/>X<br/>X<br/>X<br/>X<br/>X<br/>X<br/>X<br/>X<br/>X<br/>X<br/>X<br/>X<br/>X<br/>X<br/>X<br/>X<br/>X</td><td>X<br/>X<br/>X<br/>X<br/>X<br/>X<br/>X<br/>X<br/>X<br/>X<br/>X<br/>X<br/>X<br/>X<br/>X<br/>X<br/>X<br/>X<br/>X</td></td<> | X<br>X<br>X<br>X<br>X<br>X | X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X | X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X |

| 10.2.8 Noninvasive characteristics of the PWAS modal sensors          | Х | Х | Х |
|-----------------------------------------------------------------------|---|---|---|
| 10.2.6 PWAS self-diagnostics                                          | Х | Х | Х |
| 10.2.9 Typical applications of PWAS modal sensors                     | Х | Х | Х |
| 10.3 2-D Circular PWAS modal sensors                                  | Х | Х | Х |
| 10.3.1 Interaction between a circular PWAS and a circular plate       |   | Х | Х |
| 10.3.2 Dynamics of a circular plate interacting with a PWAS           |   | Х | Х |
| transducer                                                            |   |   |   |
| 10.3.2.1 Axial vibration                                              |   | Х | Х |
| 10.3.2.2 Flexural vibration                                           |   | Х | Х |
| 10.3.3 Dynamical structural stiffness of the circular plate substrate |   | Х | Х |
| 10.3.4 Electromechanical impedance of a PWAS mounted on a             |   | Х | Х |
| circular plate                                                        |   |   |   |
| 10.3.5 Numerical simulations and experimental results                 | Х | X | Х |
| 10.4 Damage detection with PWAS modal sensors                         | Х | X | Х |
| 10.4.1 Detection of damage propagation in spot-welded joints          | Х | Х | Х |
| 10.4.1.1 Instrumentation of the specimen                              | Х | X | Х |
| 10.4.1.2 Fatigue loading and damage generation                        | Х | X | Х |
| 10.4.1.3 E/M impedance results                                        | Х | Х | Х |
| 10.4.1.4 Explanation of the damage progression in the spot-welded     |   | Х | Х |
| joint                                                                 |   |   |   |
| 10.4.2 Damage detection in bonded joints                              | Х | X | Х |
| 10.4.2.1 Bonded-plate rectangular specimens                           | Х | Х | Х |
| 10.4.2.2 Space-structure panels disbond detection with E/M            | Х | Х | Х |
| impedance method                                                      |   |   |   |
| 10.4.2.3 Adhesively-bonded rotor blade structure                      | Х | X | Х |
| 10.4.3 Disbond detection in civil engineering composite overlays      | Х | X | Х |
| 10.4.3.1 SHM of civil engineering structures with composite           | Х | Х | Х |
| overlays                                                              |   |   |   |
| 10.4.3.2 Coupon tests                                                 | Х | Х | Х |
| 10.4.3.3 E/M impedance spectroscopy of the test coupons               | Х | X | Х |
| 10.4.3.4 Large scale tests                                            | Х | X | Х |
| 10.4.3.4.1 PWAS installation and monitoring                           |   |   |   |
| 10.4.3.4.2 E/M impedance spectroscopy for the large-scale test        |   |   |   |
| 10.4.3.5 Section summary                                              | Х | X | Х |
| 10.5 Coupled-field FEM analysis of PWAS modal sensors                 |   | X | Х |
| 10.5.1 Mechanical FEM analysis of the interaction between a beam      |   | Х | Х |
| structure and a PWAS transducer                                       |   |   |   |
| 10.5.2 Coupled-field FEM analysis of the interaction between a        |   | Х | Х |
| beam structure and a PWAS transducer                                  |   |   |   |
| 10.5.3 Section summary                                                |   | X | X |
| 10.6 Summary and conclusions                                          | Х | X | Х |
|                                                                       |   |   |   |
| Chapter 11: Wave tuning with piezoelectric wafer active sensors       |   |   |   |
| 11.1 Introduction                                                     | Х | X | X |
| 11.2 Axial wave tuning with PWAS transducers                          |   | X | Х |

| 11.2.1 Axial solution in the Fourier wavenumber domain              |   | Х | Х |
|---------------------------------------------------------------------|---|---|---|
| 11.2.2 Axial solution in the physical domain by residue theorem     |   | Х | Х |
| 11.2.3 Axial solution for an ideally bonded PWAS                    |   | Х | Х |
| 11.3 Flexural wave tuning with PWAS transducers                     |   | Х | Х |
| 11.3.1 Flexural solution in the Fourier wavenumber domain           |   | Х | Х |
| 11.3.2 Flexural solution in the physical domain by residue theorem  |   | Х | Х |
| 11.3.3 Flexural solution for an ideally bonded PWAS                 |   | Х | Х |
| 11.4 Lamb waves tuning with 1-D PWAS transducers                    |   |   | Х |
| 11.4.1 Lamb waves response to nonuniform boundary shear-stress      |   |   | Х |
| 11.4.2 Lamb-waves solution in the Fourier wavenumber domain         |   |   | Х |
| 11.4.2.1 Symmetric solution                                         |   |   | Х |
| 11.4.2.2 Antisymmetric solution                                     |   |   | Х |
| 11.4.2.3 Complete solution in the wavenumber domain                 |   |   | Х |
| 11.4.3 Lamb-waves solution in the physical domain by residue        |   |   | Х |
| theorem                                                             |   |   |   |
| 11.4.4 Lamb-waves behavior at low frequencies                       |   |   | Х |
| 11.4.5 Ideal-bonding solution for Lamb-waves tuning                 |   |   | Х |
| 11.5 Lamb-waves tuning with circular PWAS transducers               |   |   | Х |
| 11.5.1 Lamb-waves interaction with circular PWAS transducers        |   |   | Х |
| 11.5.2 Circular Lamb-waves solution in the Fourier wavenumber       |   |   | Х |
| domain                                                              |   |   |   |
| 11.5.2.1 Symmetric solution                                         |   |   | Х |
| 11.5.2.2 Antisymmetric solution                                     |   |   | Х |
| 11.5.2.3 Complete solution in the wavenumber domain                 |   |   | Х |
| 11.5.3 Circular Lamb-waves solution in the physical domain by       |   |   | Х |
| residue theorem                                                     |   |   |   |
| 11.5.4 Ideal-bonding solution for circular Lamb waves tuning        |   |   | Х |
| 11.6 Hankel transform for circular PWAS tuning analysis             |   |   | Х |
| 11.6.1 Hankel transform of Helmholtz equations                      |   |   | Х |
| 11.6.2 Hankel transform of displacement $u_r$                       |   |   | Х |
| 11.6.3 Hankel transform of stresses $\sigma_{zz}$ and $\sigma_{rz}$ |   |   | Х |
| 11.6.4 Contour unfolding method                                     |   |   | Х |
| 11.6.5 Even function property of $g(\xi)$ used in the evaluation of |   |   | Х |
| $u_r(r)$                                                            |   |   |   |
| 11.7 Experimental validation of PWAS Lamb-waves tuning              |   |   | Х |
| 11.7.1 Initial Lamb mode tuning results                             |   |   | Х |
| 11.7.2 Thin-plate experiments with square and circular PWAS         | Х | Х | Х |
| 11.7.2.1 Square PWAS tuning results on thin plates                  | Х | Х | Х |
| 11.7.2.2 Round PWAS tuning results on thin plates                   | Х | Х | Х |
| 11.7.3 Thick-plate tuning experiments with square and circular      |   | Х | Х |
| PWAS                                                                |   |   |   |
| 11.7.3.1 Square PWAS tuning results on thick plates                 |   | Х | Х |
| 11.7.3.2 Round PWAS tuning results on thick plates                  |   | Х | Х |
| 11.7.3.3 Thick plate effects                                        |   | Х | Х |

| 11.7.4 Section summary                                           | Х | Х | Х |
|------------------------------------------------------------------|---|---|---|
| 11.8 Directivity of rectangular PWAS                             | Х | Х | Х |
| 11.8.1 Experimental setup for rectangular PWAS Lamb-wave tuning  | Х | Х | Х |
| 11.8.2 Directivity tuning studies with rectangular PWAS          | Х | Х | Х |
| 11.8.3 Section summary                                           | Х | Х | Х |
| 11.9 Summary and conclusions                                     | Х | Х | Х |
|                                                                  |   |   |   |
|                                                                  |   |   |   |
| Chapter 12: Wave propagation SHM with PWAS Transducers           |   |   |   |
| 12.1 Introduction                                                | Х | Х | Х |
| 12.1.1 Ultrasonic NDE                                            | Х | Х | Х |
| 12.1.1.1 Guided wave methods for NDE and damage detection        |   | Х | Х |
| 12.1.1.2 Guided Lamb waves scattering from a structural defect   |   | Х | Х |
| 12.1.1.3 Modeling of Lamb-wave scatter from a structural defect  |   |   | Х |
| 12.1.1.3.1 Analytical methods                                    |   |   | Х |
| 12.1.1.3.2 Numerical methods                                     |   |   | Х |
| 12.1.1.4 Disbonds and delamination detection with conventional   |   | Х | Х |
| ultrasonic methods                                               |   |   |   |
| 12.1.1.5 Lamb-wave damage detection in pipers, tubes, and cables |   | Х | Х |
| 12.1.2 Structural health monitoring and embedded ultrasonic NDE  | Х | Х | Х |
| 12.2 1D Modeling and experiments                                 | Х | Х | Х |
| 12.2.1 Description of 1D strip specimen                          | Х | Х | Х |
| 12.2.2 Conventional FEM analysis of wave propagation in a strip  |   | Х | Х |
| specimen                                                         |   |   |   |
| 12.2.2.1 Excitation signal                                       | Х | Х | Х |
| 12.2.2.2 Simulation of axial waves                               |   | Х | Х |
| 12.2.2.3 Simulation of flexural waves                            |   | Х | Х |
| 12.2.2.4 Comparison between axial and flexural wave simulation   |   | Х | Х |
| results                                                          |   |   |   |
| 12.2.2.5 The importance of high frequency excitation             |   | X | X |
| 12.2.3 Coupled-field FEM analysis of wave propagation            |   | Х | X |
| 12.2.4 Experiments with PWAS wave in a strip specimen            | Х | Х | Х |
| 12.2.5 PWAS Rayleigh waves generation in rail tracks             | X | Х | X |
| 12.2.6 Section summary                                           | X | Х | X |
| 12.3 2D PWAS wave propagation experiments                        | X | Х | X |
| 12.3.1 Experimental setup for 2-D wave propagation               | Х | Х | Х |
| 12.3.2 2D Pitch-catch PWAS experiments                           | Х | Х | Х |
| 12.3.3 2D Pulse-echo PWAS experimental results                   | Х | Х | Х |
| 12.3.3.1 Wave reflection signals captured by PWAS                | Х | Х | Х |
| 12.3.3.2 Pulse-echo reflections analysis                         | Х | Х | Х |
| 12.4 Embedded pitch-catch ultrasonics with PWAS transducers      | Х | Х | Х |
| 12.4.1 The concept of pitch-catch embedded ultrasonics with PWAS | Х | Х | Х |
| transducers                                                      |   |   |   |
| 12.4.2 Embedded pitch-catch ultrasonics for crack detection in   | Х | Х | Х |
| metallic structures                                              |   |   |   |

| 12.4.3 Embedded pitch-catch ultrasonics for disbond detection         |    | Х | Х        |
|-----------------------------------------------------------------------|----|---|----------|
| 12.5 Embedded pulse-echo ultrasonics with PWAS transducers            | Х  | Х | Х        |
| 12.5.1 Embedded pulse-echo crack detection in aluminum beams          | Х  | X | Х        |
| 12.5.2 Embedded pulse-echo crack detection in composite beams         |    | X | Х        |
| 12.6 P WAS time-reversal method                                       |    | X | Х        |
| 12.6.1 Theory of PWAS Lamb wave time reversal                         |    |   | Х        |
| 12.6.1.1 Time reversal concept                                        |    |   | Х        |
| 12.6.1.2 Time reversal of Lamb waves                                  |    |   | Х        |
| 12.6.1.3 Lamb wave excitation signal                                  |    |   | Х        |
| 12.6.2 Modeling of PWAS Lamb wave time reversal                       |    |   | Х        |
| 12.6.2.1 Time-reversal simulation for two-mode Lamb waves (A0 and S0) |    |   | Х        |
| 12.6.2.2 Time-reversal simulation for single-mode Lamb waves          |    |   | Х        |
| 12.6.3 Numerical and experimental validation of Lamb wave time        |    |   | Х        |
| reversal                                                              |    |   |          |
| 12.6.3.1 Experimental setup                                           |    | X | Х        |
| 12.6.3.2 PWAS mode tuning on specimens                                |    | X | Х        |
| 12.6.3.3 PWAS Lamb wave time reversal results                         |    | X | Х        |
| 12.6.3.4 Time reversal of A0 mode Lamb wave                           |    |   | Х        |
| 12.6.3.5 Time reversal of S0 mode Lamb wave                           |    |   | Х        |
| 12.6.3.6 Time reversal of S0+A0 mode Lamb wave                        |    |   | Х        |
| 12.6.3.7 Time invariance of Lamb wave time reversal                   |    |   | Х        |
| 12.6.4 PWAS tuning effects on multi-mode Lamb waves time              |    |   | Х        |
| 12.6.5 Section summary                                                |    | X | X        |
| 12.7 Migration technique                                              |    |   | 21       |
| 12.8 PWAS passive transducers of acoustic waves                       | X  | X | X        |
| 12.8.1 Impact detection with PWAS transducers                         | X  | X | X        |
| 12.8.2 Acoustic emission detection with PWAS transducers              | X  | X | X        |
| 12.9 Summary and conclusions                                          | X  | X | X        |
|                                                                       |    |   | 21       |
| Chapter 13: In-situ phased arrays with piezoelectric wafer active     |    |   |          |
| Sensors                                                               | 17 | v | 17       |
| 13.1 Introduction                                                     | X  | X | X        |
| 13.2 Phased-arrays in conventional ultrasonic NDE                     | X  | X | X        |
| 13.2.1 Bulk-waves ultrasonic phased arrays                            | Х  | X | <u>X</u> |
| 13.2.2 Guided-waves ultrasonic phased arrays                          |    | X | <u>X</u> |
| 13.3 1D Linear PWAS phased arrays                                     |    | X | <u>X</u> |
| 13.3.1 Linear phased arrays principles                                |    | X | <u>X</u> |
| 13.3.1.1 Far-field parallel ray approximation                         |    | X | <u>X</u> |
| 13.3.1.2 Firing with time delays                                      |    | X | X        |
| 13.3.1.3 Transmitter beamforming                                      |    | X | X        |
| 13.3.1.4 Receiver beamforming                                         |    | X | X        |
| 13.3.1.5 Phased-array pulse-echo                                      |    | X | X        |
| 13.3.1.6 Damage detection with tuned PWAS phased arrays               |    | X | Х        |

| 13.3.2 Embedded-ultrasonic structural radar (EUSR)             | Х | Х |
|----------------------------------------------------------------|---|---|
| 13.3.2.1 The EUSR concept                                      | Х | Х |
| 13.3.2.2 Practical implementation of the EUSR algorithm        | Х | Х |
| 13.3.3 EUSR system design and experimental validation          | Х | Х |
| 13.3.3.1 Experimental setup                                    | Х | Х |
| 13.3.3.2 Implementation of the EUSR data processing algorithm  | Х | Х |
| 13.3.3.3 Experimental results                                  | Х | Х |
| 13.3.4 Section summary                                         | Х | Х |
| 13.4 Further experiments with linear PWAS arrays               | Х | Х |
| 13.4.1 EUSR detection studies                                  | Х | Х |
| 13.4.1.1 Single broadside pin-hole damage                      | Х | Х |
| 13.4.1.2 Horizontal broadside crack                            | Х | Х |
| 13.4.1.3 Sloped broadside crack                                | Х | Х |
| 13.4.1.4 Single horizontal offside crack                       | Х | Х |
| 13.4.1.5 Two horizontal offside cracks                         | Х | Х |
| 13.4.1.6 Three horizontal in-line cracks                       | Х | Х |
| 13.4.2 EUSR experiments on curved panels                       | Х | Х |
| 13.4.3 In-situ direct imaging of crack growth with PWAS phased | Х | Х |
| arrays                                                         |   |   |
| 13.4.3.1 Design of the experimental specimens                  | Х | Х |
| 13.4.3.2 Experimental results                                  | Х | Х |
| 13.4.4 Section summary                                         | Х | Х |
| 13.5 Optimization of PWAS phased-array beamforming             |   | Х |
| 13.5.1 Phased array beamforming issues                         |   | Х |
| 13.5.2 Parameterized beamforming formulae for 1-D linear PWAS  |   | Х |
| arrays                                                         |   |   |
| 13.5.3 Uniform PWAS phased array studies                       |   | Х |
| 13.5.3.1 Effect of $r/d$ ratio                                 |   | Х |
| 13.5.3.2 Effect of $d/\lambda$ ratio                           |   | Х |
| 13.5.3.3 Effect of number M of PWAS in the array               |   | Х |
| 13.5.3.4 Effect of steering angle $\phi_0$                     |   | Х |
| 13.5.4 Nonuniform PWAS phased array                            |   | Х |
| 13.5.4.1 Binomial array                                        |   | Х |
| 13.5.4.2 Dolph-Chebyshev array                                 |   | Х |
| 13.5.4.3 Experiments with weighted EUSR for nonuniform arrays  |   | Х |
| 13.5.5 Section summary                                         | Х | Х |
| 13.6 Generic PWAS phased-array formulation                     |   | Х |
| 13.6.1 Phased-array processing concepts                        |   | Х |
| 13.6.1.1 Wave propagation assumptions                          |   | Х |
| 13.6.1.2 Array summing effects                                 |   | Х |
| 13.6.2 Delay-and-sum beamforming                               |   | Х |
| 13.6.2.1 Generic delay-and-sum formulation                     |   | Х |
| 13.6.2.2 Far field and near field                              |   | Х |
| 13.6.3 Beamforming formulae for 2-D PWAS phased array          |   | Х |

| 13.6.3.1 Near-field: exact traveling path analysis (triangular       |   |   | Х |
|----------------------------------------------------------------------|---|---|---|
| algorithm)                                                           |   |   |   |
| 13.6.3.2 Far field: parallel rays approximation (parallel algorithm) |   |   | Х |
| 13.7 2D planar PWAS phased array studies                             |   |   | Х |
| 13.7.1 Motivation and background                                     |   |   | Х |
| 13.7.2 Cross-shaped array                                            |   |   | Х |
| 13.7.3 Rectangular grid array                                        |   |   | Х |
| 13.7.4 Rectangular fence array                                       |   |   | Х |
| 13.7.5 Circular grid array                                           |   |   | Х |
| 13.7.6 Circular ring array                                           |   |   | Х |
| 13.7.7 Section summary                                               |   |   | Х |
| 13.8 The 2D embedded ultrasonic structural radar (2D-EUSR)           |   |   | Х |
| 13.8.1 EUSR algorithm for 2-D $N \times M$ rectangular arrays        |   |   | Х |
| 13.8.2 Development of simulation data for testing the 2D-EUSR        |   |   | Х |
| algorithm                                                            |   |   |   |
| 13.8.3 Generation of flipped crack data through index manipulation   |   |   | Х |
| 13.8.4 Testing of 2D-EUSR algorithm on simulated data                |   |   | Х |
| 13.9 Damage detection experiments using rectangular PWAS array       |   |   | Х |
| 13.9.1 Damage detection experiments using a 4×8 PWAS array           |   |   | Х |
| 13.9.2 Discussion of 2D-EUSR imaging results with a 4×8 PWAS         |   |   | Х |
| array                                                                |   |   |   |
| 13.9.3 Detection of offside cracks with 4×8 PWAS array               |   |   | Х |
| 13.9.4 Damage detection with an 8×8 PWAS array                       |   |   | Х |
| 13.9.4.1 Theoretical beamforming of 8×8 PWAS array                   |   |   | Х |
| 13.9.4.2 Experimental damage detection with an 8×8 PWAS array        |   |   | Х |
| 13.9.4.3 2D-EUSR mapped images                                       |   |   | Х |
| 13.10 Phased array analysis using Fourier transform                  |   |   | Х |
| 13.10.1 Spatial-frequency analysis                                   |   |   | Х |
| 13.10.1.1 Fourier transform                                          |   |   | Х |
| 13.10.1.2 Multidimensional Fourier transform: wavenumber-            |   |   | Х |
| frequency domain                                                     |   |   |   |
| 13.10.1.3 Space-frequency transform of a single-mode plane wave      |   |   | Х |
| 13.10.1.4 Filtering in the wavenumber-frequency space                |   |   | X |
| 13.10.2 Apertures and arrays                                         |   |   | X |
| 13.10.2.1 Continuous finite apertures                                |   |   | Х |
| 13.10.2.2 1-D linear aperture                                        |   |   | X |
| 13.10.2.3 Spatial sampling                                           |   |   | Х |
| 13.10.2.4 Arrays and the sampled finite continuous apertures         |   |   | X |
| 13.10.2.5 Properties of 1-D linear array of <i>M</i> elements        |   |   | Х |
| 13.10.2.6 Grating lobes                                              |   |   | Х |
| 13.11 Summary and conclusions                                        | Х | X | Х |

| Chapter 14: Signal processing and pattern recognition for             |   |   |   |
|-----------------------------------------------------------------------|---|---|---|
| structural health monitoring with PWAS                                |   |   |   |
| transducers                                                           |   |   |   |
| 14.1 Introduction                                                     | Х | Х | Х |
| 14.2 Damage identification concepts and approaches                    | Х | Х | Х |
| 14.2.1 Damage metrics                                                 |   | Х | Х |
| 14.2.2 Damage detection based on spectral features                    |   | Х | Х |
| 14.2.3 Statistical methods for damage detection                       |   | Х | Х |
| 14.2.4 Pattern-recognition methods for damage identification          |   | Х | Х |
| 14.2.5 Neural net methods for damage identification                   |   | Х | Х |
| 14.3 From Fourier transform to short time Fourier transform           |   | Х | Х |
| 14.3.1 Short-time Fourier transform and the spectrogram               |   | Х | Х |
| 14.3.2 Uncertainty principle in short-time Fourier transform          |   | Х | Х |
| 14.3.3 Window functions for short-time Fourier transform              |   | Х | Х |
| 14.3.4 Time-frequency analysis by short-time Fourier transform        |   | Х | Х |
| 14.3.5 The short-frequency inverse Fourier transform                  |   | Х | Х |
| 14.4 Wavelet analysis                                                 |   | Х | Х |
| 14.4.1 Time frequency analysis with continuous wavelet transform      |   | Х | Х |
| 14.4.1.1 Mathematical development of continuous wavelet transform     |   |   | Х |
| 14.4.1.2 Mother wavelets                                              |   |   | Х |
| 14.4.1.3 The time-frequency resolution of CWT                         |   |   | Х |
| 14.4.1.4 Implementation of the CWT and comparison with STFT           |   | Х | Х |
| 14.4.2 Discrete wavelet transform and multiresolution analysis        |   |   | Х |
| 14.4.2.1 Discrete wavelet transform (DWT)                             |   | Х | Х |
| 14.4.2.2 Practical implementation of DWT algorithm                    |   |   | Х |
| 14.4.3 Denoising using digital filters and discrete wavelet transform |   | Х | Х |
| 14.4.3.1 Digital filters                                              |   | Х | Х |
| 14.4.3.2 Denoising using digital filters                              |   | Х | Х |
| 14.4.3.3 Denoising using DWT                                          |   | Х | Х |
| 14.5 Neural nets                                                      |   |   | Х |
| 14.5.1 Introduction to neural nets                                    |   |   | Х |
| 14.5.2 Typical neural nets                                            |   |   | Х |
| 14.5.3 Training of neural nets                                        |   |   | Х |
| 14.5.4 Probabilistic neural nets                                      |   |   | Х |
| 14.5.4.1 Choice of input data                                         |   |   | Х |
| 14.5.4.2 Normalization of input data                                  |   |   | Х |
| 14.5.5.3 Choice of training data                                      |   |   | Х |
| 14.5.4.4 Choice of spread constant                                    |   |   | Х |
| 14.6 Features extraction                                              |   |   | Х |
| 14.6.1 Features extraction algorithms                                 |   |   | Х |
| 14.6.2 Adaptive resizing of the features vector                       |   |   | Х |
| 14.6.3 Adaptive damage detectors and classifiers                      |   |   | Х |
| 14.7 Algorithm for PWAS damage detection with the E/M                 |   |   |   |
| impedance method                                                      |   |   |   |
| 14.8 Summary and conclusions                                          | Х | Х | Х |

| Chapter 15: Case Studies of Multi-method SHM with PWAS                    |                                                                     |   |
|---------------------------------------------------------------------------|---------------------------------------------------------------------|---|
| transducers: damage ID in experimental signals                            |                                                                     |   |
| 15.1 Introduction X                                                       | X X                                                                 | Х |
| 15.2 Case study 1: Damage detection with E/M impedance on circular plates | X                                                                   | Х |
| 15.2.1 Experimental setup and data collection                             | X                                                                   | X |
| 15.2.1.1 Circular plate specimens with simulated crack damage             |                                                                     | X |
| 15.2.1.2 Instrumentation for E/M immedance measurements                   |                                                                     |   |
| 15.2.1.3 E/M impedance spectra for circular plates with crack             |                                                                     |   |
| damage                                                                    | 1                                                                   | Λ |
| 15.2.1.4 Effect of damage intensity on E/M impedance spectra              | X                                                                   | Х |
| 15.2.1.5 Effect of higher frequency on E/M impedance data                 |                                                                     | Х |
| 15.2.1.6 Extraction of features from E/M impedance data                   |                                                                     | Х |
| 15.2.1.7 Effect of temperature on E/M impedance data                      |                                                                     | Х |
| 15.2.2 Damage detection with damage metrics                               | X                                                                   | Х |
| 15.2.3 Damage detection with statistical methods                          | X                                                                   | Х |
| 15.2.3.1 Inherent statistical variation in the E/M impedance data         | X                                                                   | Х |
| 15.2.3.2 Damage detection using feature based statistics                  |                                                                     | Х |
| 15.2.3.3 The use of the t-test for damage identification                  |                                                                     | Х |
| 15.2.4 Damage detection with probabilistic neural nets                    |                                                                     | Х |
| 15.2.4.1 PNN with four inputs                                             | X                                                                   | Х |
| 15.2.4.2 PNN with six inputs                                              | X                                                                   | Х |
| 15.2.4.3 PNN with eleven inputs                                           | X                                                                   | Х |
| 15.2.5 Section summary X                                                  | XX                                                                  | Х |
| 15.3 Case study 2: damage detection in aging aircraft-like panels X       | X X                                                                 | Х |
| 15.3.1 Description of the aging aircraft-like panel specimens X           | X X                                                                 | Х |
| 15.3.2 Pulse-echo crack detection in aging aircraft-like panels X         | X X                                                                 | Х |
| 15.3.2.1 Pulse-echo PWAS signals reflected by structural features         | X                                                                   | Х |
| 15.3.2.2 Change in pulse-echo PWAS signal due to crack presence X         | X X                                                                 | Х |
| 15.3.2.3 Signal differential method for separation of damage-related      |                                                                     |   |
| 15.2.2 E/M impedance demage detection in aging aircraft like panels.      | v v                                                                 | v |
| 15.3.3 L/W Impedance damage detection in aging aneralt-like panels A      |                                                                     |   |
| 15.3.3.2 Damage metric classification in the PWAS medium field            |                                                                     |   |
| 15.3.3.2 Damage metric classification in the DWAS medium field and DWAS   |                                                                     |   |
| near field                                                                | Λ                                                                   | Λ |
| 15.2.4 Section summary                                                    | v v                                                                 | v |
| 15.4 Summary and conclusions                                              | $\begin{array}{c c} \Lambda \\ \hline V \\ \hline V \\ \end{array}$ |   |
| 13.4 Summary and conclusions                                              |                                                                     | Λ |
| Appendix A: Mathematical prerequisites                                    | X                                                                   | X |
| A.1 Fourier analysis                                                      | X                                                                   | X |
| A.1.1 Fourier series of periodic signal                                   | X                                                                   | X |
| A.1.2 Fourier transform of aperiodic signal                               | X                                                                   | X |
| A.1.3 Discrete time Fourier transform                                     | X                                                                   | X |
| A.1.3.1 N-point discrete Fourier transform                                | X                                                                   | X |

| A.1.3.2 Definition 1: from DTFT to DFT                            | Х | Х |
|-------------------------------------------------------------------|---|---|
| A.1.3.3 Definition 2: direct definition                           | Х | Х |
| A.1.4 Discrete Fourier transform analysis of pulse and sinusoid   | Х | Х |
| signals                                                           |   |   |
| A.1.4.1 DTFT of rectangular signal                                | Х | Х |
| A.1.4.2 DTFT and DFT of $q$ -point shifted rectangular signal     | Х | Х |
| x[n] = p[n-q]                                                     |   |   |
| A.1.4.3 DTFT of discrete cosine signal                            | Х | Х |
| A.1.4.4 <i>N</i> -point DFT of discrete cosine signal $x[n]$      | Х | Х |
| A.1.5 Investigation of DFT spectrum leakage                       | Х | Х |
| A.1.5.1 Case study of the leakage phenomenon                      | Х | Х |
| A.1.5.2 Discussion                                                | Х | Х |
| A.2 Sampling theory                                               | Х | Х |
| A.2.1 Impulse-train sampling                                      | Х | Х |
| A.2.2 The sampling theorem                                        | Х | Х |
| A.3 Convolution                                                   | Х | Х |
| A.3.1 Discrete time signal convolution                            | Х | Х |
| A.3.2 Continuous time convolution                                 | Х | Х |
| A.3.3 Properties of convolution                                   | Х | Х |
| A.4 Hilbert transform                                             | Х | Х |
| A.5 Correlation method                                            | Х | Х |
| A.6 Time averaged product of two harmonic variables               | Х | Х |
| A.7 Orthogonal properties of harmonic functions                   | Х | Х |
| A.8 Bessel and Hankel functions                                   |   | Х |
| A.8.1 Bessel functions                                            |   | Х |
| A.8.2 Hankel functions                                            |   | Х |
| A.8.3 Modified Bessel functions                                   |   | Х |
| A.8.4 Properties of Bessel and Hankel functions                   |   | Х |
| A.8.4.1 Properties of Bessel functions at the origin              |   | Х |
| A.8.4.2 Recurrence properties of Bessel and Hankel functions      |   | Х |
| A.8.4.3 Odd and even properties of $J_{\nu}$ Bessel functions     |   | Х |
| A.8.4.4 Differentiation properties of Bessel and Hankel functions |   | Х |
| A.8.4.5 Conversion, recurrence, and differentiation properties of |   | Х |
| modified Bessel functions                                         |   |   |
| A.8.5 Asymptotic behavior of Bessel and Hankel functions          |   | Х |
| A.8.5.1 Asymptotic behavior of Bessel functions                   |   | Х |
| A.8.5.2 Asymptotic behavior of Hankel functions                   |   | Х |
| A.8.6 Orthogonality of Bessel and Hankel functions                |   | Х |
| A.8.7 Normality of Bessel functions                               |   | Х |
| A.8.7.1 Norm of $J_{\nu}$                                         |   | Х |
| A.8.7.2 Norm of <i>J</i> <sub>0</sub>                             |   | Х |
| A.8.7.3 Norm of <i>J</i> <sub>1</sub>                             |   | Х |
| A.8.8 Hankel transform                                            |   | Х |

| A.9 Matrix and linear systems                                     | Х | Х | Х |
|-------------------------------------------------------------------|---|---|---|
| A.9.1 Inverse of a $2 \times 2$ matrix                            | Х | Х | Х |
| A.9.2 Solution of a 2×2 linear system                             | Х | Х | Х |
|                                                                   |   |   |   |
| Appendix B: Elasticity notations and equations                    |   |   |   |
| B.1 Basic notations                                               |   |   |   |
| B.1.1 Basic Cartesian vector notations and differential operators |   | Х | Х |
| B.1.2 Basic tensor notations                                      |   | Х | Х |
| B.2 3–D strain–displacement relations                             |   | Х | Х |
| B.2.1 Cartesian Notations                                         |   | Х | Х |
| B.2.2 Tensor notations                                            |   | Х | Х |
| B.3 Dilatation and rotation                                       |   |   | Х |
| B.3.1 Dilatation                                                  |   |   | Х |
| B.3.2 Rotation                                                    |   |   | Х |
| B.3.2.1 Cartesian notations                                       |   |   | Х |
| B.3.2.2 Tensor notations                                          |   |   | Х |
| B.3.2.3 Vector notations                                          |   |   | Х |
| B.4 3–D stress–strain relations in engineering constants          |   | Х | Х |
| B.5 3–D stress–strain relations in Lame constants                 |   |   | Х |
| B.5.1 Cartesian notations                                         |   |   | Х |
| B.5.2 Tensor notations                                            |   |   | Х |
| B.6 3–D stress–displacement relations                             |   |   | Х |
| B.6.1 Cartesian notations                                         |   |   | Х |
| B.6.2 Tensor notations                                            |   |   | Х |
| B.7 3–D equations of motion                                       |   | Х | Х |
| B.7.1 Cartesian notations                                         |   |   | Х |
| B.7.2 Tensor notations                                            |   |   | Х |
| B.8 3–D governing equations – Navier equations                    |   |   | Х |
| B.8.1 Cartesian notations                                         |   |   | Х |
| B.8.2 Vector notations                                            |   |   | Х |
| B.8.3 Tensor notations                                            |   |   | Х |
| B.9 Tractions                                                     |   |   | Х |
| B.9.1 Cartesian notations                                         |   |   | Х |
| B.9.2 Tensor notations                                            |   |   | Х |
| B.9.3 Relation between tractions and displacements                |   |   | Х |
| B.10 Boundary conditions                                          |   |   | Х |
| B.10.1 Dirichlet boundary conditions                              |   |   | Х |
| B.10.2 Neumann boundary conditions                                |   |   | Х |
| B.10.3 Cauchy boundary conditions                                 |   |   | Х |
| B.10.4 Robin boundary conditions                                  |   |   | Х |
| B.10.5 Mixed boundary conditions                                  |   |   | Х |
| B.11 2–D elasticity                                               |   | Х | Х |
| B.11.1 Plane–stress conditions                                    |   | Х | Х |
| B.11.2 Plane–strain conditions                                    |   | Х | Х |
| B.12 Plane-stress elasticity in polar coordinates                 |   | X | X |

| B.12.1 Coordinates transformation                                | Х | Х |
|------------------------------------------------------------------|---|---|
| B.12.2 Basic differential operations and operators               |   | Х |
| B.12.3 Strain–displacement relations                             |   | Х |
| B.12.4 Equations of motion                                       |   | Х |
| B.12.5 Stress–strain relation                                    |   | Х |
| B.12.6 Stress-displacement relation                              |   | Х |
| B.13 Cylindrical coordinates                                     |   | Х |
| B.13.1 Coordinates transformation                                |   | Х |
| B.13.2 Basic differential operations and operators               |   | Х |
| B.13.3 Strain–displacement relations                             |   | Х |
| B.13.4 Equations of motion                                       |   | Х |
| B.13.5 Stress-strain relation                                    |   | Х |
| B.13.6 Governing equations – Navier-Lame Equations               |   | Х |
| B.14 Axisymmetric polar and cylindrical coordinates              |   | Х |
| B.14.1 Axisymmetric plane-stress elasticity in polar coordinates |   | Х |
| B.14.1.1 Basic differential operations and operators             |   | Х |
| B.14.1.2 Strain-displacement relations                           |   | Х |
| B.14.1.3 Equations of motion                                     |   | Х |
| B.14.1.4 Stress-strain relation                                  |   | Х |
| B.14.1.5 Stress-displacement relation                            |   | Х |
| B.14.2 Axisymmetric elasticity in cylindrical coordinates        |   | Х |
| B.14.2.1 Basic differential operations and operators             |   | Х |
| B.14.2.2 Strain-displacement relations                           |   | Х |
| B.14.2.3 Equations of motion                                     |   | Х |
| B.14.2.4 Stress-strain relation                                  |   | Х |
| B.14.2.5 Governing equation – Navier-Lame equations              |   | Х |
| B.15 Spherical coordinates                                       |   | Х |
| B.15.1 Coordinates transformation                                |   | Х |
| B.15.2 Basic differential operations and operators               |   | Х |
| B.15.3 Strain–displacement relations                             |   | Х |
| B.15.4 Equations of motion                                       |   | Х |
| B.15.5 Stress–strain relation                                    |   | Х |
| B.15.6 Governing equations – Navier-Lame equations               |   | Х |

#### Table 2: Sample teaching plan for a full-length course

| wk | Class Topics                        | Book section     | Hmwk | Lab             |
|----|-------------------------------------|------------------|------|-----------------|
| 1  | SHM overview                        | Ch. 1            |      |                 |
|    | Active materials                    | 2.1; 2.2         |      |                 |
|    |                                     | 2.3, 2.4         |      |                 |
| 2  |                                     | 2.5, 2.6         | Hw1  | Lab orientation |
|    | National Holiday. no classes        |                  |      |                 |
|    | Vibrations review                   | 3.1; 3.2         |      |                 |
| 3  |                                     | 3.3; 4.4         | Hw2  | Lab #1          |
|    |                                     | 4.6              |      |                 |
|    | Waves review                        | 5.1; 5.2; 5.3.13 |      |                 |
| 4  |                                     | 5.3.411          | Hw3  |                 |
|    |                                     | 5.4              |      |                 |
|    |                                     | 5.8; 5.10        |      |                 |
| 5  |                                     | 6.1; 6.2         | Hw4  |                 |
|    |                                     | 6.3              |      |                 |
|    |                                     | 6.4              |      |                 |
| 6  |                                     | 6.5              | Hw5  | Lab #2          |
|    | PWAS basics                         | 7.1-7.3          |      |                 |
|    |                                     | 7.4-7.7          |      |                 |
| 7  | PWAS coupling with structure        | 8.1; 8.2; 8.4    | Hw6  |                 |
|    | Test review                         |                  |      |                 |
|    | Test #1                             |                  |      |                 |
| 8  | PWAS resonators                     | 9.1; 9.2         | Hw7  |                 |
|    |                                     | 9.3              |      |                 |
|    |                                     | 9.5              |      |                 |
| 9  | Vibration SHM: E/M impedance method | 10.1; 10.2.      | Hw8  | Lab #3          |
|    |                                     | 10.3             |      |                 |
|    |                                     | 10.4; 10.5       |      |                 |
| 10 | Semester break. no classes          |                  |      |                 |
|    | Semester break. no classes          |                  |      |                 |
|    | Wave tuning with PWAS               | 11.1; 11.1; 11.2 |      |                 |
| 11 |                                     | 11.3; 11.4       | Hw9  |                 |
|    |                                     | 11.5; 11.7       |      |                 |
|    | Test review                         |                  |      |                 |
| 12 | Test #2                             |                  |      | Lab #4          |
|    | Wave Propagation SHM                | 12.1; 12.2       |      |                 |
|    |                                     | 12.3-12.5        |      |                 |
| 13 |                                     | 12.6-12.8        | Hw10 |                 |
|    | PWAS phased arrays                  | 13.1-13.3        |      |                 |
|    |                                     | 13.4-13.7        |      |                 |
| 14 |                                     | 13.8-13.10       | Hw11 |                 |
|    | Signal processing                   | 14.1; 14.2       |      |                 |
|    |                                     | 14.3-14.7        |      |                 |
| 15 | Case studies                        | 15.1; 15.2       | Hw12 | Lab #5          |
|    |                                     | 15.3; 15.4       |      |                 |
|    | Final review and course summary     |                  |      |                 |
|    |                                     |                  |      |                 |
| Е  | Final exam                          |                  |      |                 |
|    |                                     |                  |      |                 |

#### ADVANCED STRUCTURAL HEALTH MONITORING

Notes: (a) try to have HMWK due on Mondays; (b) no HMWK on a test week; (c) in the beginning, denser HMWK to get students up to speed fast;(d) later, space HMWK out; (e) try to avoid overlap between HMWK, tests, and labs, when possible

Table 2: List of experiments that are described in the book

| Page    | experiment                                                                    |
|---------|-------------------------------------------------------------------------------|
| 52      | particle vibration                                                            |
| 367-570 | directivity patterns of high-aspect-ratio rectangular PWAS                    |
| 385     | self-diagnosis of PWAS transducers                                            |
| 386     | temperature cycling of PWAS                                                   |
| 388     | environmental exposure of PWAS                                                |
| 389     | submersion exposure of PWAS                                                   |
| 390     | large strain testing of PWAS                                                  |
| 390-391 | fatigue testing of PWAS                                                       |
| 466-470 | rectangular PWAS resonators                                                   |
| 486     | circular PWAS resonator                                                       |
| 489     | square PWAS resonator                                                         |
| 553-561 | tuning of square and circular PWAS on thin and thick plates                   |
| 562-566 | directional tuning of rectangular PWAS of high aspect ratio: directivity      |
| 590-594 | PWAS modal sensors (E/M impedance method) on small steel beams                |
| 595     | PWAS modal sensors (E/M impedance method) on turbo-engine blade               |
| 604-606 | PWAS modal sensors (E/M impedance method) on circular plates                  |
| 608     | Damage detection and propagation in spot-welded lap joint with PWAS modal     |
|         | sensors (E/M impedance method) during fatigue loading                         |
| 613-615 | Bonded joints damage detection with PWAS modal sensors (E/M impedance         |
|         | method) in thin plates                                                        |
| 617     | Bonded joints damage detection with PWAS modal sensors (E/M impedance         |
|         | method) in space panels                                                       |
| 618-619 | Bonded joints damage detection with PWAS modal sensors (E/M impedance         |
|         | method) in adhesively bonded rotor blade structure                            |
| 622-625 | Detection of disbond presence and progression in bonded composite overlays on |
|         | concrete coupon specimens using PWAS modal sensors and E/M impedance          |
|         | spectroscopy                                                                  |
| 625-629 | Detection of disbond presence and progression in bonded composite overlays on |
|         | full-scale concrete beam using PWAS modal sensors and E/M impedance           |
|         | spectroscopy                                                                  |
| 652-653 | 1-D wave propagation PWAS experiments                                         |
| 662-663 | 1-D wave propagation PWAS experiments (cont.)                                 |
| 663-664 | Rayleigh wave propagation PWAS experiments on rail-road track rail            |
| 665-667 | 2-D wave propagation PWAS experiments setup                                   |
| 667-668 | Pitch-catch PWAS experiments in a plate                                       |
| 669-671 | Pulse-echo PWAS experiments in a plate                                        |
| 674-675 | Pitch-catch PWAS detection of crack growth in a plate                         |
| 679-680 | Pulse-echo PWAS detection of crack growth in composite beam                   |
| 891-894 | Pulse-echo PWAS crack detection in aging aircraft panel                       |
| 686-689 | PWAS time-reversal experimental setup and Lamb wave mode tuning               |
| 690-691 | PWAS time reversal of A0 and S0 Lamb waves                                    |
| 691-692 | PWAS time reversal of S0+A0 Lamb waves                                        |
| 697-698 | Impact detection with PWAS transducers                                        |
| 699-700 | Acoustic emission detection with PWAS transducers                             |

| 724-728 | Simple phased-array experiment with a 1-D linear PWAS array                                                                                                                                 |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 728-729 | Pin-hole detection with PWAS linear array using the EUSR phased-array algorithm                                                                                                             |
| 729     | Broad-side crack detection with PWAS linear array using the EUSR phased-array algorithm                                                                                                     |
| 729-730 | Sloped broad-side crack detection with PWAS linear array using the EUSR phased-array algorithm                                                                                              |
| 730     | Single offside crack detection with PWAS linear array using the EUSR phased-<br>array algorithm                                                                                             |
| 731     | Detection of two broadside cracks with PWAS linear array using the EUSR phased-array algorithm                                                                                              |
| 731-732 | Detection of three in-line broadside cracks with PWAS linear array using the EUSR phased-array algorithm                                                                                    |
| 733-734 | Crack detection on curved panels with PWAS linear array using the EUSR phased-array algorithm                                                                                               |
| 739-743 | In-situ direct imaging of crack growth with PWAS phased arrays and EUSR algorithm                                                                                                           |
| 755-756 | Effect of array weight functions on broadside crack detection with PWAS linear phased array                                                                                                 |
| 785-786 | 2-D phased array detection of broadside crack using a $4 \times 8$ PWAS phased array and 2D-EUSR algorithm                                                                                  |
| 788     | Offside-crack 2-D phased array detection using a $4 \times 8$ PWAS phased array and 2D-EUSR algorithm                                                                                       |
| 788-790 | 2-D phased array detection of broadside crack using an $8 \times 8$ PWAS phased array and 2D-EUSR algorithm                                                                                 |
| 820     | Short time Fourier transform analysis of an experimental PWAS pulse-echo signal                                                                                                             |
| 828-829 | Narrow-band filtering of an experimental PWAS pulse-echo signal using continuous wavelet transform and comparison with short time Fourier transform                                         |
| 841     | Denoising of an experimental signal using the discrete wavelet transform                                                                                                                    |
| 844     | Denoising of an experimental signal using the discrete wavelet transform                                                                                                                    |
| 866-871 | Spectral measurements with PWAS modal sensors (E/M impedance method)                                                                                                                        |
| 873-874 | Damage detection in circular plates with PWAS modal sensors (E/M impedance method) using damage metrics                                                                                     |
| 881-886 | Damage detection in circular plates with PWAS modal sensors (E/M impedance method) via the probabilistic neural networks approach                                                           |
| 895-898 | Near-field damage detection in aging aircraft panels using PWAS modal sensors and E/M impedance method with damage metrics                                                                  |
| 900-902 | Medium-field damage detection in aging aircraft panels using PWAS modal sensors and E/M impedance method and probabilistic neural networks. Same approach also applied to near-field damage |
| 877-879 | Damage detection in circular plates by processing with the statistical t-test the third frequency measured with PWAS modal sensors                                                          |
| 882-886 | Details of the feature extraction and probabilistic neural network processing of the experimental spectra measured with PWAS modal sensors on circular plates                               |

900-902 Details of the feature extraction and probabilistic neural network processing of the experimental spectra measured with PWAS modal sensors on aging aircraft-like panel