
Appendix: Chapter 8
The invention of the telegraph in 1845 ushered in the era of real-time weather
data. By the end of the 19th century, hand-drawn synoptic charts summarizing
surface weather conditions at many different stations were being used by na-
tional weather services in many different countries as a basis for issuing weather
forecasts. The growth of aviation during the early decades of the 20th century
created a demand for upper air charts. It was also becoming increasingly ap-
parent that forecasting the movement of weather systems requires a knowledge
of the winds aloft that steer them. Early upper air charts were based on reports
of aircraft pilots, kites and the paths of pilot balloons, which could be optically
tracked to around the 3 km (700-hPa) level, weather permitting. By the late
1940s, radar tracked radiosondes bearing disposable instrument packages were
being launched on a regular schedule from hundreds of stations around the world
and synoptic charts were being prepared for a standard set of pressure levels
extending all the way up into the lower stratosphere.
The launch of Sputnik, the first unmanned satellite, by the Soviet Union in

1958 paved the way for remote sensing of the global atmosphere from space. Co-
incidentally, this launch took place during the International Geophysical Year,
a venture that demonstrated the feasibility of international cooperation on a
scale that had not previously been attempted in the physical sciences. By 1980,
satellite-based remote sensing had become the backbone of a truly global net-
work for observing weather systems. Today, despite the wide disparity between
the density of in situ weather observations in the northern and southern hemi-
spheres, satellite data provide so much information that the skill of hemispheric
weather forecasts for the two hemispheres is comparable (Fig. 1.1).
Figure 8.80 provides an indication of the scope of the observing system that

existed in support of numerical weather prediction in 2004. Each panel shows
the locations or geographical domain of one of the components of the observing
system during a 6 hour interval around noon on a typical day. In situ data
are shown in the top two rows and remotely sensed data from satellite-borne
instruments in the bottom two rows. These observations are blended to produce
a single, dynamically consistent, four dimensional (space/time) analysis of global
fields such as pressure, wind, temperature and moisture, making use of data
assimilation schemes. The analyzed fields are represented as numerical values
at regularly spaced grid-points on a set of pressure surfaces at regular time
intervals. Unlike the raw data from which they are constructed, the analyzed
fields provide complete coverage in space and time. Hence, based on analyzed
fields it is relatively straightforward to produce horizontal maps, vertical cross-
sections and other graphical representations of the analyzed data.
Short-range forecast fields derived from state-of-the-art numerical weather

prediction models are used as first-guess fields for the analysis. Each observation
is used to "nudge" the first-guess field toward the true state of the atmosphere
within some surrounding "region of influence". For example, if a temperature
measurement is lower than the first guess temperature at that particular place
and time, the analyzed temperatures will be adjusted downward at nearby grid
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Fig. 8.80 Operational data coverage for the 6-hour interval centered at 1200
UTC Nov. 21, 2004. [From A. Simmons, “Observations, assimilation, and the
improvement of global weather prediction–Some results from operational fore-
casting and ERA-40,” in Predictability of Weather and Climate, edited by T.N.
Palmer and R. Hagedorn, in press, Cambridge University Press. Courtesy of
T.N. Palmer, ECMWF.]

points. A stronger correction will be applied to grid points very close to the site
of the measurement than to grid points farther away, and little or no correction
will be applied to grid points that lie outside the region of influence. The
weight that is assigned to each observation also depends upon the performance
characteristics of the instrumentation: for example, a temperature measurement
from a sensor that is known to be highly reliable is assigned a higher weight than
one from a less reliable sensor. Through the dynamical constraints built into in
the forecast model, information from data-rich regions trends to propagate into
surrounding data-void regions.
Figure 8.81 shows how such a data assimilation scheme could be implemented

by running a forecast model through a series of discrete (e.g. 6-hour) time steps.
Let us suppose that the first short term (e.g. 6-hour) forecast F1 is generated
starting with a crude initial analysis A0 (e.g., the climatological mean fields).
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Fig. 8.81 Implementation of a data assimilation scheme through a sequence
of time steps 1, 2...etc. that might be 6 or 12 hours apart. At each time step
the observational data O available at that time are used to "nudge" the first
guess field F. toward the true state of the atmosphere, yielding analysis A. The
forecasts are based on a state-of-the-art numerical weather prediction model,
initialized with the analysis produced at the previous time step.

Data assimilation is performed, for the first time, at the end of the first time
step to produce an improved analysis A1. Since the first guess forecast field
F1 for this first updated analysis bears little relation to the true state of the
atmosphere, A1 will be crude but, thanks to the assimilated data, it should
be much closer to the true state of the atmosphere than A0 was a time step
ago. It follows that the first guess F2 for the data assimilation carried out at
the end of the second time step should be substantially closer to the true state
of the atmosphere than F1 and, accordingly, A2 should be closer to the true
state of the atmosphere than A1. Through this bootstrap process, the quality
of the analysis improves over the course of a week or so of simulated time, by
which time the "memory" of the crude initial analysis A0 is almost entirely
lost, and the current analysis An depends only upon the recent history of the
observations.
Modern atmospheric data assimilation is multivariate in the sense that a

measurement of, say, temperature affects not only the analyzed temperature
field in the vicinity of the observation, but also the fields of geopotential height,
wind, and surface pressure. In the above example, the geopotential height field
will be adjusted downward locally, in accordance with the hypsometric equation,
above the region in which the negative temperature adjustment is applied. The
data assimilation scheme will also ensure that wherever the heights are locally
lowered, the winds at the surrounding gridpoints will be adjusted to make the
wind field more cyclonic. Satellite radiances that relate to temperature or the
mixing ratio of water vapor or ozone are compared with radiances computed
from the first guess fields of temperature, water vapor or ozone, and the first
guess field is "nudged" in a dynamically consistent manner so as to reduce the
discrepancy. This transfer of information between different fields makes much
more effective use of the measurements than is possible in a univariate scheme,
in which each field is analyzed in isolation.
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Data assimilation schemes may be either three or four dimensional. Three-
dimensional (3D) schemes assign all the observations within a specified interval
(typically 6 hours long) to a common reference time, regardless of when they
were actually taken, and use them to update the first guess fields to produce
the analysis. More sophisticated and much more computationally intensive four
dimensional (4D-VAR) schemes take into account the timing, as well as the
spatial position of the observations. Relying on inverse modeling techniques
based on the calculus of variations, these schemes nudge the atmospheric fields
at the start of the interval so as to minimize the root-mean-squared difference
between the observations and the forecasts during the interval.
Other things being equal, the more skillful the forecast model, the smaller the

nudging required to bring the first guess field into optimal agreement with the
observations, and the more accurate the final analysis. Hence, today’s reanalysis
of the state of the atmosphere that existed at an instant in time, say, a decade
ago is more accurate than the operational analysis that was made back at that
time based on the same observations, simply because today’s forecast model
is more skillful than the forecast models that were in use a decade ago. For
analyses made with the same forecast model, the more complete and accurate
the observations, the more closely the analyzed fields will track the true state
of the atmosphere, and the smaller the nudging required to bring the first guess
field into optimal agreement with the observations at each time step. In terms
of mean squared 500-hPa height increment, the amount of nudging required has
decreased by roughly a factor of 2 since the pre-satellite era.
Data assimilation is performed in real time in support of operational numer-

ical weather prediction, and a delayed time mode, for the purpose of producing
more uniform, quality controlled data sets for climate research. Data assimila-
tion yields, as a by-product, diagnostic fields such as vertical velocity, diabatic
heating and surface fluxes, which are not directly measured. In interpreting
such fields it should be borne in mind that they are model-dependent, at least
to some degree. Most of the figures presented in Section 8.1 are based on model-
assimilated data.
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