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The Wave-Particle Duality - Solutions

1. The energy of photons in terms of the wavelength of light is given by Eq.
(1.5). Substituting the given wavelength, following Example 1.1, gives:

Ephoton =
hc

λ
=

1240 eV · nm
200 nm

= 6.2 eV

2. The energy of the beam each second is:

E =
power

time
=

100 W

1 s
= 100 J

The number of photons can be calculated from the total energy above divided
by the energy of each photon, which was calculated in Problem 1 and can be
converted to SI units using 1.6 × 10−19 J/eV . The result is:

Nphotons =
100 J

9.9 × 10−19
= 1.01 × 1020

for the number of photons striking the surface each second.

3. Considering that we are given the power of the laser in units of milliwatts,
the power may be expressed as: 1 mW = 1× 10−3J/s. The energy of a single
photon can be calculated as in Problem 1 by:

Ephoton =
hc

λ
=

1240 eV · nm
632.8 nm

= 1.960 eV

We now convert to SI units:

1.960 eV × 1 J

1.6 × 10−19 eV
= 3.14 × 10−19 J

Following the same procedure as Problem 2:

Rate of emission =
1 × 10−3 J/s

3.14 × 10−19 J/photon
= 3.18 × 1015

photons

s
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4. The maximum kinetic energy of photoelectrons is found using Eq. (1.6)
and the work functions of the metals are given in Table 1.1. In each case, the
energy of the photon is the same as in Problem 1, Ephoton = 6.20 eV . For Na
metal in part (a):

(KE)max = 6.20 eV − 2.28 eV = 2.92 eV

Similarly, for Al metal in part (b), W = 4.08 eV giving (KE)max = 2.12 eV
and for Ag metal in part (c) with W = 4.73 eV , then (KE)max = 1.47 eV .

5. This problem again concerns the photoelectric effect. As in Problem 4, we
use Eq. (1.6):

(KE)max =
hc

λ
−W

where W is the work function of the material and the term hc/λ describes
the energy of the incoming photons. Solving for the latter:

hc

λ
= (KE)max +W = 2.3 eV + 0.9 eV = 3.2 eV

Solving Eq. (1.5) for the wavelength:

λ =
1240 eV · nm

3.2 eV
= 387.5 nm

6. A potential energy of 0.72 eV is needed to stop the flow of electrons. Hence,
(KE)max of the photoelectrons can be no more than 0.72 eV. Solving Eq. (1.6)
for the work function:

W =
hc

λ
− (KE)max =

1240 eV · nm
460 nm

− 0.72 eV = 1.98 eV

7. Reversing the procedure from Problem 6, we start with Eq. (1.6):

(KE)max =
hc

λ
−W =

1240 eV · nm
240 nm

− 1.98 eV = 3.19 eV

Hence, a stopping potential of 3.19 eV prohibits the electrons from reaching
the anode.

8. Following the equations in section 1.1.1, when the wavelength is at the
threshold,

W =
hc

λ0
=

1240 eV · nm
360 nm

= 3.44 eV

9. A frequency of 1200 THz is equal to 1200 × 1012 Hz. Using Eq. (1.10),
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Ephoton = hf = 4.136 × 10−15 eV · s× 1.2 × 1015 Hz = 4.96 eV

Next, using the work function for sodium (Na) metal and Eq. (1.6),

(KE)max = Ephoton −W = 4.96 ev − 2.28 eV = 2.68 eV

10. We start from Eq. (1.8) for the case of m = 2:

1

λ
= R

Å
1

22
− 1

n2

ã
Now invert the equation and plug in for R:

λ =
1

1.0971 × 105 cm−1

Å
1

4
− 1

n2

ã−1
Subtract the fractions by taking a common denominator:

λ =
1 cm

1.0971 × 105

Å
n2 − 4

4n2

ã−1
Invert the term in the parenthesis and factor out the common factor of 4

λ =
4 cm

1.0971 × 105

Å
n2

n2 − 4

ã
Doing the division, we get Eq. (1.17):

λ = (3645.6 × 10−8 cm)

Å
n2

n2 − 4

ã
11. Following Example 1.2,

∆E = −13.6 eV

52
−
Å
−13.6 eV

22

ã
= 2.86 eV

Using Eq. (1.12):

λ =
hc

∆E
=

1240 eV · nm
2.86 eV

= 434.2 nm

12. Since the initial state has m = 2, we can use Eq. (1.7) with n = 4:

λ = (364.56 nm)

Å
42

42 − 4

ã
= 486.1 nm

To get the energy of the photon, use Eq. (1.2):

Ephoton =
hc

λ
=

1240 eV · nm
486.1 nm

= 2.551 eV
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13. Again, the initial state has m = 2, so we use Eq. (1.7) with n = 3:

λ = (364.56 nm)

Å
32

32 − 4

ã
= 656.2 nm

14. From Figure 1.6, the ionization energy of a hydrogen atom in the n = 2
state is −3.4 eV . So it takes a photon of 3.4 eV to just ionize this atom. To
get the wavelength of light, just invert Eq. (1.5):

λ =
hc

Ephoton
=

1240 eV · nm
3.40 eV

= 364.7 nm

15. Starting with Eq. (1.5) with a wavelength of 45 nm:

Ephoton =
hc

λ
=

1240 eV · nm
45 nm

= 27.6 eV

Since the hydrogen atoms are in the ground state, the electron is in a bound
state with energy E = −13.6 eV . To conserve energy, the total energy is equal
to the kinetic plus potential energy. Solving for the KE:

KE = 27.6 eV − 13.6 eV = 14.0 eV

Next, to find the electron’s velocity, first convert to SI units:

KE = 14.0 eV · 1.6 × 10−19J

1 eV
= 2.24 × 10−18 J

From Appendix A, an electron has mass m = 9.11× 10−31 kg. Using the well
known formula KE = (1/2)mv2, and solving for v:

v =

 
2(KE)

m
=

 
4.48 × 10−18 J

9.11 × 10−31 kg
= 2.22 × 106

m

s

16. From Figure 1.6, we see that the first transition for the Lyman series is
between n = 2 to n = 1, and similarly we can get the transitions for the
Balmer and Paschen series. Using Eq. (1.8):

1

λ
= R

Å
1

m2
− 1

n2

ã
with R = 1.0972×105 cm−1, then plugging in for each case: (a) n = 2 to m = 1
gives λ = 1.215 × 10−5 cm, (b) n = 5 to m = 2 gives λ = 4.340 × 10−5 cm,
(c) n = 5 to m = 3 gives λ = 1.282 × 10−4 cm.
17. We want to find the maximum wavelength possible for a hydrogen atom
transition starting from the E3 state. Using Eq. (1.8) for absorption of a
photon, starting at m = 3:
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1

λ
= R

Å
1

32
− 1

n2

ã
we see that the maximum wavelength occurs when the RHS is at a minimum.
Since the photon can only take the atom to a higher state, this requires n > 3,
and so the minimum of the RHS occurs when n = 4. Inverting the above
equation with n = 4,

λ =
1

R

Å
1

32
− 1

42

ã−1
=

1

R

Å
9 · 16

16 − 9

ã
Plugging in R = 1.0972 × 105 cm−1 gives:

λ = (9.114 × 10−6 cm)(20.57) = 187.5 × 10−6 cm

Converting this to standard units gives λ = 187.5 × 10−8 m = 1875 nm.
Hence, light of wavelength greater than 1875 nm would not be absorbed by a
hydrogen atom starting in the E3 state.

18. Starting with Eq. (1.26),

p =
h

λ
=

6.626 × 10−34 J · s
0.2 × 10−9m

= 3.31 × 10−24 J(s/m)

The kinetic energy is given by the standard formula:

KE =
p2

2me
= 6.024 × 10−18 J

where me = 9.11 × 10−31 kg is the mass of an electron.
19. Following Example 1.5, the de Broglie wavelength is given by:

λ =
h√

2m(KE)

where m is the mass of the particle. It is more convenient to convert the KE
to SI units:

KE = 20 eV × 1.6 × 10−19 J

1 eV
= 3.2 × 10−18 J

From Appendix A, the mass of the electron is me = 9.11 × 10−31 kg, so
plugging this into the above gives λe = 2.74 × 10−10 m. Similarly, the mass
of the proton is mp = 1.67 × 10−27 kg, giving λp = 6.41 × 10−12 m. The
α-particle is made from two protons and two neutrons and its mass, to good
approximation, can be found by adding up its parts: m = 4(1.673×10−27kg) =
6.69 × 10−27kg. Plugging this in gives λα = 3.20 × 10−12 m.
20. To get the wavelength of 40 keV photons, invert Eq.(1.5):
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λ =
hc

Ephoton
=

1240 eV · nm
40 × 103 eV

= 0.031 nm

To get the electron’s kinetic energy, first find its momentum using Eq. (1.26):

p =
h

λ
=

6.626 × 10−34 J · s
0.031 × 10−9m

= 2.14 × 10−23 J(s/m)

Finally, the KE can be calculated in the usual way:

KE =
p2

2me
=

4.57 × 10−46

2(9.11 × 10−31)
= 2.51 × 10−16 J

21. For all three cases, we can use Eqs. (1.26) for the momentum:

p =
h

λ
=

6.626 × 10−34 J · s
0.01 × 10−9m

= 6.626 × 10−23 J(s/m)

and calculate the KE as in the problem above, using the appropriate mass
from Appendix A. The results are:

Particle mass (kg) KE (J) KE (eV)
electron 9.11 × 10−31 2.41 × 10−15 15060
proton 1.673 × 10−27 1.312 × 10−18 8.20
neutron 1.675 × 10−27 1.311 × 10−18 8.19

22. From Fig. 1.3, we see that visible light extends from about 400 nm to 700
nm. Using Eq. (1.26) as above and v = p/me for the velocity:

Wavelength (nm) momentum (kg·m/s) velocity (m/s)
400 1.657 × 10−27 1818
700 9.466 × 10−28 1039

23. First convert the energy to SI units:

E = 40 × 103 eV × 1.6 × 10−19 J

1 eV
= 6.4 × 10−15 J

Using p =
√

2m(KE) = 1.08 × 10−22 kg(m/s) in Eq. (1.25):

λ =
h

p
=

6.626 × 10−34 J · s
1.08 × 10−22 kg(m/s)

= 6.14 × 10−12 m

which is the de Broglie wavelength. Next, we observe that Eq. (1.25) does not
depend on the mass, so a proton with the same de Broglie wavelength has the
same momentum, p = 1.08 × 10−22 kg(m/s). Using the proton mass:

(KE)p =
p2

2mp
=

(1.08 × 10−22 kg(m/s))2

2(1.673 × 10−27 kg)
= 3.49 × 10−18J
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If desired, the units can be converted giving (KE)p = 21.8 eV .

24. Using Eq. (1.5) we get the initial wavelength of the X-ray:

λ =
hc

Ephoton
=

1240 eV · nm
15 × 103 eV

= 0.0827 nm

Using Eq. (1.23) with an angle of 30◦ gives:

λ′ = λ+
h

mc
(1 − cos 30◦) = 0.0827 nm+ (0.0024 nm)(1 − 0.866) = 0.0830 nm

where h/(mc) = 0.0024 nm is the electron’s Compton wavelength. Converting
this back to energy, E′ = (hc)/λ′ = 14.94 keV . By conservation of energy, the
electron takes up the difference of

(KE)e = E − E′ = 15.00 − 14.94 = 0.06 keV

25. Using Eq. (1.5) we get the wavelength of the 20 keV X-ray:

λ =
hc

Ephoton
=

1240 eV · nm
20 × 103 eV

= 0.062 nm

Solving Eq. (1.24) for θ with the spacing d = 0.282 nm and n = 1:

θ = sin−1
Å

0.062 nm

2(0.282 nm)

ã
= 6.3◦

Continuing in this way for other n > 1 we get:

n Angle
2 12.7◦

3 19.3◦

4 26.1◦

5 33.3◦

6 41.3◦

7 50.3◦

8 61.6◦

9 81.6◦
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