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The Schrödinger Wave Equation - Solutions

1. (a) Using Eq. (2.17) for the energies of a particle in an infinite well:

E =
n2h2

2mL2

Solving this for L:

L =

…
n2h2

8mE

Using the given energy E1 = 1.0 eV = 1.6 × 10−19 J and the mass of the
electron from Appendix A, the lowest energy is found when the electron is in
the ground state (n = 1):

L =

 
12(6.63× 10−34 J · s)2

8(9.11× 10−31 kg)(1.6× 10−19 J)
= 6.14× 10−10 m

(b) Now that we have L, the energy for the next excited state (n = 2):

E2 =
n2h2

2mL2
=

22(6.626× 10−34 J · s)2
8(9.11× 10−31 kg)(6.14× 10−10 m)2

= 2.14× 10−18 J

Converting the units, E2 = 2.14 × 10−18 J/(1.6 × 10−19J/eV ) = 4.00 eV .
Finally, the energy needed to transition from the ground state (E1) to the
first excited state (E2) is ΔE = E2 − E1 = 3.0 eV .

2. Using Eq. (2.20), the wave function for an infinite square well with center
at x = 0 and odd n is:

ψ(x) =

…
2

L
cos

(nπx
L

)

Plugging in n = 3 and L = 10 nm,
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ψ(x) =

…
2

10 nm
cos

Å
3πx

10 nm

ã

with boundaries −5 nm < x < 5 nm. This has numerical values:

x (nm) ψ(x)
0 0.447
2 −0.139
4 −0.364
8 0
10 0

The last two are zero because they are outside of the infinite square well.

3. We need to calculate the energy levels for the 10 nm wide infinite well for
n = 3 and n = 2:

E3 =
32h2

8mL2
=

9(6.63× 10−34 J · s)2
8(9.11× 10−31 kg)(10× 10−9 m)2

= 5.43× 10−21 J · 1 eV

1.6× 10−19 J
= 0.034 eV

E2 =
22h2

8mL2
=

4(6.63× 10−34 J · s)2
8(9.11× 10−31 kg)(10× 10−9 m)2

= 2.41× 10−21 J · 1 eV

1.6× 10−19J
= 0.015 eV

ΔE = 0.034 eV − 0.015 eV = 0.019 eV

where ΔE is the energy of the emitted photon. Using Eq. (1.5) to calculate
the wavelength of the light:

λ =
hc

Ephoton
=

1240 eV · nm
0.019 eV

= 65× 103 nm = 65 mm

4. Following Eq. (2.21), the average value of the momentum squared is:

〈p2〉 =
∫ ∞

−∞
p2 |ψ(x)|2 dx

Using p2 = 2mE and Eq. (2.17) for E,

p2 = 2m

Å
n2h2

8mL2

ã
=
n2h2

4L2

Plugging this into the integral and using Eq. (2.20) for ψ(x) :

〈p2〉 = n2h2

4L2

∫ L/2

−L/2

2

L
cos2

(nπx
L

)
dx (n odd)

〈p2〉 = n2h2

4L2

∫ L/2

−L/2

2

L
sin2

(nπx
L

)
dx (n even)
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The integral is normalized in both cases (see Example 2.2 for details) and is
equal to unity. For both cases:

〈p2〉 = n2h2

4L2

5. Using Eq. (2.39), the energy of the ground state depends on θ:

E =
2�2θ2

mL2

where m = 0.067me is the effective mass of the electron in GaAs and L =
10 nm is the width of the finite well. To find θ, we need to find the graphical
solution, as shown in Figure 2.6 but for the well depth of this problem, V0 =
0.2 eV . Plugging this into Eq. (2.36) and using mec

2 = 511× 103 eV :

θ20 =
mc2V0L

2

2(�c)2
=

(3.4× 104 eV )(0.2 eV )(10 nm)2

2(197.3 eV · nm)2
= 8.80

in units of radians2. Following the example MATLAB Program 2.1, but with
the new value of θ20 , the graphical value of θ where the two curves meet is
found to be θ = 1.1666. Finally, we use Eq. (2.39) above to get the lowest
energy state of the electron:

E =
2(�c)2θ2

(mc2)L2
=

2(197.3 eV · nm)2(1.1666)2

(3.4× 104 eV )(10 nm)2
= 0.0312 eV

1.1663 1.1664 1.1665 1.1666 1.1667 1.1668 1.1669

2.337

2.3375

2.338

2.3385

2.339

2.3395

2.34
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6. Inside the finite well, the wave function is given by Eq. (2.30), which de-
pends on k. Since we know θ from the previous problem, we can find k from
Eq. (2.34):

k =
2θ

L
=

2(1.1666)

10 nm
= 0.2333 nm−1

Now we can plot the part of the wave function inside the well using Eq. (2.30):

ψ(x) = (1.0) cos(0.2333x)

where we have set the normalization constant A = 1 for now. (To determine
the actual value of A requires a numerical integration, which is beyond the
scope of this chapter.) Outside the well, the wave function is given by Eq.
(2.31), which depends on κ. Dividing Eq. (2.33) by Eq. (2.32):

κ = k tan(kL/2) = (0.2333) tan(0.2333 · 5) = 0.545

Note that the argument of the tangent is in radians. Now we can plot the part
of the wave function outside the well using Eq. (2.31):

ψ(x) = Be−0.545x
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The value of B can be found by matching at the boundary using Eq. 2.32 with
A = 1:

B =
cos(kL/2)

e−κL/2
=

cos(1.1666)

e−2.725
= 6.000

Any plotting software can now be used to draw the wave function. For con-
venience here are commands for plotting this using MATLAB:
x = -5.0:0.1:5.0;

Inside = 1.0*cos(0.2333*x);

x1 = 5.0:0.1:10.0;

Outside1 = 6.0*exp(-0.545*x1);

x1 = -10.0:0.1:-5.0;

Outside1 = 6.0*exp(0.545*x1);

plot(x,Inside,x1,Outside1,x2,Outside2)

7. The harmonic oscillator wave functions are given by Eq. (2.45):

ψn(y) = Ane
−y2/2Hn(y)

where An is the normalization coefficient, y is a dimensionless variable and
Hn(y) are the Hermite Polynomials (see Table 2.1). The A0 coefficient can
be set to unity for this problem, since no oscillator parameters are given. The
other An coefficients should be scaled appropriately. It is now a simple matter
to use any plotting software to draw the wave functions. For convenience, here
are commands for plotting using MATLAB:
y = -5.0:0.1:5.0;

psi0 = 1.0*exp(-0.5*y.*y);

A1 = 1.0/sqrt((2)*1);

H1 = 2*y;

psi1 = A1*psi0.*H1;

A2 = 1.0/sqrt((4)*2*1);

H2 = 2.0-4.0*y.*y;

psi2 = A2*psi0.*H2;

A3 = 1.0/sqrt((8)*3*2*1);

H3 = 12.0*y-8.0*y.*y.*y;

psi3 = A3*psi0.*H3;

plot(y,psi0,y,psi1,y,psi2,y,psi3)

Note that all punctuation (especially the period symbols) must be typed as
shown. See Appendix C for more help on MATLAB usage.

8. The wave functions for an electron in an infinite well are shown in Figure
2.2. These may be compared with the wave functions for the finite well in
Problems 5 and 6, or the plots shown in Figure 2.7, which are very similar.
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The most noticeable difference is that the wave functions of the infinite well go
immediately to zero at the boundaries, whereas the wave functions of the fi-
nite well “leak out” beyond the boundaries. However, the general shape of the
wave functions in both cases is similar, looking like a cosine function centered
on zero for the ground state (and the even excited states) and a sine function
centered on zero for the first excited state (and the odd excited states. This
similarity in general shape means that the wave functions of the infinite square
well can be used as a crude approximation for the wave functions of the finite
well, provided that the well width L is not too different between the two cases.

9. The same procedures as for Example 2.1 can be followed. The boundary
conditions are now:

ψ(0) = 0

ψ(L) = 0

For the even solutions, we the boundary conditions give:

A cos(0) = 0

A cos(kL) = 0

and these equations can only be true if A = 0, meaning there are no even
solutions. For the odd solutions, the boundary conditions give:

B sin(0) = 0

B sin(kL) = 0

where again k is a solution to the Schrödinger equation, (�k)2 = 2mE. These
equations are satisfied when kL = nπ, so we get:

ψ(x) = B sin
(nπx
L

)
= 0 (0 ≤ x ≤ L)

Using Eq. (2.12), the energy levels are given when k satisfies the boundary
conditions:

E =
n2π2

�
2

2mL2

which is exactly the same as Eq. (2.17). This makes sense, since we have
merely moved the origin of the coordinate system, which should not effect the
observables.

10. Outside the finite potential well, V = V0, so the time-independent
Schrödinger equation is:

− �
2

2m

d2ψ

dx2
+ V0ψ = Eψ
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Multiplying both sides by −2m/�2:

d2ψ

dx2
− 2mV0

�2
ψ = −2mE

�2
ψ

Moving 2mE/�2 to the LHS:

d2ψ

dx2
+

2m(E − V0)

�2
ψ = 0

We make the following substitution:

k =

Å
2m(E − V0)

�2

ã 1
2

Since E is greater than V0, k is now a real number and the Schrödinger equa-
tion becomes:

d2ψ

dx2
+ k2ψ = 0

We can confirm by substitution that the general form of the solution to this
equation is a linear combination of the functions, A cos(kx) and B sin(kx).

11. Starting from the Eqs. (2.34) and (2.26) and solving for θ

θ =
kL

2
=

…
2mE

�2

L

2

Using the definition of θ20 from Eq. (2.36) and the equation above:

θ20
θ2

=
mV0L

2

2�2

mEL2

2�2

=
V0
E

Taking the squared ratio of Eqs. (2.29) and (2.26):

κ2

k2
=

2mV0 − E

2mE
=
V0
E

− 1 =
θ20
θ2

− 1

After taking the square root, we get the desired result of Eq. (2.41). Of course,
Eq. (2.40) is a trivial rearrangement of the definition in Eq. (2.34).

12. Evaluating the second derivative:

dψ

dx
= −Amωx

�
e−mωx2/2�

d2ψ

dx2
= −Amω

�
e−mωx2/2� +A

m2ω2x2

�2
e−mωx2/2�
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Substituting this into the LHS of Eq. (2.43) and canceling common factors:

−�
2

2m

Å
−mω

�
+
m2ω2x2

�2

ã
+

1

2
mω2x2 = E

Carrying out the algebra:

E =
�ω

2

which is the same as Eq. (2.44) when n = 0. Hence this is the ground state
wave function that satisfies Schrödinger’s equation.

13. The normalized wave function must satisfy Eq. (2.18):

∫ ∞

−∞
|ψ(x)|2dx = 1

∫ ∞

−∞
|Ae−mωx2/2�|2dx =

∫ ∞

−∞
A2e−mωx2/� = 1

Dividing both sides by A2 and noticing the symmetry of the integral:

1

A2
=

∫ ∞

−∞
e−mωx2/�dx = 2

∫ ∞

0

e−mωx2/�dx

Now substitute a = mω/� and use the integral given in the problem:

1

A2
=

 
π
mω
�

=

…
π�

mω

A =
(mω
π�

) 1
4

14. (a) The wave function is zero for x < 0 then starts to rise linearly for small
x, then turns over and goes back to zero at large x due to the exponential.
(b) Using the normalization condition, Eq. (2.18):

∫ ∞

0

A2x2e−2ax = 1

Integrating this by parts twice and solving for A gives:

A2 = 4a3

(c) We want to find the maximum of the square of the wave function. Taking
the derivative and setting it equal to zero:

d

dx
|ψ(x)|2 =

d

dx
(4a3x2e−2ax) = 8a3xe−2ax − 8a4x2e−2ax = 0
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Solving for x yields x = 1/a for the maximum probability.
(d) The average value of the position is given by Eq. (2.21):

〈x〉 =
∫ ∞

0

4a3x3e−2axdx

Integrating by parts three times yields 〈x〉 = 3/(2a).

15 (a) V = 0 in the region 0 ≤ x ≤ L, so the Schrödinger equation becomes:

− �
2

2m

d2ψ

dx2
= Eψ

Now V = V0 in the region x ≥ L so:

− �
2

2m

d2ψ

dx2
+ V0 = Eψ

(b) Defining:

k =

…
2mE

�2
and κ =

 
2m(V0 − E)

�2

Then,

d2ψ

dx2
+ k2ψ = 0 (0 ≤ x ≤ L)

d2ψ

dx2
− k2ψ = 0 (x ≥ L)

Similar to the situation of the finite well discussed in the text, the above
equations are satisfied by the general solutions:

ψ(x) = A cos(kx) and ψ(x) = A sin(kx) (0 ≤ x ≤ L)

ψ(x) = Be−κx (x ≥ L)

(c) The potential is infinite at x = 0, so the wave function must go to zero
there. Examining the new boundary conditions at x = 0:

Even : ψ(0) = A cos(0) = 0

Odd : ψ(0) = A sin(0) = 0

The even solution requires A = 0, and hence there are no even solutions.
We are left with: ψ(x) = A sin(kx) for 0 ≤ x ≤ L. Next, we examine the
boundary conditions at x = L:

ψ(L) = A sin(kL) = Be−κL
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Imposing the continuity of the first derivative:

ψ′(L) = Ak cos(kL) = −Bκe−κL

Dividing the above two equations gives:

ψ′(L)
ψ(L)

= −cot(kL) = κ

k

Inserting κ as defined in part (b):

−cot(kL) =
…

2mV0
�2k2

− 2mE

�2k2

Substitute k into the second term of the RHS:

−cot(kL) =
…

2mV0
�2k2

− 1

Let θ = kL:

−cot(θ) =
…

2mV0L2

�2θ2
− 1

We can transform this into a form similar to that of Eq. (2.35) if:

θ0
2 =

2mV0L
2

�2

The equation we need to solve is now:

−cot(θ) =
 
θ0

2

θ2
− 1

This can be solved graphically for the values of θ for which the LHS and RHS
expressions intersect. Note that the value for θ0

2 derived above is slightly dif-
ferent from that of Eq. (2.34). This occurs because the definition for θ is also
different, due to the boundary condition taking place at x = L rather than at
x = L/2 as in section 3.2.

16. Starting from Eq. (2.47):

ψ(x, t) = Aeikx · e−iωt

Taking the second derivative

d2ψ

dx2
= −Ak2eikxe−iωt

Taking the partial derivative
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∂ψ

∂t
= −iωAeikxe−iωt

Plugging into the time-dependent Schrödinger equation, Eq. (2.53), gives:

�
2k2

2m
ψ(x, t) + V (x, t)ψ(x, t) = �ωψ(x, t)

This equivalence is satisfied for a free particle (V = 0) when

�
2k2

2m
= �ω

Using de Broglie’s relation p = �k from Eq. (1.27) and Einstein’s relation
E = hf = �ω from Eq. (1.1), we see that the above is the same as the fa-
miliar formula E = p2/2m. The traveling wave satisfies the time-dependent
Schrödinger equation.

17. The wording of this problem could be confusing, since the infinite potential
well represents a situation where the potential energy does not evolve with
time. The goal here is to solve the time-dependent Schrödinger equation in
the case of a static potential. The time-dependent solutions must then satisfy
Eq. (2.53):

Ψ(x, t) = ψ(x)e−iωt

where ω = E/�. From Eq. (2.20), the normalized even spatial wave functions
of a particle in an infinite well are:

ψ(x) =

…
2

L
cos

(nπx
L

)

The corresponding energies are given by Eq. (2.17):

E =
n2h2

8mL2

where n is even for this problem. Calculating ω from the above:

ω =
E

�
=

n2πh

4mL2

for even n. The total wave function for even solutions is then:

Ψ(x, t) =

…
2

L
cos

(nπx
L

)
exp

Å
−i n

2πh

4mL2
t

ã

for even n.
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