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Operators and Waves - Solutions

1. Using Eqs. (3.2), (3.3) and the wave function given in the problem

p̂ψ(x) = −i� d

dx
Aeiαx = −i2α�Aeiαx = α�Aeiαx

The wavefunction is an eigenfunction of the momentum operator with eigen-
value p = α�. The kinetic energy is given by Eq. (3.5) with V(x)=0:

KE =
p2

2m
=
α2

�
2

2m

Alternatively, one can start with Eq. (3.6) with V (x) = and take the double
derivative of the wave function. Of course, the same answer is obtained.

2. Using Eq. (3.2):

p̂φ1(x) = i�k cos kx

p̂φ2(x) = −i�k sin kx
These wave functions are not eigenfunctions of the momentum operator. If
they were eigenfunctions, then they would have the form p̂φ(x) = Cφ(x) for
some constant C.

3. We want to find a linear combination ψ = Aφ1(x) +Bφ2(x) such that:

p̂ψ = pψ

for some constant p. Applying Eq. (3.3):

p̂ψ = −i�dψ
dx

= i�k A sin(kx) − i�k B cos(kx)

Since the constants A and B have switched places compared with ψ(x), we
see that an eigenvalue equation can only be formed with something like A=B.
Looking more closely at the eigenvalue condition:
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i�k A sin(kx)− i�k B cos(kx) = p(A cos(kx) +B sin(kx))

then setting the coefficients equal, a solution is found if B = iA and p = �k.
Hence, ψ is an eigenfunction of the momentum when

ψ(x) = A(sin(kx) + i cos(kx)) = Aeikx

where Euler’s formula has been used. This ψ(x) has eigenvalue p = �k.

4. (a) This one-dimensional lattice looks identical if the coordinate system is
shifted by an integer multiple of the lattice spacing a:

ψ(x) = ψ(x + a)

The momentum eigenvalue equation then becomes

p̂ψ(x) = pψ(x) = pψ(x+ a)

(b) Using the ψ(x) from Problem 1, the general solution to this equation is:

ψ(x) = Aeikx = Aeik(x+a)

which has eigenvalue p = �k (see Problem 1).
(c) Using the boundary condition given:

ψ(0) = A = ψ(a) = Aeika

we see that eika = 1. Using Euler’s identity ei2πn = 1 gives ka = 2πn for
integer n. Since the momentum eigenvalue is p = �k:

p =
2π�n

a
=
nh

a

Comparing this with de Broglie’s equation (1.26), p = h/λ we see that the
electron takes on wavelengths λ equal to integer fractions of the lattice spac-
ing a.

5.When E < V (x), then V (x)−E is always positive. The Schrd̈inger equation
then becomes:

d2ψ

dx2
= ω2ψ

where ω2 = 2m(V −E)/�2 is a positive constant. The general solution to this
equation is:

ψ(x) = Aeωx +Be−ωx

This wave function goes to infinity at either x = ∞ or x = −∞ and so it
cannot be normalized.
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6. Note that the thickness L and the constant E0 are unchanged from MAT-
LAB Program 3.2. The only change for this problem is that V0 = 0.2 eV
whereas it was 0.3 eV in Program 3.2. We need only change line 9 of the
MATLAB program to get:

xmax=20;

L=5;

n=5;

delta=xmax/n;

n1=fix(L/delta)+1;

n2=n-n1;

E0=1.759;

v=-ones(n-1,1);

d=[ 2*ones(n1,1); (2+0.2*E0*deltaˆ2)*ones(n2,1) ];

A=diag(v,-1)+diag(v,1) + diag(d);

A(1,2)=-2;

A

[E V] = eig(A);

GroundState = V(1,1)/(E0*deltaˆ2)

After running this program in MATLAB or Octave, the ground state eigen-
value for a five-point grid (n = 5 above) returns a value of 0.0182 (in units
of eV ). Increasing this to a ten-point grid (by changing line 3 of the above
program to n = 10) returns a more accurate value of 0.0284. Note that some
larger values of n cause MATLAB to put the lowest eigenvalue at a loca-
tion other than V (1, 1) (see the last line in the MATLAB program above).
This is not a problem, but requires more effort to find the lowest eigenvalue
by printing out the full set of eigenvalues (remove the semicolon after eig(A).)

7. The eigenfunctions are calculated along with the eigenvalues in line 13 of
MATLAB Program 3.2, where it has [E V] = eig(A). The eigenvectors are
stored in the array E. The wavefunction for the ground state is stored in the
first eigenfunction. To access the first column of the array E, the following
lines can be appended to Program 3.2:

y = E(:,1);

x = 0 : delta : (xmax-delta);

plot(x,y)

Note that the above plots only half of the wavefunction. Since the well is sym-
metric about the origin, the ground state wave function (an even solution)
is also symmetric. To plot the full wave function, one can add the following
lines:
xneg = -x;

plot( x,y, xneg,y)

The resulting plot is very similar to the wavefunction shown in Figure 3.2.
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8. Figure 2.12 is for Problem 2.15, where only the odd solutions are allowed
due to the boundary condition ψ(x = 0) = 0 due to the infinite potential
at x = 0. In the development of Section 3.2, Eq. (3.22) is only for the even
solutions. This must be modified for the current problem to match the current
boundary conditions. In particular:

u′′1 =
u2 − 2u1 + 0

δ2

and all other derivatives are like Eq. (3.21). Hence, we only need to modify
the first line of the matrix A of Eq. (3.24), where the second entry changes
from −2 to −1. The MATLAB code becomes:
xmax=20;

L=10;

n=21;

delta=xmax/n;

n1=fix(L/delta)+1;

n2=n-n1;

E0=1.759;

v=-ones(n-1,1);

d=[ 2*ones(n1,1); (2+0.2*E0*deltaˆ2)*ones(n2,1) ];
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A=diag(v,-1)+diag(v,1) + diag(d);

A

[E V] = eig(A);

OddState = V(1,1)/(E0*deltaˆ2)

Note that L has been changed from Problem 3.6, since the potential well
goes from 0 to 10. One can confirm that the wave function looks reasonable
by plotting the first eigenfunction as in the previous problem. (It may take
more grid points than n = 21 before one sees the boundary conditions prop-
erly satisfied at x = 0.) For the above case with n = 21, the energy of the
lowest (odd) eigenstate is 0.0344 eV . For larger n, the approximation gets
better and the eigenstate approaches an energy of 0.04 eV .
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9. Following Section 3.3.1:

d2ψ1

dx2
+ k1

2ψ1 = 0

and from Eq. (3.37):

k1 =

…
2mE

�2
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giving the general solution for x < 0:

ψ1 = Aeik1x +Be−ik1x

For x > 0, using Eq. (3.34):

d2ψ2

dx2
− k2

2ψ2 = 0 where k2 =

 
2m(V0 − E)

�2

gives the physically acceptable solution Eq. (3.35):

ψ2(x) = De−k2x

Now, we impose continuity of the wave equation at x = 0 and its first deriva-
tives at x = 0:

ψ1(0) = ψ2(0) ⇒ A+B = D

ψ1
′(0) = ψ2

′(0) ⇒ ik1(A−B) = −k2D

Divide both side of the second equation by ik1:

A+B = D (1)

A−B = − k2
ik1

D = i
k2
k1
D (2)

Adding these two equations, and solving for A in terms of D:

2A = D(1 + i
k2
k1

)

A =
1

2
D(1 + i

k2
k1

) (3)

Subtracting (1) from (2), and solving for B in terms of D:

2B = D(1− i
k2
k1

)

B =
1

2
D(1− i

k2
k1

) (4)

Dividing each of equations (3) and (4) by D:

A

D
=

1

2
(1 + i

k2
k1

)

B

D
=

1

2
(1− i

k2
k1

)
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The reflection coefficient R is defined by Eq. (3.31) giving:

R =
|B|2v1
|A|2v1 =

|B|2
|A|2

Using our ratios above:

R =
(BD )∗(BD )

(AD )∗(AD )
=

1
4 (1− ik2

k1
)(1 + ik2

k1
)

1
4 (1 + ik2

k1
)(1 − ik2

k1
)
= 1

10. The probability that the particle is found in the region x > 0 is given by:

P =

∫ ∞

0

|ψ(x)|2 dx

Using Eq. (3.35):

P =

∫ ∞

0

D2e−2k2x dx =
D2

2k2

where k2 is given by Eq. (3.34). This probability is nonzero because of the
uncertainty principle. Over a short period of time Δt, the energy is uncertain
by ΔE/�, and the particle can exist in the region x > 0 because the total
energy is uncertain by this amount.

11. Using the equations just above Figure 3.6, the general solutions for each
region are:

ψ1(x) = Aeik1x +Be−ik1x, x ≤ 0

ψ2(x) = Cek2x +De−k2x, 0 ≤ x ≤ L

ψ3(x) = Feik1x, x ≥ 0

We impose the boundary conditions at x = 0 and x = L:

ψ1(0) = ψ2(0)

ψ1
′(0) = ψ2

′(0)
ψ2(L) = ψ3(L)

ψ2
′(L) = ψ3

′(L)

The first two yield the following system of equations:

A+B = C +D

ik1(A−B) = k2(C −D)
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We divide the second of these by ik1 and add the result to the first to obtain
an expression for A in terms of C and D:

2A = C +D − i
k2
k1

(C −D) (1)

Now, let’s turn to the interface between regions 2 and 3. The boundary con-
ditions produce the following system:

Cek2L +De−k2L = Fek1L

k2Ce
k2L − k2De

−k2L = ik1Fe
k1L

Dividing the second of these equations by k2 reduces the system to:

Cek2L +De−k2L = Fek1L

Cek2L +De−k2L = i
k1
k2
Fek1L

Add the two equations and we can solve for C in terms of F :

2Cek2L = Fek1L + i
k1
k2
Fek1L

C =
F

2

(
1 + i

k1
k2

)
e(ik1−k2)L (2)

Subtract those same equations to solve for D in terms of F :

2De−k2L = Fek1L − i
k1
k2
Fek1L

D =
F

2

(
1− i

k1
k2

)
e(ik1+k2)L (3)

Insert (2) and (3) into (1):

2A =
F

2

(
1 + i

k1
k2

)
e(ik1−k2)L +

F

2

(
1− i

k1
k2

)
e(ik1+k2)L

−ik2
k1

F

2

[(
1 + i

k1
k2

)
e(ik1−k2)L +

(
1− i

k1
k2

)
e(ik1+k2)L

]

Divide both sides by A and simplify:

4 =
F

A

[(
1 + i

k1
k2

)
−
(
i
k1
k2

− 1
)]
eik1L−k2L +

F

A

[(
1− i

k1
k2

)
+
(
i
k1
k2

+ 1
)]
eik1L+k2L

=
F

A

[(
2 + i

k21 + k22
k1k2

)
eik1L−k2L +

(
2 + i

k22 − k21
k1k2

)
eik1L+k2L

]
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Solve for F/A:

F

A
= 4

[(
2 + i

k21 + k22
k1k2

)
eik1L−k2L +

(
2 + i

k22 − k21
k1k2

)
eik1L+k2L

]−1

12. The transmission probability is given by the equivalent of Eq. (3.31):

T =
|F |2v1
|A|2v1 =

∣∣∣∣FA
∣∣∣∣
2

where the region after the barrier has the same momentum p = �k as before
the barrier, and hence the particle flux (given by the velocity v1) cancels out.
Using the result from the previous problem:

4 =
F

A

[(
2 + i

k21 + k22
k1k2

)
eik1L−k2L +

(
2 + i

k22 − k21
k1k2

)
eik1L+k2L

]

Using the given numerical values V0 = 5.0 eV and E = 4.0 eV , along with
the mass of the electron from Appendix A, gives:

k1 = 10.25 nm−1 and k2 = 5.12 nm−1

with k1/k2 = 2. Using these values and the given value L = 0.1 nm:

4 =
F

A

[(
2 + i

5

2

)
e0.512i +

(
2 + i

3

5

)
e1.537i

]

Multiplying through by e−0.512i:

4e−0.512i =
F

A

[(
2 + i

5

2

)
+
(
2 + i

3

2

)
e1.025i

]

Now use the identity:

e1.025i = cos(1.025) + i sin(1.025)

and multiplying through gives

4e−0.512i =
F

A

[
(2 + 2.5i) + (2 + 1.5i)(0.519 + 0.855i)

]
=
F

A

[
(1.755 + 4.99i)

]

It is now straight-forward to take the absolute square and substitute in T :

16 = T [3.08 + 24.9] = 28.0 T

Hence the transmission probability is T = 4/7 or, in percentage, 57%.

13. Using the first equation from Section 3.4:

Δx ·Δpx ≥ �

2

Taking the given values, Δx = 1.0 nm and the value of � from Appendix A:

p ∼ Δp =
1.055× 10−34 J · s
2(1.0× 10−9 m)

= 5.28× 10−26N · s
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14. Using the second equation from Section 3.4:

ΔE ·Δt ≥ �

2

The natural line width is estimated as

ΔE =
1.055× 10− 34 J · s
2(4.0× 10−10 s)

= 1.32× 10−25 J

Converting units:

ΔE = 1.32× 10−25J · 1 eV

1.6× 10−19J
= 8.24× 10−7 eV

15. Using the normalization condition, Eq. (2.18):∫ ∞

−∞
|ψ(x)|2 dx = 1

and inserting the given wave function and boundary conditions:
∫ 1

0

B2e−2x dx = 1

Doing the integral:

B2

Å
−1

2

ã [
e−2 − 1

]
= −0.5(0.1353− 1) = 0.432

Taking the square root, B = 0.658.

16. Using Eq. (3.43) for the average value of an observable:

〈Q〉 =
∫
ψ∗(x)Q̂ψ(x) dx

where Q̂ is the corresponding operator. In this case the kinetic energy is:

p̂2

2m
= − �

2

2m

d2

dx2

The integral becomes:

〈KE〉 =
∫ 1

0

Be−x(− �
2

2m

d2

dx2
)Be−xdx

= − �
2

2m
B2

∫ 1

0

e−2xdx

=
�
2

4m
B2[e−2 − 1]

where B is the normalization constant found in problem 15. Note that B must
have the same units as momentum, m/s, to give KE in units of J .
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