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The Hydrogen Atom - Solutions

1. The radial wave function, Pnl(r) are given in Table 4.2. For the 1s state of
hydrogen:

P10(r) =
2√
a0

Å
r

a0

ã
e−r/a0

where n = 1 and l = 0. The radial probability density for this state is:

P10(r)
2 =

4r2

a30
e−2r/a0
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A plot of this function is easily made using standard plotting software. For
example, using MATLAB:
r = 0.0 : 0.1 : 5.0;

P = 4*r.*r.*exp(-2*r);

plot(r,P)

This will plot the probability density in units of the Bohr radius, a0.

2. Using the radial probability density for the 1s state in the above problem:

P10(r)
2 =

4r2

a30
e−2r/a0

The maximum is found by taking the first derivative and equating to zero:

d

dr
|P10(r)|2 =

4r

a30
e−2r/a0 − 4r2

a40
e−2r/a0 = 0

Divide both sides by e−2r/a0 :

4r

a30
− 4r2

a40
= 0

One solution is r = 0 but we see that P10(0)
2 = 0 and so this cannot be the

maximum. The other solution is r = a0. This solution is consistent with Bohr
model of the hydrogen ground state.

3. The solution to this problem is given exactly in Example 4.4:

〈r〉 =
∫ ∞

0

r P10(r)
2 dr

The intermediate steps are given in Example 4.4. The answer is:

〈r〉 = 3a0
2

Based on the long tail at large r in the plot of P1s in Figure 4.7(a), it is easy
to conclude that the average value of r should be larger than the maximum
of P1s. From the previous problem, we know the maximum of P1s occurs at
r = a0 and indeed 〈r〉 is a factor of 1.5 times larger.

4. Starting with Eqs. (4.7) and (4.8):

dP = |ψ(r)|2r2sin(θ) dr dθ dψ
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and using Eq. (4.4):

ψ(r, θ, φ) =
Pnl(r)

r
Θlm(θ)Φm(θ, φ)

where Pnl(r), Θlm(θ), and Φm(θ, φ) for the 1s state may be found in Tables
4.1 and 4.2. Plugging these in for the 1s state with Z = 1:

ψ(r, θ, φ) =
1√
π

1

a
3/2
0

e−r/a0

Integrating to find the probability:

P =

∫
|ψ(r, θ, φ)|2r2sin(θ) dr dθ dφ

=
1

π

1

a30

∫ a0

0

r2e−2r/a0 dr

∫ π

0

sin(θ) dθ

∫ 2π

0

dφ

=

∫ a0

0

4r2

a30
e−2r/a0 dr

Substituting ρ =
r

a0
:

P = 2

∫ 1

0

ρ2e−2ρdρ

This integral may be solved analytically using integration by parts:

∫ 1

0

ρ2e−2ρ dρ = −1

2
e−2ρρ2

∣∣∣1
0
−
∫ 1

0

2ρ

Å
−1

2
e−2ρ

ã
dρ

= −1

2
e−2 +

Å
−1

2

ã
e−2ρρ

∣∣∣1
0
−
∫ 1

0

Å
−1

2

ã
e−2ρdρ

=
1

4
(1 − 5e−2)

Numerically, P = 0.081, so the electron spends 8.1% of its time inside the
Bohr radius.

5. Using a similar approach to that of Problem 2 above, but for the 2s state
with Z = 1,

P20(r) =

 
1

2a0

r

a0

Å
1− r

2a0

ã
e−r/2a0

The maximum is found by taking the first derivative and equating to zero: 
1

2a0

ï
1

a0

Å
1− r

2a0

ã
+

r

a0

Å−1

2a0

ã
+

r

a0

Å
1− r

2a0

ãÅ−1

2a0

ãò
e−r/2a0 = 0
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Divide both sides by e−2r/a0 and multiply through by overall constants:Å
1− r

2a0

ã
− r

2a0
− r

2a0

Å
1− r

2a0

ã
= 0

Setting x = r/2a0 and collecting terms:

1− 3x+ x2 = 0

Solving the quadratic equation gives:

x =
3±√

5

2

and substituting back for x gives r = a0(3±
√
5). It is a simple matter to plot

P20(r), which shows that the maximum is at r = a0(3−
√
5).

6. The 3d radial function, given by Table 4.2, is: 
2Z

15a0

2

81

Å
Zr

a0

ã3
e−Zr/3a0

In units of the Bohr radius a0, plotting with MATLAB:
Z = 1;
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r = 0.0 : 0.5 : 70.0;

P3d = 0.0090*sqrt(Z)*Z*Z*Z*r.*r.*r.*exp(-Z*r/3);

plot(r,P3d)

This gives the same plot as shown in Figure 4.8. To plot the case with Z = 8,
it is only necessary to change the first line and the range in the second line.
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7. The 3d radial function is shown in the previous problem. Taking the deriva-
tive and setting it equal to zero:

Å
Z

a0

ã3 ï
3r2 + r3

Å−Z
3a0

ãò
e−Zr/3a0 = 0

Dividing through by e−Zr/3a0 and overall constants:

3

Å
r

a0

ã2
− Z

3

Å
r

a0

ã3
= 0

Since the wave function is zero at r = 0, this cannot be the maximum. Solving
for r,
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r =
9a0
Z

For Z = 1, the maximum is at 9a0, but for Z = 8, the maximum is much
smaller, at 1.125a0. An electron in a 3d orbit is much closer to the Z = 8
nucleus than for hydrogen with Z = 1.

8. From Example 4.3 (or Table 4.2), the 2p radial probability is

|P21(r)|2 dr = 1

24a0

Å
r

a0

ã4
e−r/a0 dr

Following Example 4.4, but for the average value given here:

〈 1
r3

〉 =
∫ ∞

0

|P21(r)|2 1

r3
dr

=
1

24a0

∫ ∞

0

Å
r

a0

ã4
e−r/a0

1

r3
dr

Substituting ρ = r/a0:

〈 1
r3

〉 = 1

24a30

∫ ∞

0

ρe−ρ dρ

Integrating by parts
∫ ∞

0

ρe−ρ dρ = −ρe−ρ
∣∣∣∞
0

−
∫ ∞

0

(−e−ρ) dρ

The first term is zero and the second term integrates to unity. The answer is:

〈 1
r3

〉 = 1

24a30

9. Using the radial wave function from Table (4.2) for the 3d state of hydrogen:

P32(r) =

 
2

15a0

2

81

Å
r

a0

ã3
e−r/3a0

Following example 4.4, the average value is:

〈r〉 =
∫ ∞

0

|P32(r)|2r dr = C2

a0

∫ ∞

0

Å
r

a0

ã6
e−2r/3a0r dr

where C =
√
2/15(2/81) are the constants in P32(r). Substituting ρ = r/a0:

〈r〉 = a0C
2

∫ ∞

0

ρ7e−2ρ/3 dρ
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This integral can be evaluated by integrating by parts 7 times:

〈r〉 = a0C
2(7!)

Å
3

2

ã7 ∫ ∞

0

e−2ρ/3 dρ

The integral is easily evaluated, giving another factor of 3/2. Pluggin in C2:

〈r〉 = a0

Å
22

94
2

15

ã
(7 · 6 · 5 · 4 · 3 · 2)

Å
3

2

ã8

=
21

2
a0

10. Following Example 4.1, for a given n-state, the possible values of l are
n-1, n-2, . . . 0. Therefore, n = 5 allows l = 0, 1, 2, 3, 4. For a given l value, the
possible magnetic quantum numbers areml = −l, (−l+1), . . .0, 1, . . . , (l−1), l.
For n = 5 the results are:

l = 0 : m = 0

l = 1 : m = −1, 0, 1

l = 2 : m = −2, −1, 0, 1, 2

l = 3 : m = −3, −2, −1, 0, 1, 2, 3

l = 4 : m = −4, −3, −2, −1, 0, 1, 2, 3, 4

11. Using Eq. (4.6), we have the relationship:

n = l + ν + 1

where ν is the number of nodes. Following Example 4.2, but for the 5d state:

5 = 2 + ν + 1

giving ν = 2 as the number of nodes in the wavefunction.

12. Using Eq. (4.4), a wave function is a product of radial and angular parts:

ψ(r, θ, φ) =
Pnl(r)

r
Θlml

(θ)Φ(φ)

and for this problem, ψ(r, θ, φ) = C cos(θ)r e−Zr/2a0 . For the angular part,
cos(θ) appears in Table 4.1 for the spherical harmonic corresponding to l = 1
and ml = 0. The factor C is just a normalization constant. For the radial
part, from the LHS of Eq. (4.5):

−�
2

2m

d2

dr2
Pnl(r) +

�
2l(l + 1)

2mr2
Pnl(r)− 1

4πε0

Ze2

r
Pnl(r)
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where Pnl(r) = r2 e−Zr/2a0 . Taking the second derivative of the radial wave
function:

d2

dr2
Pnl(r) = 2e−Zr/2a0 − 2rZ

a0
e−Zr/2a0 +

Z2r2

4a0
e−Zr/2a0

Substituting in l = 1 and collecting terms, the LHS of Eq. (4.5) becomes:

�
2rZ

ma0
e−Zr/2a0 − Ze2r

4πε0
e−Zr/2a0 +

�
2Z2r2

8ma0
e−Zr/2a0

Recall from Eq. (1.20) that the Bohr radius a0 may expressed as follows:

a0 =
4πε0�

2

me2

Substituting this expression into the first term of the previous equation, the
first two terms cancel. Completing Eq. (4.5):

�
2Z2

8ma0
r2e−Zr/2a0 = EPnl(r)

The radial wave function is in fact an eigenfunction of the Schrödinger equa-
tion with corresponding eigenvalue (energy):

E =
�
2Z2

8ma0

13. Using the Coulomb energy levels given, with the constants evaluated:

En = −13.6
Z2

n2

Evaluating this for hydrogen with n = 1, 2, 3:

E1 = −13.6 eV, E2 = −3.4 eV, E3 = −1.51 eV

For the Ne+9 nucleus with one electron, Z = 10 and the energy levels are:

E1 = −1360 eV, E2 = −340 eV, E3 = −151 eV

14. Using Eq. (4.5):

Å−�
2

2m

d2

dr2
+

�
2l(l + 1)

2mr2
− 1

4πε0

Ze2

r

ã
Pnl(r) = EPnl(r)

where Z = 1 for hydrogen. From Eq. (1.20):
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a0 =
4πε0�

2

me2

and substituting r = a0ρ:Å−�
2

2m

d2

d(ρa0)2
+

�
2l(l+ 1)

2m(ρa0)2
− �

2

ma0

Z

(ρa0)

ã
Pnl(r) = EPnl(r)

Factoring out the constant terms:

�
2

ma20

Å
−1

2

d2

dρ2
+
l(l + 1)

2ρ2
− Z

ρ

ã
Pnl(r) = EPnl(r)

Substituting back for a0, we get the desired result:

1

a0

e2

4πε0

Å
−1

2

d2

dρ2
+
l(l + 1)

2ρ2
− 1

ρ

ã
Pnl(r) = EPnl(r)

15. a) Using l = 1, this simplifies to:

V1(ρ) =
1

ρ2
− 1

ρ

and a sketch can be easily made using standard plotting software.
b) Using n = 3 from Problem 13, and l = 1:

1

ρ2
− 1

ρ
=

−1.5 eV

27.2 eV
= −0.055

Solving for rho gives a quadratic equation:

−0.055ρ2 + ρ− 1 = 0

with solutions ρ = 1.062 and ρ = 17.12. These are the classical turning points.
c) From the sketch, we see that V1(ρ)−E is negative below the turning points,
and positive outside. By the equality given in the previous problem, clearly
the derivative term has the opposite sign. So the ratio (dP31

dρ2 )/P31 is negative
outside of the turning points and positive inside.
d) The radial function is given by Table 4.2:

P31(r) =

 
2

3a0

4

27

Å
r

a0

ã2 Å
1− r

6a0

ã
e−r/3a0

or in terms of ρ:

P31(r) ∝ ρ2
(
1− ρ

6

)
e−ρ/3

This is easily plotted using standard plotting software. The constant terms
can be ignored, since only the shape of the wave function is relevant here. The
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shape can be seen in Fig. 4.7(b) of the text. Outside of the turning points, the
wavefunction quickly heads towards zero. This is expected, since it is outside
the range where it is classically allowed. Inside the turning points, the wave-
function has the shape of an oscillation (a wave).

16. The problem follows the development of Section 2.5. Starting with Eq.
(4.15):

ï
�
2

2m
∇2 + V (r, t)

ò
ψ = i�

∂ψ

∂t

Substituting ψ(r, t) = φ(r)T (t) into Eq. (4.15):

Hφ(r)T (t) = i�φ(r)
∂T (t)

∂t

where H represents the operator in the square brackets. Since r and t are
independent and H operates only on r:

Hφ(r)

φ(r)
=

i�

T (t)

∂T (t)

∂t

Setting this equal to the separation constant E:
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i�

Å
1

T (t)

∂T (t)

∂t

ã
= E

Moving dt to the RHS and integrating:

lnT (t) = −iE
�
t

Setting ω = E/� and solving for T :

T (t) = e−iωt

The solution for φ(r) is similarly obtained by solving the time-independent
equation. The wavefunction is:

ψ(r, t) = φ(r) e−iωt

which is the desired result.

17. The transition integral is given by the integral in Eq. (4.21):∫
φ∗n1l1m1

l

Å
z

a0

ã
φn2l2m2

l
dV

For the transition 3d1 → 2p1, this integral becomes:∫
φ∗3,2,1

Å
z

a0

ã
φ2,1,1 dV

where φnlm is the spatial wavefunction for hydrogen. Using Tables 4.1 and
4.2, and writing ρ = r/a0:

φ3,2,1 =
P3,2(r)

r
Y2,1(θ, φ)

2
√
2

81
√
15
ρ2e−ρ/3

Ç
−
…

15

8π
sin(θ) cos(θ)eiφ

å

φ2,1,1 =
P2,1(r)

r
Y1,1(θ, φ)

=
1

2
√
6
ρe−ρ/2

Ç
−
…

3

8π
sin(θ)eiφ

å

where the factors 1/
√
a0 in front of the constant terms from Table 4.2 have

been absorbed into the z/a0 term in the integral. Taking the complex conju-
gate of φ3,2,1, and converting z = r cos(θ) to spherical coordinates:∫

φ∗3,2,1

Å
z

a0

ã
φ2,1,1 dV =

1

648π

∫
ρ4e−5ρ/6 sin2(θ) cos2(θ) dV

=
1

648π

∫ ∞

0

∫ π

0

∫ 2π

0

ρ6e−5ρ/6 sin3(θ) cos2(θ) dρ dθ dφ
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Carrying out the integrations:

1

648π

∫ ∞

0

r6e−5r/6dr

∫ π

0

sin3 θ cos2 θ dθ

∫ 2π

0

dφ

2π

648π

∫ ∞

0

r6e−5r/6dr

∫ π

0

(1 − cos2 θ) cos2 θ d(cos θ)

=
1

324

ñ
6!

Å
6

5

ã7ôÅ 4

15

ã
= 2.123

18. To find the transition coefficient for polarized light from hydrogen, use
the results found in Appendix FF (online) along with Eqs. (4.20) and (4.21).
According to the selection rules in Table 4.3, Δml = ±1 for x- and y-polarized
light. Therefore, we must calculate the transition integrals for both the 2p1 →
1s0 and 2p−1 → 1s0 cases. As in Appendix FF, use the following in place of
the z operator in Eq. (4.21):

x =
1

2
(r+ + r−)

y =
1

2i
(r+ − r−)

For the case of x-polarized light:

I12 = 2(|φ∗1s0xφ2p1 |2 + |φ∗1s0xφ2p−1|2)
Substituting the above expression for x:

φ∗1s0xφ2p1 =
1

2
(φ∗1s0r+φ2p1 + φ∗1s0r−φ2p1)

φ∗1s0xφ2p−1 =
1

2
(φ∗1s0r+φ2p−1 + φ∗1s0r−φ2p−1)

where φ∗1s0r+φ2p1 and φ∗1s0r−φ2p−1 are both equal to zero. Using the results
given in Appendix FF for the remaining terms:

I12 = 2

Å
1

6
R2

i +
1

6
R2

i

ã
=

2

3
R2

i

Using the results of Eqs. (4.23) and (4.26):

A21 =
6.078× 1015

(121.6)3
1.109

6
= 6.25× 108 per atom per second

The same procedure is used for y-polarized light. The transition integral is:

I12 = 2(|φ∗1s0yφ2p1 |2 + |φ∗1s0yφ2p−1|2)



13

Substituting for y:

φ∗1s0yφ2p1 =
1

2i
(φ∗1s0r+φ2p1 − φ∗1s0r−φ2p1)

φ∗1s0yφ2p−1 =
1

2i
(φ∗1s0r+φ2p−1 − φ∗1s0r−φ2p−1)

The nonzero terms give the transition integral:

I12 = 2

Å−1

6
R2

i +
−1

6
R2

i

ã
=

−2

3
R2

i

The result for y-polarized light is:

A21 =
6.078× 1015

(121.6)3
−1.109

6
= −6.25× 108 per atom per second

The minus sign can be ignored since by definition the integral in Eq. (4.21) is
positive definite.

19. Using the selection rules from Table 4.3:

Δl = ±1

Hence, a p-state (l = 1) can decay to either a d-state or an s-state with lower
n. The possible final states are: 3d, 3s, 2s or 1s. Note that we require l < n
so there is no d-state for n = 1, 2 (as shown in Figure 4.5).

20.(a) Assuming that the angular momentum vector l lies on the surface of
a cone as in Figure 4.16, the radius of the circle at the base of the cone is:

r = |l| sin θ = l sin θ

And, for a change of the azimuthal angle dφ, the distance that the tip of the
angular momentum vector moves is given by:

dl = l sin θ dφ

b) Using the relationship of the torque to angular to momentum:

∣∣∣∣dldt
∣∣∣∣ = |τ |

Using Eq. (4.40) gives:

∣∣∣∣dldt
∣∣∣∣ = e

2m
|l×B|
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The definition of the vector product gives:

∣∣∣∣dldt
∣∣∣∣ = e

2m
lB sin(θ)

Substituting d|l| = l sin θ dφ:

l sin(θ)
dφ

dt
=

e

2m
lB sin(θ)

This gives the Lamar frequency:

ωL =
dφ

dt
=
eB

2m

21. From Section 4.3.4, for the f -state with l = 3, the possible values of ml

and ms are:

ml = −3,−2,−1, 0, 1, 2, 3

ms = −1

2
,+

1

2

22. The total angular momentum of the 4f electron will is the vector sum
of the electron’s spin and its orbital angular momentum. Following Section
4.3.4:

J = j1 + j2, j1 + j2 − 1, . . . |j2 − j1|

Here, j1 is the orbital angular momentum and j2 is the spin. So for an electron
in the f -state, j1 = 3, with spin j2 = 1/2, the possible values for J are:

J =
7

2
,
5

2

Using Eq. (4.50), the spin-orbit coupling energy is:

Es−o =
ζ�2

2
l =

3ζ�2

2
for j = l +

1

2

Es−o =
−ζ�2
2

(l + 1) = −2ζ�2 for j = l − 1

2

Hence the levels are split by ΔEs−o = (7/2)ζ�2.

23. An electron in the 2p state, with l = 2 and s = 1/2, has possible values:

j =
3

2
,
1

2
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Using Eq. (4.56) and the equations that follow:

g3/2 =
4

3
and g1/2 =

2

3

The splitting of the m-levels is:

ΔE = gjμBBmj

where μB is the Bohr magneton given in Appendix A and we are given B =
5 T . For j = 3/2, the possible mj values and energy splittings ΔE are:

mj ΔE (eV )
+(3/2) 5.796× 10−4

+(1/2) 1.932× 10−4

-(1/2) −1.932× 10−4

-(3/2) −5.796× 10−4

Similarly, for j = 1/2, the energy splittings are ΔE = ±0.966× 10−4 eV for
mj = ±1/2, respectively.

24. Using Eq. (4.50), the separation in energies due to spin-orbit coupling is:

ΔE =
ζ�2

2
l −
Å−ζ�2

2

ã
(l + 1) =

Å
ζ�2

2

ã
(2l+ 1)

Since we are using the atomic system of units, � = 1:

ΔE =
ζ

2
(2l + 1) (1)

For a p-state in He+with l = 1 we are given in these units:

ΔEHe+ = 7.9× 10−6

which results in ζHe = 5.27×10−6. Using Eq. (4.51), the relationship between
ζHe and ζNe just depends on Z4. (Note that the average value in the brackets
of Eq. (4.51) is the same in both cases.) This gives:

ζNe

ζHe
=

104

24
= 625

Plugging in the above value for ζHe gives:

ζNe = 3.29× 10−3

The separation between the 3p3/2 and 3p1/2 levels is then:

ΔE =
3.29× 10−3

2
(2l+ 1) = 4.94× 10−3

A comparison with the separation of the corresponding helium states reveals
the vastly increased impact of spin-orbit coupling for neon.
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