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The Emergence of Masers and Lasers -
Solutions

1. From Figure 6.7, the 4F2 band ranges from about 17, 000 cm−1 to 19, 000
cm−1. The units tell us that these quantities are given in terms of 1/λ, the
inverse of the light’s wavelength. Using Eq. (1.22):

f =
c

λ

where c is the speed of light (in units of cm/s). Converting to frequency:

17× 103cm−1
(

3× 1010
cm

s

)
= 5.1× 1014Hz

19× 103cm−1
(

3× 1010
cm

s

)
= 5.7× 1014Hz

Similarly, for 4F1:

23× 103cm−1
(

3× 1010
cm

s

)
= 6.9× 1014Hz

27× 103cm−1
(

3× 1010
cm

s

)
= 8.1× 1014Hz

2. From Figure 6.9, the 2p to 1s transitions are shown by dashed lines with
wavelengths ranging from 5944 Å to 6678 Å. The level splittings are are shown
in Figure 6.9 next to the 2p and 1s symbols (note that 2p is repeated twice in
the Paschen notation used in this figure–we want the lower-energy one here).
By carefully measuring the energy of the 2p3 and 1s3 states, the wavelength
of this transition can be estimated at approximately 6250 Å = 6250×10−10 m.

3. In the JK coupling scheme, we couple the angular momentum of the core,
J , to the angular momentum of the electron, L. For neon, with a configuration
2p5(2P3/2)3p1, where the term in the parenthesis uses spectroscopy notation
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2s+1LJ (see Section 5.4.1), the core has J = 3/2 coupled with the excited
electron in the 3p orbital with l = 1. Following the rules for addition of
angular momentum from Section 4.3.4:

K = J + l

then the possible values for K are:

|K| = J + l, J + l − 1, . . . |J − l| = 5

2
,

3

2
,

1

2

The total angular momentum includes spin, which is K + S where |S| = 1/2.
Hence, the possible values for the total angular momentum are: 3,2,1,0.

4. The hyperfine interaction couples the spin of the nucleus to the spin of the
electron. Given that I = 1/2 and the electron’s spin S = 1/2, and using the
rule for addition of angular momentum from Section 4.3.4:

F = I + S

giving the possible values of |F| = 0, 1. In a magnetic field, these lines will
be split, similar to the drawing shown in Fig. 4.21, with magnetic substate
of MF = −1, 0, 1. Of course, the state with |F| = 0 has no splitting and is
degenerate with the MF = 0 substate.

5. Using Eq. (6.7) with F = 1, I = 1/2 and S = 1/2:

gF =
(1)(1 + 1)− 1

2 ( 1
2 + 1) + 1

2 ( 1
2 + 1)

(1)(1 + 1)
= 1

The energy splitting in a magnetic field B is given by combining Eqs. (6.3)
and (6.5):

Emag = gFµBBMF

where from the problem above the only non-zero MF values are ±1. Since
gF > 0, the states with positive MF have a positive energy in a B-field. From
Eq. (6.5),

µz = −gFµBMF

and so states with positive MF have a negative µz and vice-versa. Hydrogen
atoms with a positive µz value will be drawn to regions of high magnetic
field outside the magnetic trap (since the trap has a local minimum of B, as
described in Section 6.4). These atoms will be lost, decreasing the average
kinetic energy and temperature of the remaining atoms caught in the trap.
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6. We are given that µz = −gSµBSz + gNµNIz where Sz and Iz are the
projections of the particle spin along the total angular momentum F :

Sz =
(S · F)Fz

F · F

Iz =
(I · F)Fz

F · F
Using the rules for addition of angular momentum from Section 4.3.4 with
F = S + I:

(S · F) =
1

2
(F 2 + S2 − I2)

(I · F) =
1

2
(F 2 + I2 − S2)

where the eigenvalue for any angular momentum operator J2 is J(J + 1) and
similarly for Jz the eigenvalue is MJ . Plugging this in gives:

Sz =
1

2

ï
F (F + 1) + S(S + 1)− I(I + 1)

F (F + 1)

ò
MF

Iz =
1

2

ï
F (F + 1) + I(I + 1)− S(S + 1)

F (F + 1)

ò
MF

The z-component of the magnetic field then becomes:

µz = −gs
2
µB

ï
F (F + 1) + S(S + 1)− I(I + 1)

F (F + 1)

ò
MF

+
gN
2
µN

ï
F (F + 1) + I(I + 1)− S(S + 1)

F (F + 1)

ò
MF

Using the definition of gF given by Eq. (6.6) and the approximate form (6.7),
this simplifies to:

µz = −gFµBMF

which is the desired result.

7. Given S = 1/2 and I = 5/2, the possible values for F are F = 2, 3. These
levels split as follows:

F = 3 : MF = −3, −2, −1, 0, 1, 2, 3

F = 2 : MF = −2, −1, 0, 1, 2

The MF = −3 and MF = 3 states are not mixed with any states, and will be
“pure” states, with straight lines on a plot like Figure 6.11. The other states
of F = 3 and all states where F = 2 will be mixed, and their energy values
make curved lines on a plot like Figure 6.11.
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