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Statistical Physics - Solutions

1. There are sixteen possible outcomes of flipping a coin four times. Using Eq.
(7.3) to calculate the statistical weight for N = 4, with n equal to the number
of heads obtained in each distribution:
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2. Since there is no particular order to the grouping, use Eq. (7.3) with N = 4
and n = 2: Ç
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3. Using Eq. (7.7) for each energy level:
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Divide the above two equations:
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n2

n1
= 2e−(ε2−ε1)/kBT

We are given ε2 − ε1 = 0.025 eV, T = 298K, and kB from Appendix A:

n2

n1
= 2 exp

Å −0.025 eV

(8.617× 10−5 eV/K)(298K)

ã
= 0.755

So 75.5% of the electrons are in the first excited state and 24.5% are in the
ground state.

4. Starting with Eq. (7.20), and letting a = 1/(2mkBT ),

∫ ∞

0

P (p) dp =
4a3/2√

π

∫ ∞

0

p2e−ap2

dp

The integral itself is of the form of Eq. (7.18) with u = p and n = 2:

∫ ∞

0

u2e−au2

du = I2(a)

Using Appendix G:

I2(a) =

√
π

4a3/2

shows that the probability distribution is normalized as given in Eq. (7.21).

5. F1(u) is defined as:

F1(u) =
4√
π
u2e−u2

Maximizing F1(u) by setting the derivative of F1(u) equal to zero:

dF1

du
=

4√
π
(2ue−u2 − 2u3e−u2

) = 0

2ue−u2

(1− u2) = 0

u = 0, ±1

The negative solution has no physical interpretation. Also, F1(0) = 0,so F1(u)
has a maximum at u = 1. This agrees with the plot shown in Figure 7.2.

6. The average value of v2 is given by:

〈v2〉 =
∫ ∞

)

v2 P (v) dv

=

∫ ∞

0

4π
( a

π

)3/2

v4e−av2

dv
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where a = m/(2kBT ). Pulling out the constant terms, the integral is of the
form given by Eq. (7.18)

∫ ∞

0

v4e−av2

dv = I4(a) =
3

(2a)2
· 1
2

…
π

a

So the average value is:

〈v2〉 = 4a3/2√
π

Å
3
√
π

8a5/2

ã
=

3

2a
=

3kBT

m

7. The root-mean-square (rms) speed is defined as:

vrms =
»
〈v2〉 =

…
3kBT

m

From Problem 5, the most probably speed corresponds to u = 1 or, using Eq.
(7.23),

vp =

…
2kBT

m

Comparing the two, vrms > vp by a factor of
√
3/2 = 1.22. In Figure 7.2, the

rms speed would be plotted at u = 1.22.

8. The problem is to find the percentage of CO2 molecules that have a speed
greater than the given escape velocity ve = 5000m/s, assuming a temperature
of T = 240 K. Using the masses from Appendix B:

m = mC + 2mO � (12.0 + 32.0)
10−3kg

mole

Å
1 mole

6.022× 1023

ã
= 7.31× 10−26 kg

atom

Plugging this into Eq. (7.23), the dimensionless variable is:

u = v

…
m

2kBT
= v

 
7.31× 10−26kg

2(1.38× 10−23 J/K)(240K)
= v

(
3.32× 10−3 s

m

)

and using the value of ve gives ue = 16.6. To get the fraction of atoms with
speeds above this value, integrate the probability distribution (given just be-
low Eq. (7.23)):

∫ ∞

ue

P (u) du =
4√
π

∫ ∞

16.6

u2 e−u2

du

This integral can be done numerically with MATLAB (see Appendix C) using
the following commands:
P = @(u) u.*u.*exp(-u.*u);

int value = integral(P,16.6,100.0)
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where infinity has been approximated by 100. The result is about 1.0×10−117,
which means that essentially no CO2 atoms have a speed above the escape
velocity.

9. The most probable speed vp is given by Eq. (7.24), which corresponds to
up = 1 as shown in Problem 5. Calculating the fraction of atoms with speeds
above up follows along the same lines as the previous problem by integrating
the probability distribution:

∫ ∞

up

P (u) du =
4√
π

∫ ∞

1

u2 e−u2

du

In terms of MATLAB commands,the integral part is found by:
P = @(u) u.*u.*exp(-u.*u);

int value = integral(P,1.0,100.0)

where again infinity has been approximated by 100. The integral has a value
of about 0.2536. Multiplying by 4/

√
π gives 0.572. So about 57.2% of atoms

have speeds greater than the most probably one. Similarly, the integral from
zero to 1.0 gives 0.1895, and multiplying by 4/

√
π gives 0.428, or 42.8% have

speeds less than vp.

10. The average kinetic energy for each degree of freedom is (Example 7.4):

εav =
1

2
kBT

Plugging in for T = 298 K and using kB from Appendix A:

εav =
1

2
(1.38× 10−23 J/K)(298 K) = 2.06× 10−21J

In units of eV , this is εav = 0.013 eV .

11. As in the problem above:

εav =
3

2
kBT

The total kinetic energy of a mole of gas is (using NA from Appendix A):

ε =
3

2
(1.381× 10−23 J/K)(298 K)(6.022× 1023) = 3717 J

12. The specific heat is defined as the energy divided by the temperature:

ε

T
=

1

2
kB
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for each degree of freedom. Using the information provided:

Atoms :
3

2
kBNA = 12.5 J/K

Diatomic :
5

2
kBNA = 20.8 J/K

Polyatomic :
6

2
kBNA = 24.9 J/K

13. Using Eq. (7.28):

u(f) =
8πf2

c3

Å
hf

ehf/kBT − 1

ã

Setting x = hf/(KBT ) and taking the differential:

u(x) = 8π

Å
kBT

hc

ã3
hx3 (ex − 1)−1

du(x)

dx
= 8π

Å
kBT

hc

ã3
hx3

[
3x2(ex − 1)−1 − x3(ex − 1)−2 · ex]

Setting it equal to zero, the constant terms divide out. Multiplying by (ex−1)2:

du

dx
= 3x2(ex − 1)− x3ex = 0

The maximum is not at x = 0, so dividing by x2:

(3ex − 3)− xex = 0

gives the transcendental equation (3− x)ex = 3. This can be solved by either
plotting it or using the technique of successive approximation. The answer is
x = 2.821.

14. Integrating the energy density for a frequency range, Eq. (7.28), over all
frequencies:

∫ ∞

0

u(f) df =

∫ ∞

0

8πf2

c3

Å
hf

ehf/kBT − 1

ã
df

Let μ = hf/kbT and pull out the constant terms:

8πk4BT
4

c3h3

∫ ∞

0

μ3

eμ − 1
du =

8πk4BT
4

c3h3
(3!)

Å
π4

90

ã

where the value of the integral is from Appendix G, Eqs. (G.20) and (G.22).
Plugging in the numbers with T = 3000 K:
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∫ ∞

0

u(f) df =
48π5

90

Å
(1.38× 10−23 · 3000)4

(3.00× 108 · 6.626× 10−34)3

ã
= 0.0611

J

m3

15. Using Eq. (7.28):

u(f) =
8πf2

c3

Å
hf

ehf/kBT − 1

ã

Converting to wavelength using f = c/λ.

u(λ) =
8π(c/λ)2

c3

Å
h(c/λ)

ehc/λkBT − 1

ã
=

8π

λ3

Å
h

ehc/λkBT − 1

ã

16. Using Eq. (7.39) and given T = 5800 K:

I = σT 4 =

Å
5.67× 10−8 J

m2s K4

ã
(5800 K)4 = 6.42× 107

W

m2

Note that this is the intensity of light at the Sun’s surface. By the time it
reaches the Earth, the intensity has dropped by 1/r2 where r is approxi-
mately the Earth-Sun distance.

17. Using Eq. (7.37), the most probably frequency of light is:

hf

kBT
= 2.821

Since we want the energy of the photons, use E = hf , given T = 5800 K:

E = hf =(2.821)(kBT )

=(2.821)(8.62× 10−5 eV/K)(5800 K)

=1.41 eV

The probability of photons in a given energy range ΔE is:

P =
I(E)ΔE

Itotal

where Eq. (7.38) gives the numerator and Eq. (7.39) gives the denominator
(found in the previous problem). We are given an energy range, from 1.75
to 1.80 eV . It is most convenient to work with the dimensionless variable
u = hf/KBT with E = hf and here T = 5800 K gives kBT = 0.50 eV . So
the range 1.75-1.80 eV corresponds to u in the range 3.5-3.6. Plugging the
numbers into Eq. (7.38) in terms of u:

I(u) du =
�

4π2c2

Å
kBT

�

ã4 ∫ 3.6

3.5

u3

eu − 1
du
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For a small enough range in u, we can approximate u by its central value,
u = 3.55, and du � Δu = 0.1. For constant u:

I(u) Δu � c

4π2(�c)3
(kBT )

4 u3

eu − 1
Δu

=
3.0× 1017 nm/s

4π2(197.3 eV · nm)3
(0.5eV )4

(3.55)3

e3.55 − 1
(0.1)

= 8.18× 106
eV

nm2 · s
Converting this to standard units, I(E) ΔE = 1.31× 106 J/(m2 · s). Then:

P =
1.31× 106

6.42× 107
= 0.0204

so about 2% of all photons from the Sun are in the energy range 1.75-1.8 eV .
Repeating the same procedure, but for the energy range 3.05-3.10 eV , the
probability is only P = 0.0077 or less than 0.8%.

18. From Eqs. (7.46) and (7.47):

dE = −P dV

and by conservation of energy for a closed system:

dE1 + dE2 = 0

Combining the above equations:

P1dV1 = −P2dV2

If the pressure of the two parts are equal, then dV1 = −dV2. In other words
the volume of each partition will adjust, since the wall is moveable (keeping
the total volume constant), until equilibrium is obtained.

19. Using Eq. (7.50), the work done on the gas is given by:

dW = −PdV

We are given the ideal gas law. Solving for P :

P =
nRT

V

Using this P and ntegrating for constant T :

W = −nRT

∫ V3

V2

dV

V
= −nRT ln

Å
V3

V2

ã
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as desired. Next, using Eq. (7.48):

dE = dQto + dWon

The energy remains constant between points 2 and 3, so dE = 0 and using
the above result for dW :

dQto = nRT ln

Å
V3

V2

ã

20. Using the first law of thermodynamics, Eq. (7.48) gives

dE = dQto + dWon

Between points 1 and 2, no heat is exchanged, so dQ = 0 and

dE = dWon = PdV 1 → 2

where P depends on both T and V . In contrast, between points 2 and 3, the
temperature remains constant, so P only depends on V . Since there is an
added term for T in the first case, we expect a steeper change in P for an
equivalent change in V .

21. Using Eq. (7.66):

1

2.612

Å
N

V

ã
=

Å
2πmkBTc

h2

ã3/2

Solving for Tc:

Tc =

Å
1

2.612

N

V

ã2/3 h2

2πmkB

Substitute the given density:

N

V
= 5.0× 1014

atoms

cm3
= 5.0× 1020

atoms

m3

Using the value of h and kB from Appendix A:

Tc = (3.32× 1013)
h2

2πmkB
=

1.68× 10−31 kg ·K
m

Given the mass of an atom (or a molecule) the gas,m (units of kg), the critical
temperature is easily calculated.

22.
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23. Following MATLAB Program 7.2, except using kBT = 0.2μ:
u = linspace(0, 2.0, 300);

f = @(u) 1./( exp( (u-1)*5) + 1);

plot(u,f(u))

The result looks very similar to Figure 7.12(a), except that the sloping re-
gion extends further in both directions around εF /μ = 1.
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24. Using Eqs. (7.81) through (7.83):

Prob(u > 1) =

∫ ∞

1

fnp(u) du

where fn is the normalization constant and p(u) =
√
uf(u). As for the above

problem, kBT = 0.2μ so
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p(u) =
√
u

1

e(u−1)/0.2 + 1

Following MATLAB Program 7.3:

u = linspace(0, 2.0, 300);

f = @(u) 1./( exp( (u-1)*5 ) + 1);

p = @(u) sqrt(u).*f(u);

fn = 1/integral(p,0,2.0);

prob = @(u) fn*p(u);

plot( u, prob(u) )

int = integral( prob, 1.0, 2.0 )

The result of the integral is 0.217. So about 21.7% of electrons have an energy
greater than the chemical potential when kBT = 0.2μ.
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25. Let nc be the number of conduction electrons per atom. Given that M
is the molar mass, and ρ is the mass density, then ρNA/M is the number of
atoms per volume. Multiplying this by the number of conduction electrons
per atom
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(nc)

Å
ρNA

M

ã
=

Å
electrons

atom

ãÅ
atoms

volume

ã

gives the number of conduction electrons per volume, N/V .

26. Given nc = 1 since gold is monovalent, along with the other given values:

N

V
=

Å
1
electron

atom

ã
(19.32 g

cm3 )(6.022× 1023 atoms
mole )

197 g
mole

= 5.90× 1022
electrons

cm3

27. Using the result from the previous problem, and given V = 1 cm3:

N =

Å
N

V

ã
(V ) = (5.90× 1022cm−3)(1.0 cm3) = 5.90× 1022

Obviously, there are a lot of conduction electron is a cubic centimeter of gold.

28.(a) Using the result from problem 24 with nc = 1 for sodium:

N

V
=

ncρNA

M
=

Å
1
electron

atom

ã
(0.971 g

cm3 )(6.022× 1023 atoms
mole )

23.0 g
mole

= 2.54× 1022
electrons

cm3

(b) Using Eq. (7.73) the Fermi energy, along with the above result and the
electron mass for m:

εF =
h2

2m

ï
3

8π

N

V

ò2/3
=

(hc)2

2mc2

ï
3

8π

N

V

ò2/3

=
(1240 eV · nm)

2

2(5.11× 105 eV )

ï
3

8π
(2.54× 1022

1

cm3
)(
10−21cm3

nm3
)

ò2/3

= 3.15 eV = 5.05× 10−19J

(c) Using the equation at the end of Section 7.6:

TF =
εF
kB

Plugging in the result from part (b):

TF =
3.15 eV

8.617× 10−5 eV
K

= 3.66× 104 K
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29. Following the same procedure as the previous problem:

N

V
=

ncρNA

M
=

Å
2
electrons

atom

ã
(1.7 g

cm3 )(6.022× 1023 atoms
mole )

24.3 g
mole

= 8.43× 1022
electrons

cm3

Then the Fermi energy is:

εF =
(hc)2

2mc2

ï
3

8π

N

V

ò2/3

=
(1240 eV · nm)2

2(5.11× 105 eV )

ï
3

8π
(8.43× 101

1

nm3
)

ò2/3
= 7.01 eV = 1.12× 10−19J

giving the Fermi Temperature:

TF =
7.01 eV

8.617× 10−5 eV
K

= 8.14× 104 K
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