
8

Electronic Structure of Solids - Solutions

1. The cesium choride lattice is shown in Figure 8.5. Taking a lighter-shaded
sphere to represent a cesium ion, we see that there are 8 chloride ions that
serve as the nearest neighbors. Extrapolating the lines on Figure 8.5 in all
directions, we see that there are two next-nearest neighbors along the axis
for each of 3 dimensions, giving a total of 6 next-nearest neighbors for each
cesium atom.

2. In Figure 8.6, a single cube of the face-centered cubic lattice is shown. Tak-
ing the original at the center of the bottom face of the cube, the four corners
are generated for integer values of the primitive vectors a + b, where the
distance a is from the center to a corner of the bottom square. Adding integer
values of the primitive vector c give the upper four corners of the cube shown
Figure 8.6. Hence these primitive vectors are an alternate way to describe the
fcc lattice.

3. Referring to Fig. 8.8(b), we will use vectors to denote the locations of the
carbon atoms from a fixed origin, then use vector relationships to determine
the bond angle. First, select the origin to be located at point A in the lattice.
The other two points of interest are point B and the atom located in the center
of the top face shown. The primitive î and ĵ will be oriented along the edges of
the top face (starting at point A) and the k̂ vector will point directly upward
from point A. We may now construct the position vectors to each point. Let
a be the position vector from the origin to the top face-centered atom, while
b points from point B to the origin (point A):

a =
1

2
î+

1

2
ĵ, b = −1

4
î− 1

4
ĵ +

1

4
k̂

Our strategy will be to find the angle between b and c. By inspection:

c = a + b

Substituting the expressions for a and b:
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c = a + b =

Å
1

2
− 1

4

ã
î +

Å
1

2
− 1

4

ã
ĵ − 1

4
k̂

=
1

4
î+

1

4
ĵ − 1

4
k̂

Now use the dot (or scalar) product of b and c to find the angle between the
two:

b · c = |b||c|cos(θ)

For the left-hand side:

b · c = − 1

16
− 1

16
+

1

16
= − 1

16

For the right-hand side:

|b||c|cos(θ) =

…
3

16

…
3

16
cos(θ) =

3

16
cos(θ)

Equating the two:

− 1

16
=

3

16
cos(θ)

cos(θ) = −1

3

θ = cos−1
Å−1

3

ã
= 109◦28′

4. In a bcc lattice, as shown in Figure 8.3, the nearest neighbor is from the
center to a corner of the cube. If a is the distance along an edge of the cube,
then the distance from the center to the face of the cube is a/2. Using the
Pythagorean formula, the distance from the center of the cube to the center
of an edge is just

√
(a/2)2 + (a/2)2. Hence, the distance we want, from the

center of the cube to a corner is

d =
»

(a/2)2 + (a/2)2 + (a/2)2 =
√

3(a/2)

5. For the simple cubic lattice, as shown in Figure 8.2, the nearest neighbor
of any point will be located along the length of a side of the cube. Thus, the
nearest neighbor distance is simply a. In the case of the fcc lattice, shown in
Figure 8.6, the nearest neighbor distance is the midpoint distance along the
diagonal of a face. Using the Pythagorean formula:»

(a/2)2 + (a/2)2 =
√

2(a/2)
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6. For sodium (Na) in a bcc crystal, with given density ρ = 0.971 g/cm3 and
molar mass 23.0 g/mole, we want to find the lattice constant a. As shown
in Figure 8.3, the bcc structure is made of two inter-spaced cubic lattices,
each with lattice constant a. Each cube has unit volume a3, giving a total of
n3 = 2/a3 atoms per volume. Then the number of atoms per cm3 is:

N

V
=

0.971 g/cm3

23.0 g/mole
× (6.02× 1023 atoms/mole) = 2.54× 1022 cm−3

Taking 1.0 cm3 as the volume, n3 = 2.54× 1022 cm−3, so

1

a
= (1.27× 1022)(1/3) cm−1 = 2.33× 107 cm−1

Taking the reciprocal, a = 4.3×10−8 cm. Hence, the nearest neighbor distance
is:

√
3

2
a = 3.7× 10−8 cm = 3.7× 10−10 m

7. To find the center-to-center distance of the copper ions, first find the volume
of one cell, which gives the length a, then use this to get the face-centered
nearest-neighbor distance. The number of moles per unit volume for Cu is:

8.96 g/cm3

63.5 g/mole
= 0.141

mole

cm3

and the number is:

0.141
mole

cm3

Å
6.022× 1023

atoms

mole

ã
= 8.494× 1022

atoms

cm3

In section 8.2, just above Figure 8.7, it states that the face-centered cubic
lattice has four atoms per cell:

4 atoms/cell

8.494× 1022 atoms/cm3
= 4.709× 10−23

cm3

cell

One edge of the cube has length:

a = (1.648× 10−22)1/3 = 3.611× 10−8 cm

From problem 5, the nearest-neighbor distance is then:

√
2

2
a = 2.553× 10−8 cm
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8. Looking at Figure 8.6(b), the vectors to the center of the other faces can
be written as:

v1 = a î+
a

2
(ĵ + k̂)

v2 = a ĵ +
a

2
(k̂ + î)

v3 = a k̂ +
a

2
(̂i+ ĵ)

In terms of the primitive vectors:

a1 + a2 =
a

2
(ĵ + k̂) +

a

2
(k̂ + î) = v3

a2 + a3 =
a

2
(k̂ + î) +

a

2
(̂i+ ĵ) = v1

a1 + a3 =
a

2
(ĵ + k̂) +

a

2
(̂i+ ĵ) = v2

9. Looking at Fig. 8.6(b), constructing the position vectors of each of the
corners:

c1 = ak̂

c2 = aĵ + ak̂

c3 = aî+ aĵ + ak̂

c4 = aî+ ak̂

The primitive vectors from Eq. (8.4) are:

a1 =
a

2

Ä
ĵ + k̂

ä
, a2 =

a

2

Ä
k̂ + î

ä
, a3 =

a

2

Ä
î+ ĵ

ä
Next, solve these primitive vectors for î, ĵ, and k̂. First add a1 and a2:

a1 + a2 =
a

2
(̂i+ ĵ) + ak̂

Then subtract a3:

a1 + a2 − a3 = ak̂

and solve for k̂:

k̂ =
a1 + a2 − a3

a

Similarly:
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î =
a2 + a3 − a1

a

ĵ =
a1 − a2 + a3

a

Now substitute into the above:

c1 = a1 + a2 − a3

c2 = a1 − a2 + a3 + a1 + a2 − a3 = 2a1

c3 = a2 + a3 − a1 + a1 − a2 + a3 + a1 + a2 − a3 = a1 + a2 + a3

c4 = a2 + a3 − a1 + a1 + a2 − a3 = 2a2

10. As above, the position vectors for the four upper corner in Fig. 8.4(b) are:

c1 = ak̂

c2 = aĵ + ak̂

c3 = aî+ aĵ + ak̂

c4 = aî+ ak̂

The primitive vectors from Eq. (8.2) are:

a1 =
a

2

Ä
ĵ + k̂ − î

ä
, a2 =

a

2

Ä
k̂ + î− ĵ

ä
, a3 =

a

2

Ä
î+ ĵ − k̂

ä
Following the same procedure as in Problem 9, the result is:

c1 = a1 + a2

c2 = a1 + 2a2 + a3

c3 = 2a1 + a2 + a3

c4 = a1 + a2 + 2a3

11. Using the results from problems 4 and 5:

simplecubic : d = a⇒ R =
a

2

bcc : d =

√
3

2
a⇒ R =

√
3

4
a

fcc : d =
2

2
a⇒ R =

√
2

4
a

substitute these values of R into the packing fraction equation:
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simple cubic : F = (1)
4
3π
(
a
3

)3
a3

=
π

6

bcc : F = (2)

4
3π
Ä√

3a
4

ä3
a3

=

√
3π

8

fcc : F = (4)

4
3π
Ä√

2a
4

ä3
a3

=

√
2π

6

12. The goal is to prove Eq. (8.21),

bi · aj = 2πδij

where δij is the Kronecker delta. Starting with i = 1 and j = 1:

b1 · a1 = 2π
a1 · (a2 × a3)

a1 · (a2 × a3)
= 2π

and similarly for i = j = 2 and i = j = 3. Next consider i = 1 and j = 2:

b1 · a2 = 2π
a2 · (a2 × a3)

a1 · (a2 × a3)

and since (a2 × a3) is perpendicular to a2, the numerator is zero. Similarly,
for all i 6= j, the cross product in the numerator is perpendicular to the aj
vector, giving zero for the dot product. Hence Eq. (8.21) is correct.

13.

14.

15. The bcc primitive vectors are from Eq. (8.2):

a1 =
a

2
(ĵ + k̂ − î) , a2 =

a

2
(k̂ + î − ĵ) , a3 =

a

2
(̂i+ ĵ − k̂)

Use Eqs. (8.18)-(8.20) to calculate the primitive vectors of the bcc reciprocal
lattice. But first do the cross-products:
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a2 × a3 =
a2

4

∣∣∣∣∣∣
î ĵ k̂
1 −1 1
1 1 −1

∣∣∣∣∣∣ =
a2

2
ĵ +

a2

2
k̂

a3 × a1 =
a2

4

∣∣∣∣∣∣
î ĵ k̂
1 1 −1
−1 1 1

∣∣∣∣∣∣ =
a2

2
î+

a2

2
k̂

a1 × a2 =
a2

4

∣∣∣∣∣∣
î ĵ k̂
−1 1 −1
1 −1 1

∣∣∣∣∣∣ =
a2

2
î+

a2

2
ĵ

Since the denominator of Eqs. (8.18)-(8.20) is the same, substitute it into each
equation:

a1 · (a2 × a3) =
a

2

Ä
ĵ + k̂ − î

ä
· a

2

2

Ä
ĵ + k̂

ä
=
a3

2

Now use Eqs. (8.18)-(8.20) to get the primitive vectors of the reciprocal lattice:

b1 = 2π

Å
2

a3

ã
a2

2

Ä
ĵ + k̂

ä
=

2π

a

Ä
ĵ + k̂

ä
b2 = 2π

Å
2

a3

ã
a2

2

Ä
î+ k̂

ä
=

2π

a

Ä
î+ k̂

ä
b3 = 2π

Å
2

a3

ã
a2

2

Ä
î+ ĵ

ä
=

2π

a

Ä
î+ ĵ

ä
This bcc reciprocal lattice, when compared with Eq. (8.4), is just a fcc lattice
with cell length 4π/a.

16. Use Eqs. (8.18)-(8.20) to calculate the primitive vectors of the fcc recip-
rocal lattice. But, first do the cross-products:

a2 × a3 =
a2

4

∣∣∣∣∣∣
î ĵ k̂
1 0 1
1 1 0

∣∣∣∣∣∣ =
a2

4
(−î+ ĵ + k̂)

a3 × a1 =
a2

4

∣∣∣∣∣∣
î ĵ k̂
1 1 0
0 1 1

∣∣∣∣∣∣ =
a2

4
(̂i− ĵ + k̂)

a1 × a2 =
a2

4

∣∣∣∣∣∣
î ĵ k̂
0 1 1
1 0 1

∣∣∣∣∣∣ =
a2

4
(̂i+ ĵ − k̂)
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The denominator of Eqs. (8.18)-(8.20) is the same for each vector:

a1 · (a2 × a3) =
a

2

Ä
ĵ + k̂

ä
· a

2

4

Ä
−î+ ĵ + k̂

ä
=
a3

4

Now use Eq. (8.18)-(8.20) to get the primitive vectors of the reciprocal lattice:

b1 =
2π

a

Ä
−î+ ĵ + k̂

ä
b2 =

2π

a

Ä
î− ĵ + k̂

ä
b3 =

2π

a

Ä
î+ ĵ − k̂

ä
When compared with Eq. (8.2), this a bcc lattice with cell length 4π/a.

17. Use Eqs. (8.18)-(8.20) to calculate the primitive vectors of the hexagonal
close-packed reciprocal lattice. But, first do the cross-products:

b× c =

∣∣∣∣∣∣
î ĵ k̂

−(
√

3a/2) (a/2) 0
0 0 c

∣∣∣∣∣∣ =
ac

2
(̂i+
√

3ĵ)

c× a =

∣∣∣∣∣∣
î ĵ k̂
0 0 c

(
√

3a/2) (a/2) 0

∣∣∣∣∣∣ =
ac

2
(−î+

√
3ĵ)

a× b =

∣∣∣∣∣∣
î ĵ k̂

(
√

3a/2) (a/2) 0

−(
√

3a/2) (a/2) 0

∣∣∣∣∣∣ =

√
3a2

2
(k̂)

The denominator of Eqs. (8.18)-(8.20) is the same for each vector:

a · (b× c) =
a

2

Ä√
3̂i+ ĵ

ä
· ac

2

Ä
î+
√

3ĵ
ä

=

√
3a2c

2

Now use Eq. (8.18)-(8.20) to get the primitive vectors of the reciprocal lattice:

b1 =
2π√
3a

Ä
î+
√

3ĵ
ä

b2 =
2π√
3a

Ä
−î+

√
3ĵ
ä

b3 =
2π

c

Ä
k̂
ä

This is the same as the original lattice but with cell lengths 4π/(3a) in the
x-y plane and 4π/c along the z axis. The volume of a unit cell is given by:
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V = b1 · (b2 × b3) =
2π√
3a

Ä
î+
√

3ĵ
ä
· 4π2

√
3a2

Ä√
3̂i+ ĵ

ä
=

16π3

√
3a3

18. Following the equation just below Fig. 8.6, there must be some combina-
tion of primitive vectors that allow translation by one cell length along the
z-axis:

ak̂ = a + b− c = aĵ − c

Hence, c = a(ĵ − k̂) to allow translations along the z-axis.

19. Start with Eqs. (8.18)-(8.20) to show that:

a1 = 2π
b2 × b3

b1 · (b2 × b3)
(1)

a2 = 2π
b3 × b1

b1 · (b2 × b3)
(2)

a1 = 2π
b1 × b2

b1 · (b2 × b3)
(3)

Where b1, b2, and b3 are given by Eqs. (8.18)-(8.20). First calculate the
cross-product b2 × b3 since it will be used in each equation.

b2 × b3 = 4π2

Å
a3 × a1

a1 · (a2 × a3)

ã
×
Å

a1 × a2
a1 · (a2 × a3)

ã
Note that the denominators of the terms on each side of the cross-product
are a scalar quantity. Therefore, it can be brought outside the vector product.
Proceeding with the numerator:

(a3 × a1)× (a1 × a2)

The following vector relation, found in many textbooks, is useful here:

A× (B×C) = B(A ·C)−C(A ·B)

Compare the vectors that occur in the relation above to the numerator:

A = a3 × a1

B = a1

C = a2

After the substitution:
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(a3 × a1)× (a1 × a2) = a1[(a3 × a1) · a2]− a2[(a3 × a1) · a1]

= a1[a1 · (a2 × a3)] + a2[(a1 × a1) · a3]

To arrive at this first term in the second expression of the right-hand side:

A · (B×C) = (A×B) ·C

Note that the part of this term in brackets is now identical to the expression
for the denominator. Also, the second term is equal to zero since we have a
vector in a cross-product with itself. The result for b2 × b3 is now:

b2 × b3 = 4π2a1

Using the same method for the other relevant cross-products:

b3 × b1 = 4π2a2

b1 × b2 = 4π2a3

The denominators of (1), (2), and (3), may be solved using the cross-products
above:

b1 · (b2 × b3) = 2π
a2 × a3

a1 · (a2 × a3)
· 4π2a1

= 8π3

By substituting the results into the right-hand side of (1), we see that the
equation holds true, and similarly for (2) and (3).

20. Figure 8.15(b) shows a member of the lattice plane with Miller indices
(110). The plane perpendicular to the reciprocal lattice vector is:

g = b1 + b2

Eq. (8.33) gives the distance between planes:

d =
2π

|g|

Using the primitive reciprocal vectors from Example 8.1,the magnitude of g
is:

g =
2π

a
î+

2π

a
ĵ ⇒ |g| =

√
2

2π

a

Hence, the distance between planes is:

d =
a√
2

=

√
2a

2
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21. Similarly to the previous problem, the plane perpendicular to the recip-
rocal lattice vector is:

g = 2b1 + b2

Eq. (8.33) gives the distance between planes:

d =
2π

|g|

Using the primitive reciprocal vectors from Example 8.1,the magnitude of g
is:

g =
4π

a
î+

2π

a
ĵ ⇒ |g| =

√
5

2π

a

Hence, the distance between planes is:

d =
a√
5

22.a) First let g = g′. Then n(2π)/a = m(2π)/a or n = m and:∫ a

0

e−ig
′xeigx dx =

∫ a

0

e(n−m)2πx/a dx =

∫ a

0

dx = a

On the other hand, if g 6= g′, let j = n−m (an integer) and:∫ a

0

e−ig
′xeigx dx =

∫ a

0

ej(2πi)x/a dx

The integrand may be written using Euler’s formula:∫ a

0

cos(j2πx/a) + i sin(j2πx/a))dx

and both functions (sin and cos) are integrated over a full cycle, so∫ a

0

e−ig
′xeigx dx = 0

b) Using Eq. 8.14:

f(x) =
∑
g

Fge
igx

Multiply by e−ig
′x:
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e−ig
′xf(x) =

∑
g

Fge
−ig′xeigx

Integrating this:∫ a

0

e−ig
′xf(x) dx =

∑
g

Fg

∫ a

0

e−ig
′xeigx dx =

∑
g

Fgaδgg′ = aFg′

23. First, project the vector l onto g:

d = l · g

|g|
=

2πN

|g|

and similarly for l′:

d′ = l′ · g

|g|
=

2π(N + 1)

|g|

The distance between the planes containing these points is:

d′ − d =
1

|g|
(2π(N + 1)− 2πN) =

2π

|g|

24. Starting from Eq. (8.45):

ψk(x) = Ake
ikx

where from Eq. (8.44), k = 2πn/(Na) for integer n. Setting A2
k = 1/L:

ψ∗k′(x)ψk(x) =
1

L
ei(k−k

′)x

=
1

L

(
cos 2π(n− n′) x

Na
+ i sin 2π(n− n′) x

Na

)
where the crystal length is L = Na. Integrating:

1

L

∫ L

0

(
cos 2π(n− n′) x

Na
+ i sin 2π(n− n′) x

Na

)
dx = 0

since each function (sin and cos) is integrated over a full cycle. Hence, when
n 6= n′, the orthogonality condition of Eq. (8.48) is satisfied.

25.a) Block’s Theorem states:

ψk(r + l) = eik·lψk(r)

Let l = N1a1, giving:

ψk(r +N1a1) = eik·N1a1ψk(r)



13

Using the Born-von Karman boundary condition:

ψk(r) = eik·N1a1ψk(r)

resulting in eik·N1a1 = 1, and similarly for N2a2 and N3a3.

b) For k given by Eq. (8.50):

k =
n1
N1

b1 +
n2
N2

b2 +
n3
N3

b3

Then the dot product gives:

k · (N1a1) =

Å
n1
N1

ã
N1b1 · a1

and comparing this with Eqs. (8.34) and (8.35) gives:

k · (N1a1) = n1(2π)

Hence, we get e2πi = 1, which is just Euler’s identity, so this choice of k sat-
isfies the conditions given in part (a).

26. Starting with Eqs. (8.51):

ψk(r) =
1

V 1/2
eik·r

gives:

ψk′(r) =
1

V 1/2
eik

′·r and ψ∗k(r) =
1

V 1/2
e−ik·r

Then from Eq. (8.54):

V (r) =
∑
g

Vge
ig·r

and substituting these into the integral:

I∗k′, k =
∑
g

Vg
V

∫
ei(g+k′−k)·r dV

Separating the exponential terms:

I∗k′, k =
∑
g

Vg
V

∫
ei(g+k′)·re−ik·r dV

This can be rewritten as:
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g

Vg
V

∫
ψ∗k(r)ψ(k′+g)(r) dV

and using the orthogonality condition of Eq. (8.58):

k = k′ + g

and the result of Problem 24 gives the desired orthogonality properties.

27. The band gap ∆E between the occupied and unoccupied states is at
energies that correspond to infrared light. Since electrons must jump over
the band gap to get into the conduction band, infrared light does not have
enough energy to do this. Hence, infrared light will not create a quantum
excitation and has a low probability of being absorbed by a semiconductor.
On the other hand, visible light has enough energy to excite and electron
into the conduction band. So photons of visible light frequencies will cause
quantum excitations in a semiconductor and are readily absorbed, thereby
the semiconductor is opaque to visible light.
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