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Semiconductor Lasers - Solutions

1. Starting with Eq. (1.5) from Chapter 1:

E =
hc

λ

and putting in the given energy needed to hop over the band gap:

λ =
hc

E
=

1240 eV · nm
1.519 eV

= 816.3 nm

2. Note: there are typos in the text for the given values of a and k. Given for
GaAs the lattice constant a = 5.65Å and effective mass m0 = 0.067, then Eq.
(10.2) becomes:

ε(k) = εc +
�
2k2

2(0.067)me

Multiplying the top and bottom of the fraction by c2 and given k = 0.1(π/a):

ε(k)− εc =
(hc)2(0.1)2

0.134(0.556 nm)2(mec2)

From Appendix A, hc = 1240 eV · nm and mec
2 = 511× 103 eV , giving

ε(k)− εc = 0.703 eV

3. From Section 10.3.1, heterostructures are formed using semiconductors with
similar lattice constants. The heterostructures grown on a substrate of InP
must have the same lattice constant as InP. Using a linear interpolation pro-
cedure for each alloy:

a(InxGa1−xAs) = a(InP) = xa(InAs) + (1− x)a(GaAs)
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5.869 = 6.058x+ 5.653(1− x)

Solving for x gives the value 0.53. The alloy has composition: In.53Al.48As

4. Referring back to Chapter 2, Figure 2.5 shows a finite well of depth 0.3 eV
and width 10 nm. As shown below Figure 2.5, using an effective mass of
m0 = 0.067, the value of θ20 is found to be 13.2 from the graphical solution
shown in Figure 2.6. In that case, the equation to be solved was:

tan(θ) =
κ

k
=

 
θ20
θ2

− 1

where θ = kL/2. Now looking at Eq. (10.11), we want to solve:

tan(θ) =
mWκ

mBk
=

0.067κ

0.091k

where mW is the effective mass in the well and mB is the effective mass in
the barrier. Hence, we need to solve the following equality:

tan(θ) = 0.7363

√
2(0.091)me(V0 − E)√

2(0.067)me(E)

1.1874 1.1875 1.1876 1.1877 1.1878 1.1879 1.188

2.474

2.476

2.478

2.48

2.482

2.484
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where the numerator is �κ, defined just above Eq. (10.9), and the denominator
�k. Using the definition of θ20 from Chapter 2 gives:

tan(θ) = 0.7363

 
0.091

0.067

Å
θ20
θ2

− 1

ã
= 0.858

 
θ20
θ2

− 1

Following MATLAB Program 2.1, but inserting this new equation gives a
value of θ = 1.1876 = kL/2. Plugging in the definition of k above Eq. (10.9):

2(1.1876)

10 nm
=

 
2(0.067me)(E − EW

c )

�2

Solving this gives

E − EW
c = 0.032 eV

This is the energy of the first bound state above the conduction band. This
can be compared with the result from Chapter 2, Eq. (2.39), where θ = 1.2264
giving E = 0.0342 eV .

5. We use the following procedure for these matrix multiplication operations:

⎡
⎣
A1 A2 A3

B1 B2 B3

C1 C2 C3

⎤
⎦
⎡
⎣
D1

D2

D3

⎤
⎦ =

⎡
⎣
A1D1 +A2D2 +A3D3

B1D1 +B2D2 +B3D3

C1D1 + C2D2 + C3D3

⎤
⎦

⎡
⎣
1 2 0
1 1 2
1 3 1

⎤
⎦
⎡
⎣
1
1
0

⎤
⎦ =

⎡
⎣
3
2
4

⎤
⎦

⎡
⎣
1 0 1
1 2 1
1 1 3

⎤
⎦
⎡
⎣
1
0
1

⎤
⎦ =

⎡
⎣
2
2
4

⎤
⎦

⎡
⎣
2 1 1
1 0 1
1 1 0

⎤
⎦
⎡
⎣
1
2
1

⎤
⎦ =

⎡
⎣
5
2
3

⎤
⎦

6. Applying the standard methods of matrix multiplication, the first case is:

ï
0 1
1 0

ò ï
0 −i
i 0

ò
=

ï
(0 + i) (0 + 0)
(0 + 0) (−i+ 0)

ò
=

ï
i 0
0 −i

ò
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The second case gives: ï
0 1
1 0

ò ï
2 0
0 −2

ò
=

ï
0 −2
2 0

ò

The final case is:
⎡
⎣
1 2 0
1 1 2
1 3 1

⎤
⎦
⎡
⎣
2 1 1
1 0 1
1 1 0

⎤
⎦ =

⎡
⎣
4 1 3
5 3 2
6 2 4

⎤
⎦

7. Proceeding left to right, first consolidating the 1/2k1 and 1/2 k2 terms:ï
k1 + k2 k1 − k2
k1 − k2 k1 + k2

ò ï
eik2L 0
0 e−ik2L

ò
=

ï
eik2L(k1 + k2) e

−ik2L(k1 − k2)
eik2L(k1 − k2) e

−ik2L(k1 + k2)

ò

Using this result in Eq. (10.30):

T =
1

4k1k2

ï
eik2L(k1 + k2) e

−ik2L(k1 − k2)
eik2L(k1 − k2) e

−ik2L(k1 + k2)

ò ï
k1 + k2 k2 − k1
k2 − k1 k1 + k2

ò

Carrying this through:

T =

ï
T11 T12

T21 T22

ò

where each element is:

T11 =
1

4k1k2
[eik2L(k1 + k2)

2 − e−ik2L(k1 − k2)
2]

T12 =
−1

4k1k2
[eik2L(k21 − k22)

2 − e−ik2L(k21 − k22)]

T21 =
1

4k1k2
[eik2L(k21 − k22)− e−ik2L(k21 − k22)]

T22 =
−1

4k1k2
[eik2L(k1 − k2)

2 − e−ik2L(k1 + k2)
2]

The Euler formula can be used in the second part to further simplify:

T11 =
1

4k1k2
[eik2L(k1 + k2)

2 − e−ik2L(k1 − k2)
2]

=
1

4k1k2
[(cos k2L+ i sin k2L)(k

2
1 + 2k1k2 + k22)

− (cos k2L− i sin k2L)(k
2
1 − 2k1k2 + k22)

=
1

2k1k2
[2k1k2 cos k2L+ i(k21 + k22)sin k2L]
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The same may be done for the remaining three elements.

8. This is a small variation on MATLAB Function 10.2 given in the text. It
is only necessary to modify one line. For a separation of 5 nm,

D=[exp (i*k1*L*0.5) 0; 0 exp(-i*k1*L*0.5) ];

The rest is the same as Function 10.2. Also, MATLAB Program 10.2 is un-
changed. For a separation of 20 nm, just replace 0.5 above with 2.0.

9. Following MATLAB Function 10.2, but modifying it for the given values
of the barrier widths and the electron effective mass:

function T = twobarrier (E)

L=5.0;

V0=0.3;

k1=sqrt (1.759*E) ;

k2=sqrt (2.389*(E-V0) ) ;

A=[(k1+k2) (k1-k2) ; (k1-k2) (k1+k2) ] ;

B=[(k1+k2) (k2-k1) ; (k2-k1) (k1+k2) ] ;

C=[exp(i*k2*L) 0; 0 exp(-i*k2*L) ] ;

D=[exp ( i *k1*L*2) 0; 0 exp(-i*k1*L*2) ] ;

M=A*C*B*D*A*C*B;

t=(4*k1*k2)ˆ2/M(1 ,1);

T = abs ( t )ˆ2;

where Eqs. (10.13) and (10.15) were used to calculate k1 and k2. Note that
both L and matrix D have been changed, similar to the previous problem. To
plot the transmission coefficient, MATLAB Program 10.2 can be used without
any changes.

10. Again, this is a small modification of MATLAB Function 10.2. Only two
lines need to be changed:

D=[exp (i*k1*L*0.5) 0; 0 exp(-i*k1*L*0.5) ];

M=A*C*B*D*A*C*B*D*A*C*B;

The rest of the function is unchanged. Again, MATLAB Program 10.2 can be
used unchanged to calculated the transmission coefficient for this case.

11. For the downward step, just modify Eq. (10.15) for negative V0:

k2 =

 
2m(E + V0)

�2
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which, when substituted into the equations above (10.27), gives (after some
simplification):

T11 = T22 =
1

2

(
1 +
»
1 + V0/E

)

T12 = T21 =
1

2

(
1−
»
1 + V0/E

)

12. Eqs.(10.25) and (10.26) give the following:

A1 = T11A2 + T12B2

B1 = T21A2 + T22B2

The transmission amplitude of light incident from the right will be equal
to B1/B2 and the corresponding reflection amplitude is equal to A2/B2. As
directed, we set A1 = 0.

0 = A1 = T11A2 + T12B2 (1)

B1 = T21A2 + T22B2 (2)

Solving (1) for A2 and substituting into (2):

B1 =
−T21T12B2

T11
+ T22B2 = B2

1

T11
(T11T22 − T21T12)

The quantity in parentheses as the determinant of the T-matrix, therefore:

t21 =
B1

B2
=

det T

T11

This just Eq. (10.37). For Eq. (10.38), now solve (1) above for A2/B2:

r21 =
A2

B2
=

−T12

T11

13. It is only necessary to make a small change to MATLAB Function 10.3.
For a two-strip Fabry-Perot laser, we just need to extend Eq. (10.42) in a
similar way as was done for the two-barrier case of MATLAB Function 10.2.
Hence, we change only one line of Function 10.3:

M=A*C*B*A*C*B

This assumes that there is essentially no space between the two strips. In
other words, the matrix D in Function 10.2 becomes the unity matrix for suf-
ficiently small L.
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14. MATLAB Program 10.3 can be used unchanged, along with the change
given in Problem 13 above, to plot the transmission through the Fabry-Perot
laser of the previous problem as a function of λ for the given wavelength re-
flection coefficients.

15.a) The total rate of change in the amount of water in the reservoir will
equal the rate of water entering minus the rate in which it is leaving. Letting
V equal the volume of water in the reservoir:

dV

dt
= Rf −RD

where RD is the total rate at which water drains. Since the reservoir is draining
from two ports:

RD = Rd1 + Rd2

Plugging this in, the total rate equation is:

dV

dt
= Rf − h(C1 + C2)

b) To find the steady state height, set:

dV

dt
= 0

And solve for h:

h =
Rf

c1 + c2
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