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Relativity IT - Solutions

1. The components of the four-velocity for velocity are found between Egs.
(12.3) and (12.4). Since the electron is traveling only in the z-direction:

v? =03 =0

The relevant velocity components are:
dx!
W0 =ne, ol = T = ~7(0.2 ¢)

Calculating ~:
1 —_—

1
JI-w2/@  JT- (022 102

The results are:

W0 =1.02¢
vl =0.204 ¢

b. Using Eq. (12.6) with the electron’s mass (m, = 0.511 MeV/c?):

p’ = 1.02 mec = 0.521 MeV/c
p' = 0.204 m.c = 0.104 MeV/c
pP=p"=0

2. Using Eq. (12.13):
KE = (y — 1)mc?

Plug in the value of v =1/4/1 — (0.2)2 = 1.02 and the electron mass:



KE = (1.02— 1)(0.511 MeV) = 0.011 MeV

3. Using Egs. (12.12) and (12.13) for the rest energy and kinetic energy,
respectively:

(v — D)mc? = mc?

gives 7 = 2.0. Now using Eq. (12.3):
1

N
1
Va—2je) =

The particle must have a speed of v = (v/3/2)c.

4. Using Egs. (12.9) and (12.12) for the total energy and rest energy, respec-
tively:

yme? = 2mc?
gives v = 2.0. This gives the same speed as the previous problem, v = (\/§ /2)c.

5. We first evaluate the derivatives of f(x) called for in the Taylor series:

. 11
F@ =50 —pr
P B

We now evaluate at x=0 and substitute into the given form of the Taylor
series:

Now, let z = v?/c?:



1 102 3 vt
S e
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This result is identical to eq. 12.10.

6. From Eq. (12.13) with the mass of the electron:
KE = (y—1)(0.511 MeV)

where v = 1/4/1 — (v/c)2. This gives the following results:

v=0:7y=100 : KE=0
v=09¢c :y=709 : KE =311 MeV
v=0999¢c :v=2237 : KE=10.9 MeV

7. Using Eq. (12.13) with m as the electron’s mass:
KE =100 MeV = (y — 1)(0.511 MeV)

Solving for v gives v = 196.7. Now use the definition of v in Eq. (12.3):

1
196.7T = ——
V1—u?/c?
1
38688 = —
1_©2

c2

2

1—— =258x10""
&

2

0.999974 = —
c
v = 0.999987c

8. Using Eq. (12.9) with the mass of the proton (m, = 938.3 MeV) and a
total energy of E = 1500 MeV:

1500 MeV = ~(938.3 MeV)

giving v = 1.60, and plugging into Eq. (12.3) gives v = 0.78 c.
b) Using Eq. (12.14),

pe = \/E2 — (mc®)? = \/(1500)2 — (938.3)2 MeV
p= 1170 MeV/c

9.a) Carrying out the four-vector addition (see Chapter 11) in the given ex-
pression for s:



lpa + pB|? _ [(Es+ EB)* — (pa+p3)’]
C2 2

C

In the laboratory frame, Eg equals the rest energy of the particle and pg = 0:

_ [(Ba+mpe®)? —pal?]
CQ

In the center of mass frame, we take the colliding particles to have equal and
opposite momenta:

[(Ea+ Ep)* — (pa+pB)?] _ (Ba+ Ep)?

b) Substituting the sums of the four-vectors into the sum of the Mandelstam
variables:

1 1(Es+ E)? Eas— E¢ 2
s+it+u= g{% — (pA+pB)2+(T) - (pa —pC)2
Ej - Ep)?
+ % — (pa—pp)°
Using conservation of energy and momentum:
Es—FEp=FEc—FEp
Es—Ec=Ep—Ep
PA —PbD =Pc —PB
PA—Pc =PbD —PB
Substitute these quantities into the equation above:
1 [(Es+ Ep)? Ep — Ep)*
st+itt+u= o) T)—(I)A-l-pJB)Q—i—(672 — (pp —PB)°
Ec — Ep)?
+ % —(pc — PB)Q}
In the laboratory frame, pg = 0 and Eg = mpc? and so:
2Ea4m 2Epm 2Ecm
s+t+u= 22 B _ ?2 B _ 32 B 4m? +3m% +m2+md

2m
= CQB(EA—ED—EC)+m?4+3mQB+m§+m2D

From the conservation of energy, EFg = E4 — Ep — E¢. Making this substi-

tution and using Eg = mpc?:

s+t +u=—2m%+m% +3m% +m?+mh

2 2 2 2
=my +mp+m,+mp
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10. Starting from conservation of energy and momentum in the center of mass
frame for the decay p — 27° (where the p meson is at rest):

Ep = Eﬂ'l + E7r2
Pr1 = —P=2

and E, is just the given rest mass, m,c® = 775.5 MeV. Since both pions are
symmetric, Fr1 = Ero. Using Eq. (12.14) for the RHS:

m,c? = 2,/p2c? + m2ct
where the 7 subscript refers to either pion. Squaring both sides:
(775.5 MeV)? = (4)[(prc)? + (135.0 MeV)?

gives pr = 365.5 MeV/c. To get the velocity of the pions, we need ~:

E, /P22 +m2ct
Y = > = )
My My

and plugging in the above values gives v, = 2.87. So:
1

V1—v%/c?

2.87 =

and solving for v gives v = 0.937 c.

11. The decay here is A° — p + 7~. Using four-vectors to conserve both
momentum and energy:
PA=DPp + Pr
First, isolate the proton momentum on the LHS:
Pp =PA — Pr
Squaring both sides:

Pp =14+ Pa —2pA - Pr

As shown above Eq. (12.14), the square of a momentum four-vector gives just
its mass:

2.2 2 2 2.2
myc” =myc” +mzc” —2pa - pr

Carrying out the dot product:

22 2 EAEr

mpt = 'm/lc2 + m?rcz —2( 2 PA - Px)
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where the second term of the dot product is zero since py = 0 in its rest
frame. Collecting terms and noting £, = m, in this frame:

B m%lc4 + m?rc4 — m]%c4
T 2mc?
(1115.7)% + (139.6) — (938.3)?

2(1115.7)

MeV =172.0 MeV

Using just energy conservation:
E,=F\—-E;, =1115.7 MeV —172.0 MeV = 943.7 MeV

To get the velocity of the each particle, find v using Eq. (12.9):
E
mc?

giving v, = 172.0/139.6 = 1.232 and v, = 943.7/938.3 = 1.0058. The velocity
is now found using Eq. (12.3):

’y:

_ 1
7 V1—v2/c?
which results in the pion’s speed v, = 0.584 ¢ and the proton’s speed

vp = 0.107 c.

12. The particle collision here has two particles with equal mass and speed
traveling in opposite directions. Using the conservation of momentum in the
center of mass frame:
PA+Ps=pc =0
This says that the resulting particle is at rest. Using conservation of energy:
Es+ Ep=Ec

2yme? = mec?

mo = 2ym
Using Eq. (12.3) with the given speed of v = (2/3) ¢

me = —2" 9 68m

V1—1(2/3)?
Since the mass of the resulting particle is greater than the sum of the col-

liding particles, some of their kinetic energy was converted into the resulting
particle’s rest-energy.



13. Using the result of the previous problem:

me = 2yme

where in this case, we find v using Eq. (12.9)
E

MeC?

’y:

Plugging this in above gives m¢ = 20 GeV/c?. Now we want to get the
reaction mc — p + p where p is the symbol for a muon. Following the same

steps as for Problem 10:
ma = 2, [pic? +mct

where the p subscript refers to either muon. Squaring both sides:
(20.0 GeV)? = (4)[(puc)® + (0.1057 GeV)?

gives p, = 20 GeV/c to high precision. To get the velocity of the muns, we
need ~:
E, 20.0 GeV

= = —189.2
T e T 01057 GeV

where E,, is found using Eq. (12.9). So:
v
V1—v2/c?

and solving for v gives v = 0.999986 c. The kinetic energy is, from Eq. (12.13):

189.2 =

KE = (v — 1)m,c® = (189.2 — 1)(0.1057 GeV) = 19.89 GeV

14. In the center of mass frame where the proton and antiproton have equal
and opposite momentas:

E,+ Ey = Ex

where E'x is the energy of the resulting particle. As in Problem 12:

2 _ 2
2ympc” = mxc

2v(938 MeV) = 9700 MeV

giving v = 5.17. Using Eq. (12.13) for the kinetic energies:



KE = (y— 1)m,c® = 3912 MeV
Using Eq. (12.3) to get velocities:
1
V1 —v2/c?

Solving for v (as in the problems above), the proton and antiproton will each
have a speed of v = 0.981 ¢ in the center of mass frame.

v=5.17=

15. The reaction here is 7+ — g+ v, Where the neutrino is assumed to have
zero mass. From conservation of energy in the center of mass frame:

2
Er=m;c"=E,+E,
where E, = |p,|c since m,, = 0. From conservation of momentum:

|p,,| = ‘pl—t|

Using the above and Eq. (12.14) for E,;:

2
Mmqc™ = 4/p5c? +mict +p,c

Isolating the square root and then squaring both sides:

2 2 _ 2.2 2 4
(Mac® = puc)” = p,c” +mc
2 4 2 2.2 _ 22 2
moc® —2myc puC+p,c” = p,ct+my,

s

A
Canceling terms and solving for p,,:

2 .4 2 .4
mzc® —myc

2m,c?
(139.6 MeV)? — (105.7 MeV)?

- —298 M
2(139.6 MeV) 9.8 Mev

buC =

To get the velocity, we need to get v for the muon:

[n2 -2 2 .4

= E# 7 puc —|—ch
2 2 2
myc muc

giving v, = 1.039 Using Eq. (12.3):
1

V-2

Ymu = 1.039 =

and solving for v results in v = 0.271 c.
b) The mean distance traveled by the muon is given by d = vAty; where
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Atr = 2.2 x 1076 s is the muon lifetime in the rest frame. Using Eq. (11.26)

to relate Atys and Atg:

d = vAty = vy, Alg
= (0.271)(3.0 x 10® m/s)(1.039)(2.2 x 107¢ 5) = 186 m

At this speed, the muon goes, on average, quite far before it decays.

16. First, test the relation:
alad +alat = 20;;1

The Dirac-Pauli representation is given in Eq. (12.42):

ij_{()az}{() 03} _{aiaj 0 }
CY=loi0lled 0] T L 0 ol

Ozjozi*{o O'j:|{0 O'i:| 7|:O'j0'i 0 }
T ol 0]l 0) T L 0 ogigt

cto? 4+ glo* 0

i g G
ao oo = . .
{ 0 o'l + glot

} = (00 4 070")I
The Pauli matrices satisfy the following condition:

P I if i=yj

il — o

7= {—UJJZ if i

Therefore:
2 if i=j
0if i#y

Or, more concisely, oc? + oo’ = 204;1. Thus, ool +alat = 204;1.

Uin + O'jJi = {
Next, check 4% = I. From Eq. (12.42):

We carry out the multiplication:

o1l lo7) =10

Since I2 =1, g2 =1.
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17. The definition of the co-variant v matrices are given in Eq. (12.47):
v'=Ba’, 4" =p

where o' and 3 matrices are defined in Eq. (12.42). From Example 12.6, it is
shown by Egs. (12.58)-(12.59) that:

[0 o'p 777110}
O[.pi{a~p 0} ’ﬂmi{OmI

where the Pauli spin matrices, o are given by Eq. (12.43) and I is the 2
X 2 unit matrix. Since the zeroth component of the momenta is the energy,
po = E, and the zeroth component of the Dirac matrices is just v = 3, then

o _{EI o}

Similarly, we can use the above result for « - p and multiply by g giving:

i .o [T0 0 U-p}__{ 0 O‘-p}
YD = Ba pP= |:OI:| |:0._p 0 - —0-p 0

where the minus sign comes from lowering the index, recall p* = (E, p) but
pp = (E, —p). Adding the results together:

(E+m)—mp}

® _
W’pu—km—{ o-p (E+m)

which is written in two-component form. Similarly,

E-m) —o-p }

Vipu —m = {( o-p (E—m)

18. Muons and electrons are both Dirac particles. The Feynman diagrams
for muon-electron scattering are equivalent to the Feynman diagram shown
in Fig. 12.4 with one of the incoming and outgoing lines corresponding to an
electron and the other corresponding to a muon.
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