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Relativity II - Solutions

1. The components of the four-velocity for velocity are found between Eqs.
(12.3) and (12.4). Since the electron is traveling only in the x-direction:

v2 = v3 = 0

The relevant velocity components are:

v0 = γc, v1 = γ
dx1

dt
= γ(0.2 c)

Calculating γ:

1√
1− u2/c2

=
1√

1− (0.2)2
= 1.02

The results are:

v0 = 1.02 c

v1 = 0.204 c

b. Using Eq. (12.6) with the electron’s mass (me = 0.511 MeV/c2):

p0 = 1.02 mec = 0.521 MeV/c

p1 = 0.204 mec = 0.104 MeV/c

p2 = p3 = 0

2. Using Eq. (12.13):

KE = (γ − 1)mc2

Plug in the value of γ = 1/
√

1− (0.2)2 = 1.02 and the electron mass:
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KE = (1.02− 1)(0.511 MeV ) = 0.011 MeV

3. Using Eqs. (12.12) and (12.13) for the rest energy and kinetic energy,
respectively:

(γ − 1)mc2 = mc2

gives γ = 2.0. Now using Eq. (12.3):

1√
1− v2/c2

= 2»
(1− v2/c2) =

1

2Å
1− v2

c2

ã
=

1

4

v2

c2
=

3

4

The particle must have a speed of v = (
√

3/2)c.

4. Using Eqs. (12.9) and (12.12) for the total energy and rest energy, respec-
tively:

γmc2 = 2mc2

gives γ = 2.0. This gives the same speed as the previous problem, v = (
√

3/2)c.

5. We first evaluate the derivatives of f(x) called for in the Taylor series:

f ′(x) =
1

2

1

(1− x)3/2

f ′′(x) =
3

4

1

(1− x)5/2

We now evaluate at x=0 and substitute into the given form of the Taylor
series:

f(x) = 1 +
1

2
x =

3

8
x2 + . . .

Now, let x = v2/c2:
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1√
1− u2/c2

= 1 +
1

2

v2

c2
=

3

8

v4

c4

This result is identical to eq. 12.10.

6. From Eq. (12.13) with the mass of the electron:

KE = (γ − 1)(0.511 MeV )

where γ = 1/
√

1− (v/c)2. This gives the following results:

v = 0 : γ = 1.00 : KE = 0

v = 0.99 c : γ = 7.09 : KE = 3.11 MeV

v = 0.999 c : γ = 22.37 : KE = 10.9 MeV

7. Using Eq. (12.13) with m as the electron’s mass:

KE = 100 MeV = (γ − 1)(0.511 MeV )

Solving for γ gives γ = 196.7. Now use the definition of γ in Eq. (12.3):

196.7 =
1√

1− u2/c2

38688 =
1

1− v2

c2

1− v2

c2
= 2.58× 10−5

0.999974 =
v2

c2

v = 0.999987c

8. Using Eq. (12.9) with the mass of the proton (mp = 938.3 MeV ) and a
total energy of E = 1500 MeV :

1500 MeV = γ(938.3 MeV )

giving γ = 1.60, and plugging into Eq. (12.3) gives v = 0.78 c.
b) Using Eq. (12.14),

pc =
»
E2 − (mc2)2 =

»
(1500)2 − (938.3)2 MeV

p = 1170 MeV/c

9.a) Carrying out the four-vector addition (see Chapter 11) in the given ex-
pression for s:
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|pA + pB |2

c2
=

[(EA + EB)2 − (pA + pB)2]

c2

In the laboratory frame, EB equals the rest energy of the particle and pB = 0:

s =
[(EA +mBc

2)2 − |pA|2]

c2

In the center of mass frame, we take the colliding particles to have equal and
opposite momenta:

s =
[(EA + EB)2 − (pA + pB)2]

c2
=

(EA + EB)2

c2

b) Substituting the sums of the four-vectors into the sum of the Mandelstam
variables:

s+ t+ u =
1

c2

[ (EA + EB)2

c2
− (pA + pB)2 +

(EA − EC)2

c2
− (pA − pC)2

+
(EA − ED)2

c2
− (pA − pD)2

]
Using conservation of energy and momentum:

EA − ED = EC − EB
EA − EC = ED − EB
pA − pD = pC − pB

pA − pC = pD − pB

Substitute these quantities into the equation above:

s+ t+ u =
1

c2

[ (EA + EB)2

c2
− (pA + pB)2 +

(ED − EB)2

c2
− (pD − pB)2

+
(EC − EB)2

c2
− (pC − pB)2

]
In the laboratory frame, pB = 0 and EB = mBc

2 and so:

s+ t+ u =
2EAmB

c2
− 2EDmB

c2
− 2ECmB

c2
+m2

A + 3m2
B +m2

c +m2
D

=
2mB

c2
(EA − ED − EC) +m2

A + 3m2
B +m2

c +m2
D

From the conservation of energy, EB = EA − ED − EC . Making this substi-
tution and using EB = mBc

2:

s+ t + u = −2m2
B +m2

A + 3m2
B +m2

c +m2
D

= m2
A +m2

B +m2
c +m2

D
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10. Starting from conservation of energy and momentum in the center of mass
frame for the decay ρ→ 2π0 (where the ρ meson is at rest):

Eρ = Eπ1 + Eπ2

pπ1 = −pπ2

and Eρ is just the given rest mass, mρc
2 = 775.5 MeV . Since both pions are

symmetric, Eπ1 = Eπ2. Using Eq. (12.14) for the RHS:

mρc
2 = 2

√
p2πc

2 +m2
πc

4

where the π subscript refers to either pion. Squaring both sides:

(775.5 MeV )2 = (4)[(pπc)
2 + (135.0 MeV )2

gives pπ = 365.5 MeV/c. To get the velocity of the pions, we need γ:

γπ =
Eπ
mπc2

=

√
p2πc

2 +m2
πc

4

mπc2

and plugging in the above values gives γπ = 2.87. So:

2.87 =
1√

1− v2/c2

and solving for v gives v = 0.937 c.

11. The decay here is Λ0 → p + π−. Using four-vectors to conserve both
momentum and energy:

pΛ = pp + pπ

First, isolate the proton momentum on the LHS:

pp = pΛ − pπ

Squaring both sides:

p2p = p2Λ + p2π − 2pΛ · pπ

As shown above Eq. (12.14), the square of a momentum four-vector gives just
its mass:

m2
pc

2 = m2
Λc

2 +m2
πc

2 − 2pΛ · pπ

Carrying out the dot product:

m2
pc

2 = m2
Λc

2 +m2
πc

2 − 2(
EΛEπ
c2

− pΛ · pπ)
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where the second term of the dot product is zero since pΛ = 0 in its rest
frame. Collecting terms and noting EΛ = mΛ in this frame:

Eπ =
m2
Λc

4 +m2
πc

4 −m2
pc

4

2mΛc2

=
(1115.7)2 + (139.6)2 − (938.3)2

2(1115.7)
MeV = 172.0 MeV

Using just energy conservation:

Ep = Eλ − Eπ = 1115.7 MeV − 172.0 MeV = 943.7 MeV

To get the velocity of the each particle, find γ using Eq. (12.9):

γ =
E

mc2

giving γπ = 172.0/139.6 = 1.232 and γp = 943.7/938.3 = 1.0058. The velocity
is now found using Eq. (12.3):

γ =
1√

1− v2/c2

which results in the pion’s speed vπ = 0.584 c and the proton’s speed
vp = 0.107 c.

12. The particle collision here has two particles with equal mass and speed
traveling in opposite directions. Using the conservation of momentum in the
center of mass frame:

pA + pB = pC = 0

This says that the resulting particle is at rest. Using conservation of energy:

EA + EB = EC

2γmc2 = mCc
2

mC = 2γm

Using Eq. (12.3) with the given speed of v = (2/3) c:

mC =
2m√

1− (2/3)2
= 2.68m

Since the mass of the resulting particle is greater than the sum of the col-
liding particles, some of their kinetic energy was converted into the resulting
particle’s rest-energy.



7

13. Using the result of the previous problem:

mC = 2γme

where in this case, we find γ using Eq. (12.9)

γ =
E

mec2

Plugging this in above gives mC = 20 GeV/c2. Now we want to get the
reaction mC → µ+ µ where µ is the symbol for a muon. Following the same
steps as for Problem 10:

m2
C = 2

»
p2µc

2 +m2
µc

4

where the µ subscript refers to either muon. Squaring both sides:

(20.0 GeV )2 = (4)[(pµc)
2 + (0.1057 GeV )2

gives pµ = 20 GeV/c to high precision. To get the velocity of the muns, we
need γ:

γµ =
Eµ
mµc2

=
20.0 GeV

0.1057 GeV
= 189.2

where Eµ is found using Eq. (12.9). So:

189.2 =
1√

1− v2/c2

and solving for v gives v = 0.999986 c. The kinetic energy is, from Eq. (12.13):

KE = (γ − 1)mµc
2 = (189.2− 1)(0.1057 GeV ) = 19.89 GeV

14. In the center of mass frame where the proton and antiproton have equal
and opposite momenta:

Ep + Ep = EX

where EX is the energy of the resulting particle. As in Problem 12:

2γmpc
2 = mXc

2

2γ(938 MeV ) = 9700 MeV

giving γ = 5.17. Using Eq. (12.13) for the kinetic energies:
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KE = (γ − 1)mpc
2 = 3912 MeV

Using Eq. (12.3) to get velocities:

γ = 5.17 =
1√

1− v2/c2

Solving for v (as in the problems above), the proton and antiproton will each
have a speed of v = 0.981 c in the center of mass frame.

15. The reaction here is π+ → µ+νmu where the neutrino is assumed to have
zero mass. From conservation of energy in the center of mass frame:

Eπ = mπc
2 = Eµ + Eν

where Eν = |pν |c since mν = 0. From conservation of momentum:

|pν | = |pµ|

Using the above and Eq. (12.14) for Eµ:

mπc
2 =
»
p2µc

2 +m2
µc

4 + pµc

Isolating the square root and then squaring both sides:

(mπc
2 − pµc)2 = p2µc

2 +m2
µc

4

m2
πc

4 − 2mπc
2pµc+ p2µc

2 = p2µc
2 +m2

µc
4

Canceling terms and solving for pµ:

pµc =
m2
πc

4 −m2
µc

4

2mπc2

=
(139.6 MeV )2 − (105.7 MeV )2

2(139.6 MeV )
= 29.8 MeV

To get the velocity, we need to get γ for the muon:

γµ =
Eµ
mµc2

=

»
p2µc

2 +m2
µc

4

mµc2

giving γµ = 1.039 Using Eq. (12.3):

γmu = 1.039 =
1√

1− v2/c2

and solving for v results in v = 0.271 c.
b) The mean distance traveled by the muon is given by d = v∆tM where
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∆tR = 2.2× 10−6 s is the muon lifetime in the rest frame. Using Eq. (11.26)
to relate ∆tM and ∆tR:

d = v∆tM = vγµ∆tR

= (0.271)(3.0× 108 m/s)(1.039)(2.2× 10−6 s) = 186 m

At this speed, the muon goes, on average, quite far before it decays.

16. First, test the relation:

αiαj + αjαi = 2δijI

The Dirac-Pauli representation is given in Eq. (12.42):

αiαj =

ï
0 σi

σi 0

ò ï
0 σj

σj 0

ò
=

ï
σiσj 0

0 σiσj

ò
αjαi =

ï
0 σj

σj 0

ò ï
0 σi

σi 0

ò
=

ï
σjσi 0

0 σjσi

ò
αiαj + αjαi =

ï
σiσj + σjσi 0

0 σiσj + σjσi

ò
= (σiσj + σjσi)I

The Pauli matrices satisfy the following condition:

σiσj =

ß
I if i = j

−σjσi if i 6= j

Therefore:

σiσj + σjσi =

ß
2 if i = j
0 if i 6= j

Or, more concisely, σiσj + σjσi = 2δijI. Thus, αiαj + αjαi = 2δijI.

Next, check β2 = I. From Eq. (12.42):

β =

ï
I 0
0 I

ò
We carry out the multiplication:ï

I 0
0 I

ò ï
I 0
0 I

ò
=

ï
I2 0
0 I2

ò
Since I2 = I, β2 = I.
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17. The definition of the co-variant γµ matrices are given in Eq. (12.47):

γi = βαi , γ0 = β

where αi and β matrices are defined in Eq. (12.42). From Example 12.6, it is
shown by Eqs. (12.58)-(12.59) that:

α · p =

ï
0 σ · p

σ · p 0

ò
, βm =

ï
mI 0
0 mI

ò
where the Pauli spin matrices, σi are given by Eq. (12.43) and I is the 2
× 2 unit matrix. Since the zeroth component of the momenta is the energy,
p0 = E, and the zeroth component of the Dirac matrices is just γ0 = β, then

γ0p0 =

ï
EI 0
0 EI

ò
Similarly, we can use the above result for α · p and multiply by β giving:

γipi = −βα · p = −
ï
I 0
0 I

ò ï
0 σ · p

σ · p 0

ò
= −
ï

0 σ · p
−σ · p 0

ò
where the minus sign comes from lowering the index, recall pµ = (E,p) but
pµ = (E,−p). Adding the results together:

γµpµ +m =

ï
(E +m) −σ · p
σ · p (E +m)

ò
which is written in two-component form. Similarly,

γµpµ −m =

ï
(E −m) −σ · p
σ · p (E −m)

ò
18. Muons and electrons are both Dirac particles. The Feynman diagrams
for muon-electron scattering are equivalent to the Feynman diagram shown
in Fig. 12.4 with one of the incoming and outgoing lines corresponding to an
electron and the other corresponding to a muon.
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