Relativity II - Solutions

1. The components of the four-velocity for velocity are found between Eqs. (12.3) and (12.4). Since the electron is traveling only in the x-direction:

$$
v^{2}=v^{3}=0
$$

The relevant velocity components are:

$$
v^{0}=\gamma c, \quad v^{1}=\gamma \frac{d x^{1}}{d t}=\gamma(0.2 c)
$$

Calculating γ :

$$
\frac{1}{\sqrt{1-u^{2} / c^{2}}}=\frac{1}{\sqrt{1-(0.2)^{2}}}=1.02
$$

The results are:

$$
\begin{aligned}
v^{0} & =1.02 c \\
v^{1} & =0.204 c
\end{aligned}
$$

b. Using Eq. (12.6) with the electron's mass ($\left.m_{e}=0.511 \mathrm{MeV} / \mathrm{c}^{2}\right)$:

$$
\begin{aligned}
& p^{0}=1.02 m_{e} c=0.521 \mathrm{MeV} / c \\
& p^{1}=0.204 m_{e} c=0.104 \mathrm{MeV} / \mathrm{c} \\
& p^{2}=p^{3}=0
\end{aligned}
$$

2. Using Eq. (12.13):

$$
K E=(\gamma-1) m c^{2}
$$

Plug in the value of $\gamma=1 / \sqrt{1-(0.2)^{2}}=1.02$ and the electron mass:

$$
K E=(1.02-1)(0.511 \mathrm{MeV})=0.011 \mathrm{MeV}
$$

3. Using Eqs. (12.12) and (12.13) for the rest energy and kinetic energy, respectively:

$$
(\gamma-1) m c^{2}=m c^{2}
$$

gives $\gamma=2.0$. Now using Eq. (12.3):

$$
\begin{gathered}
\frac{1}{\sqrt{1-v^{2} / c^{2}}}=2 \\
\sqrt{\left(1-v^{2} / c^{2}\right)}=\frac{1}{2} \\
\left(1-\frac{v^{2}}{c^{2}}\right)=\frac{1}{4} \\
\frac{v^{2}}{c^{2}}=\frac{3}{4}
\end{gathered}
$$

The particle must have a speed of $v=(\sqrt{3} / 2) c$.
4. Using Eqs. (12.9) and (12.12) for the total energy and rest energy, respectively:

$$
\gamma m c^{2}=2 m c^{2}
$$

gives $\gamma=2.0$. This gives the same speed as the previous problem, $v=(\sqrt{3} / 2) c$.
5. We first evaluate the derivatives of $f(x)$ called for in the Taylor series:

$$
\begin{aligned}
f^{\prime}(x) & =\frac{1}{2} \frac{1}{(1-x)^{3 / 2}} \\
f^{\prime \prime}(x) & =\frac{3}{4} \frac{1}{(1-x)^{5 / 2}}
\end{aligned}
$$

We now evaluate at $\mathrm{x}=0$ and substitute into the given form of the Taylor series:

$$
f(x)=1+\frac{1}{2} x=\frac{3}{8} x^{2}+\ldots
$$

Now, let $x=v^{2} / c^{2}$:

$$
\frac{1}{\sqrt{1-u^{2} / c^{2}}}=1+\frac{1}{2} \frac{v^{2}}{c^{2}}=\frac{3}{8} \frac{v^{4}}{c^{4}}
$$

This result is identical to eq. 12.10 .
6. From Eq. (12.13) with the mass of the electron:

$$
K E=(\gamma-1)(0.511 \mathrm{MeV})
$$

where $\gamma=1 / \sqrt{1-(v / c)^{2}}$. This gives the following results:

$$
\begin{array}{rl}
v=0 & : \gamma=1.00: K E=0 \\
v=0.99 c & : \gamma=7.09: K E=3.11 \mathrm{MeV} \\
v=0.999 & c
\end{array}: \gamma=22.37: K E=10.9 \mathrm{MeV} \text { : } \quad \text { : } \quad \text { : }
$$

7. Using Eq. (12.13) with m as the electron's mass:

$$
K E=100 \mathrm{MeV}=(\gamma-1)(0.511 \mathrm{MeV})
$$

Solving for γ gives $\gamma=196.7$. Now use the definition of γ in Eq. (12.3):

$$
\begin{gathered}
196.7=\frac{1}{\sqrt{1-u^{2} / c^{2}}} \\
38688=\frac{1}{1-\frac{v^{2}}{c^{2}}} \\
1-\frac{v^{2}}{c^{2}}=2.58 \times 10^{-5} \\
0.999974=\frac{v^{2}}{c^{2}} \\
v=0.999987 c
\end{gathered}
$$

8. Using Eq. (12.9) with the mass of the proton $\left(m_{p}=938.3 \mathrm{MeV}\right)$ and a total energy of $E=1500 \mathrm{MeV}$:

$$
1500 \mathrm{MeV}=\gamma(938.3 \mathrm{MeV})
$$

giving $\gamma=1.60$, and plugging into Eq. (12.3) gives $v=0.78$ c.
b) Using Eq. (12.14),

$$
\begin{aligned}
p c & =\sqrt{E^{2}-\left(m c^{2}\right)^{2}}=\sqrt{(1500)^{2}-(938.3)^{2}} \mathrm{MeV} \\
p & =1170 \mathrm{MeV} / \mathrm{c}
\end{aligned}
$$

9.a) Carrying out the four-vector addition (see Chapter 11) in the given expression for s :

4

$$
\frac{\left|p_{A}+p_{B}\right|^{2}}{c^{2}}=\frac{\left[\left(E_{A}+E_{B}\right)^{2}-\left(\mathbf{p}_{A}+\mathbf{p}_{B}\right)^{2}\right]}{c^{2}}
$$

In the laboratory frame, E_{B} equals the rest energy of the particle and $\mathbf{p}_{B}=0$:

$$
s=\frac{\left[\left(E_{A}+m_{B} c^{2}\right)^{2}-\left|\mathbf{p}_{A}\right|^{2}\right]}{c^{2}}
$$

In the center of mass frame, we take the colliding particles to have equal and opposite momenta:

$$
s=\frac{\left[\left(E_{A}+E_{B}\right)^{2}-\left(\mathbf{p}_{A}+\mathbf{p}_{B}\right)^{2}\right]}{c^{2}}=\frac{\left(E_{A}+E_{B}\right)^{2}}{c^{2}}
$$

b) Substituting the sums of the four-vectors into the sum of the Mandelstam variables:

$$
\begin{aligned}
s+t+u=\frac{1}{c^{2}}\left[\frac{\left(E_{A}+E_{B}\right)^{2}}{c^{2}}-\left(\mathbf{p}_{A}+\mathbf{p}_{B}\right)^{2}\right. & +\frac{\left(E_{A}-E_{C}\right)^{2}}{c^{2}}-\left(\mathbf{p}_{A}-\mathbf{p}_{C}\right)^{2} \\
& \left.+\frac{\left(E_{A}-E_{D}\right)^{2}}{c^{2}}-\left(\mathbf{p}_{A}-\mathbf{p}_{D}\right)^{2}\right]
\end{aligned}
$$

Using conservation of energy and momentum:

$$
\begin{aligned}
E_{A}-E_{D} & =E_{C}-E_{B} \\
E_{A}-E_{C} & =E_{D}-E_{B} \\
\mathbf{p}_{A}-\mathbf{p}_{D} & =\mathbf{p}_{C}-\mathbf{p}_{B} \\
\mathbf{p}_{A}-\mathbf{p}_{C} & =\mathbf{p}_{D}-\mathbf{p}_{B}
\end{aligned}
$$

Substitute these quantities into the equation above:

$$
\begin{aligned}
s+t+u=\frac{1}{c^{2}}\left[\frac{\left(E_{A}+E_{B}\right)^{2}}{c^{2}}-\left(\mathbf{p}_{A}+\mathbf{p}_{B}\right)^{2}\right. & +\frac{\left(E_{D}-E_{B}\right)^{2}}{c^{2}}-\left(\mathbf{p}_{D}-\mathbf{p}_{B}\right)^{2} \\
& \left.+\frac{\left(E_{C}-E_{B}\right)^{2}}{c^{2}}-\left(\mathbf{p}_{C}-\mathbf{p}_{B}\right)^{2}\right]
\end{aligned}
$$

In the laboratory frame, $\mathbf{p}_{B}=0$ and $E_{B}=m_{B} c^{2}$ and so:

$$
\begin{aligned}
s+t+u & =\frac{2 E_{A} m_{B}}{c^{2}}-\frac{2 E_{D} m_{B}}{c^{2}}-\frac{2 E_{C} m_{B}}{c^{2}}+m_{A}^{2}+3 m_{B}^{2}+m_{c}^{2}+m_{D}^{2} \\
& =\frac{2 m_{B}}{c^{2}}\left(E_{A}-E_{D}-E_{C}\right)+m_{A}^{2}+3 m_{B}^{2}+m_{c}^{2}+m_{D}^{2}
\end{aligned}
$$

From the conservation of energy, $E_{B}=E_{A}-E_{D}-E_{C}$. Making this substitution and using $E_{B}=m_{B} c^{2}$:

$$
\begin{aligned}
s+t+u & =-2 m_{B}^{2}+m_{A}^{2}+3 m_{B}^{2}+m_{c}^{2}+m_{D}^{2} \\
& =m_{A}^{2}+m_{B}^{2}+m_{c}^{2}+m_{D}^{2}
\end{aligned}
$$

10. Starting from conservation of energy and momentum in the center of mass frame for the decay $\rho \rightarrow 2 \pi^{0}$ (where the ρ meson is at rest):

$$
\begin{array}{r}
E_{\rho}=E_{\pi 1}+E_{\pi 2} \\
\mathbf{p}_{\pi 1}=-\mathbf{p}_{\pi 2}
\end{array}
$$

and E_{ρ} is just the given rest mass, $m_{\rho} c^{2}=775.5 \mathrm{MeV}$. Since both pions are symmetric, $E_{\pi 1}=E_{\pi 2}$. Using Eq. (12.14) for the RHS:

$$
m_{\rho} c^{2}=2 \sqrt{p_{\pi}^{2} c^{2}+m_{\pi}^{2} c^{4}}
$$

where the π subscript refers to either pion. Squaring both sides:

$$
(775.5 \mathrm{MeV})^{2}=(4)\left[\left(p_{\pi} c\right)^{2}+(135.0 \mathrm{MeV})^{2}\right.
$$

gives $p_{\pi}=365.5 \mathrm{MeV} / \mathrm{c}$. To get the velocity of the pions, we need γ :

$$
\gamma_{\pi}=\frac{E_{\pi}}{m_{\pi} c^{2}}=\frac{\sqrt{p_{\pi}^{2} c^{2}+m_{\pi}^{2} c^{4}}}{m_{\pi} c^{2}}
$$

and plugging in the above values gives $\gamma_{\pi}=2.87$. So:

$$
2.87=\frac{1}{\sqrt{1-v^{2} / c^{2}}}
$$

and solving for v gives $v=0.937 c$.
11. The decay here is $\Lambda^{0} \rightarrow p+\pi^{-}$. Using four-vectors to conserve both momentum and energy:

$$
p_{\Lambda}=p_{p}+p_{\pi}
$$

First, isolate the proton momentum on the LHS:

$$
p_{p}=p_{\Lambda}-p_{\pi}
$$

Squaring both sides:

$$
p_{p}^{2}=p_{\Lambda}^{2}+p_{\pi}^{2}-2 p_{\Lambda} \cdot p_{\pi}
$$

As shown above Eq. (12.14), the square of a momentum four-vector gives just its mass:

$$
m_{p}^{2} c^{2}=m_{\Lambda}^{2} c^{2}+m_{\pi}^{2} c^{2}-2 p_{\Lambda} \cdot p_{\pi}
$$

Carrying out the dot product:

$$
m_{p}^{2} c^{2}=m_{\Lambda}^{2} c^{2}+m_{\pi}^{2} c^{2}-2\left(\frac{E_{\Lambda} E_{\pi}}{c^{2}}-\mathbf{p}_{\Lambda} \cdot \mathbf{p}_{\pi}\right)
$$

where the second term of the dot product is zero since $\mathbf{p}_{\Lambda}=0$ in its rest frame. Collecting terms and noting $E_{\Lambda}=m_{\Lambda}$ in this frame:

$$
\begin{aligned}
E_{\pi} & =\frac{m_{\Lambda}^{2} c^{4}+m_{\pi}^{2} c^{4}-m_{p}^{2} c^{4}}{2 m_{\Lambda} c^{2}} \\
& =\frac{(1115.7)^{2}+(139.6)^{2}-(938.3)^{2}}{2(1115.7)} \mathrm{MeV}=172.0 \mathrm{MeV}
\end{aligned}
$$

Using just energy conservation:

$$
E_{p}=E_{\lambda}-E_{\pi}=1115.7 \mathrm{MeV}-172.0 \mathrm{MeV}=943.7 \mathrm{MeV}
$$

To get the velocity of the each particle, find γ using Eq. (12.9):

$$
\gamma=\frac{E}{m c^{2}}
$$

giving $\gamma_{\pi}=172.0 / 139.6=1.232$ and $\gamma_{p}=943.7 / 938.3=1.0058$. The velocity is now found using Eq. (12.3):

$$
\gamma=\frac{1}{\sqrt{1-v^{2} / c^{2}}}
$$

which results in the pion's speed $v_{\pi}=0.584 c$ and the proton's speed $v_{p}=0.107 c$.
12. The particle collision here has two particles with equal mass and speed traveling in opposite directions. Using the conservation of momentum in the center of mass frame:

$$
\mathbf{p}_{A}+\mathbf{p}_{B}=\mathbf{p}_{C}=0
$$

This says that the resulting particle is at rest. Using conservation of energy:

$$
\begin{gathered}
E_{A}+E_{B}=E_{C} \\
2 \gamma m c^{2}=m_{C} c^{2} \\
m_{C}=2 \gamma m
\end{gathered}
$$

Using Eq. (12.3) with the given speed of $v=(2 / 3) c$:

$$
m_{C}=\frac{2 m}{\sqrt{1-(2 / 3)^{2}}}=2.68 m
$$

Since the mass of the resulting particle is greater than the sum of the colliding particles, some of their kinetic energy was converted into the resulting particle's rest-energy.
13. Using the result of the previous problem:

$$
m_{C}=2 \gamma m_{e}
$$

where in this case, we find γ using Eq. (12.9)

$$
\gamma=\frac{E}{m_{e} c^{2}}
$$

Plugging this in above gives $m_{C}=20 \mathrm{GeV} / \mathrm{c}^{2}$. Now we want to get the reaction $m_{C} \rightarrow \mu+\mu$ where μ is the symbol for a muon. Following the same steps as for Problem 10:

$$
m_{C}^{2}=2 \sqrt{p_{\mu}^{2} c^{2}+m_{\mu}^{2} c^{4}}
$$

where the μ subscript refers to either muon. Squaring both sides:

$$
(20.0 G e V)^{2}=(4)\left[\left(p_{\mu} c\right)^{2}+(0.1057 G e V)^{2}\right.
$$

gives $p_{\mu}=20 \mathrm{GeV} / \mathrm{c}$ to high precision. To get the velocity of the muns, we need γ :

$$
\gamma_{\mu}=\frac{E_{\mu}}{m_{\mu} c^{2}}=\frac{20.0 \mathrm{GeV}}{0.1057 \mathrm{GeV}}=189.2
$$

where E_{μ} is found using Eq. (12.9). So:

$$
189.2=\frac{1}{\sqrt{1-v^{2} / c^{2}}}
$$

and solving for v gives $v=0.999986 c$. The kinetic energy is, from Eq. (12.13):

$$
K E=(\gamma-1) m_{\mu} c^{2}=(189.2-1)(0.1057 G e V)=19.89 \mathrm{GeV}
$$

14. In the center of mass frame where the proton and antiproton have equal and opposite momenta:

$$
E_{p}+E_{\bar{p}}=E_{X}
$$

where E_{X} is the energy of the resulting particle. As in Problem 12:

$$
\begin{gathered}
2 \gamma m_{p} c^{2}=m_{X} c^{2} \\
2 \gamma(938 \mathrm{MeV})=9700 \mathrm{MeV}
\end{gathered}
$$

giving $\gamma=5.17$. Using Eq. (12.13) for the kinetic energies:

$$
K E=(\gamma-1) m_{p} c^{2}=3912 \mathrm{MeV}
$$

Using Eq. (12.3) to get velocities:

$$
\gamma=5.17=\frac{1}{\sqrt{1-v^{2} / c^{2}}}
$$

Solving for v (as in the problems above), the proton and antiproton will each have a speed of $v=0.981 c$ in the center of mass frame.
15. The reaction here is $\pi^{+} \rightarrow \mu+\nu_{m u}$ where the neutrino is assumed to have zero mass. From conservation of energy in the center of mass frame:

$$
E_{\pi}=m_{\pi} c^{2}=E_{\mu}+E_{\nu}
$$

where $E_{\nu}=\left|\mathbf{p}_{\nu}\right| c$ since $m_{\nu}=0$. From conservation of momentum:

$$
\left|\mathbf{p}_{\nu}\right|=\left|\mathbf{p}_{\mu}\right|
$$

Using the above and Eq. (12.14) for E_{μ} :

$$
m_{\pi} c^{2}=\sqrt{p_{\mu}^{2} c^{2}+m_{\mu}^{2} c^{4}}+p_{\mu} c
$$

Isolating the square root and then squaring both sides:

$$
\begin{aligned}
\left(m_{\pi} c^{2}-p_{\mu} c\right)^{2} & =p_{\mu}^{2} c^{2}+m_{\mu}^{2} c^{4} \\
m_{\pi}^{2} c^{4}-2 m_{\pi} c^{2} p_{\mu} c+p_{\mu}^{2} c^{2} & =p_{\mu}^{2} c^{2}+m_{\mu}^{2} c^{4}
\end{aligned}
$$

Canceling terms and solving for p_{μ} :

$$
\begin{aligned}
p_{\mu} c & =\frac{m_{\pi}^{2} c^{4}-m_{\mu}^{2} c^{4}}{2 m_{\pi} c^{2}} \\
& =\frac{(139.6 \mathrm{MeV})^{2}-(105.7 \mathrm{MeV})^{2}}{2(139.6 \mathrm{MeV})}=29.8 \mathrm{MeV}
\end{aligned}
$$

To get the velocity, we need to get γ for the muon:

$$
\gamma_{\mu}=\frac{E_{\mu}}{m_{\mu} c^{2}}=\frac{\sqrt{p_{\mu}^{2} c^{2}+m_{\mu}^{2} c^{4}}}{m_{\mu} c^{2}}
$$

giving $\gamma_{\mu}=1.039$ Using Eq. (12.3):

$$
\gamma_{m} u=1.039=\frac{1}{\sqrt{1-v^{2} / c^{2}}}
$$

and solving for v results in $v=0.271 c$.
b) The mean distance traveled by the muon is given by $d=v \Delta t_{M}$ where
$\Delta t_{R}=2.2 \times 10^{-6} s$ is the muon lifetime in the rest frame. Using Eq. (11.26) to relate Δt_{M} and Δt_{R} :

$$
\begin{aligned}
d & =v \Delta t_{M}=v \gamma_{\mu} \Delta t_{R} \\
& =(0.271)\left(3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)(1.039)\left(2.2 \times 10^{-6} \mathrm{~s}\right)=186 \mathrm{~m}
\end{aligned}
$$

At this speed, the muon goes, on average, quite far before it decays.
16. First, test the relation:

$$
\alpha^{i} \alpha^{j}+\alpha^{j} \alpha^{i}=2 \delta_{i j} I
$$

The Dirac-Pauli representation is given in Eq. (12.42):

$$
\begin{gathered}
\alpha^{i} \alpha^{j}=\left[\begin{array}{cc}
0 & \sigma^{i} \\
\sigma^{i} & 0
\end{array}\right]\left[\begin{array}{cc}
0 & \sigma^{j} \\
\sigma^{j} & 0
\end{array}\right]=\left[\begin{array}{cc}
\sigma^{i} \sigma^{j} & 0 \\
0 & \sigma^{i} \sigma^{j}
\end{array}\right] \\
\alpha^{j} \alpha^{i}=\left[\begin{array}{cc}
0 & \sigma^{j} \\
\sigma^{j} & 0
\end{array}\right]\left[\begin{array}{cc}
0 & \sigma^{i} \\
\sigma^{i} & 0
\end{array}\right]=\left[\begin{array}{cc}
\sigma^{j} \sigma^{i} & 0 \\
0 & \sigma^{j} \sigma^{i}
\end{array}\right] \\
\alpha^{i} \alpha^{j}+\alpha^{j} \alpha^{i}=\left[\begin{array}{cc}
\sigma^{i} \sigma^{j}+\sigma^{j} \sigma^{i} & 0 \\
0 & \sigma^{i} \sigma^{j}+\sigma^{j} \sigma^{i}
\end{array}\right]=\left(\sigma^{i} \sigma^{j}+\sigma^{j} \sigma^{i}\right) I
\end{gathered}
$$

The Pauli matrices satisfy the following condition:

$$
\sigma^{i} \sigma^{j}=\left\{\begin{array}{cll}
I & \text { if } & i=j \\
-\sigma^{j} \sigma^{i} & \text { if } & i \neq j
\end{array}\right.
$$

Therefore:

$$
\sigma^{i} \sigma^{j}+\sigma^{j} \sigma^{i}=\left\{\begin{array}{lll}
2 & \text { if } & i=j \\
0 & \text { if } & i \neq j
\end{array}\right.
$$

Or, more concisely, $\sigma^{i} \sigma^{j}+\sigma^{j} \sigma^{i}=2 \delta_{i j} I$. Thus, $\alpha^{i} \alpha^{j}+\alpha^{j} \alpha^{i}=2 \delta_{i j} I$.
Next, check $\beta^{2}=I$. From Eq. (12.42):

$$
\beta=\left[\begin{array}{ll}
I & 0 \\
0 & I
\end{array}\right]
$$

We carry out the multiplication:

$$
\left[\begin{array}{ll}
I & 0 \\
0 & I
\end{array}\right]\left[\begin{array}{ll}
I & 0 \\
0 & I
\end{array}\right]=\left[\begin{array}{ll}
I^{2} & 0 \\
0 & I^{2}
\end{array}\right]
$$

Since $I^{2}=I, \beta^{2}=I$.
17. The definition of the co-variant γ^{μ} matrices are given in Eq. (12.47):

$$
\gamma^{i}=\beta \alpha^{i}, \quad \gamma^{0}=\beta
$$

where α^{i} and β matrices are defined in Eq. (12.42). From Example 12.6, it is shown by Eqs. (12.58)-(12.59) that:

$$
\alpha \cdot \mathbf{p}=\left[\begin{array}{cc}
0 & \sigma \cdot \mathbf{p} \\
\sigma \cdot \mathbf{p} & 0
\end{array}\right] \quad, \quad \beta m=\left[\begin{array}{cc}
m \mathbf{I} & 0 \\
0 & m \mathbf{I}
\end{array}\right]
$$

where the Pauli spin matrices, σ^{i} are given by Eq. (12.43) and \mathbf{I} is the 2 $\times 2$ unit matrix. Since the zeroth component of the momenta is the energy, $p_{0}=E$, and the zeroth component of the Dirac matrices is just $\gamma^{0}=\beta$, then

$$
\gamma^{0} p_{0}=\left[\begin{array}{cc}
E \mathbf{I} & 0 \\
0 & E \mathbf{I}
\end{array}\right]
$$

Similarly, we can use the above result for $\alpha \cdot \mathbf{p}$ and multiply by β giving:

$$
\gamma^{i} p_{i}=-\beta \alpha \cdot \mathbf{p}=-\left[\begin{array}{ll}
\mathbf{I} & 0 \\
0 & \mathbf{I}
\end{array}\right]\left[\begin{array}{cc}
0 & \sigma \cdot \mathbf{p} \\
\sigma \cdot \mathbf{p} & 0
\end{array}\right]=-\left[\begin{array}{cc}
0 & \sigma \cdot \mathbf{p} \\
-\sigma \cdot \mathbf{p} & 0
\end{array}\right]
$$

where the minus sign comes from lowering the index, recall $p^{\mu}=(E, \mathbf{p})$ but $p_{\mu}=(E,-\mathbf{p})$. Adding the results together:

$$
\gamma^{\mu} p_{\mu}+m=\left[\begin{array}{cc}
(E+m) & -\sigma \cdot \mathbf{p} \\
\sigma \cdot \mathbf{p} & (E+m)
\end{array}\right]
$$

which is written in two-component form. Similarly,

$$
\gamma^{\mu} p_{\mu}-m=\left[\begin{array}{cc}
(E-m) & -\sigma \cdot \mathbf{p} \\
\sigma \cdot \mathbf{p} & (E-m)
\end{array}\right]
$$

18. Muons and electrons are both Dirac particles. The Feynman diagrams for muon-electron scattering are equivalent to the Feynman diagram shown in Fig. 12.4 with one of the incoming and outgoing lines corresponding to an electron and the other corresponding to a muon.
