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Nuclear Physics - Solutions

1. From Section 14.2, the notation for isotopes is:

A
ZX

where A is the atomic mass number, Z is the atomic number, and X is the
element symbol. The number of neutrons is equal to A minus Z:

3
7Li : 3 protons, 4 neutrons

63
29Cu : 29 protons, 34 neutrons
238
92 U : 92 protons, 146 neutrons

2. Using the notation explained above, the atomic numbers add up, 92 =
36 + 56. So any loss of atomic mass number must be due to neutrons:

Nneutrons = 236− (90 + 144) = 2

With 2 neutrons per fission, a chain reaction can develop if the neutrons are
mostly contained within the volume of enriched 236U.

3. Using Eq. (14.3), an estimate of the nuclear radius is:

R = 1.12A1/3 fm

where A is the atomic mass number. Using this formula:

4
2He : R = 1.12(4)1/3 fm = 1.78 fm

16
8 He : R = 1.12(16)1/3 fm = 2.82 fm

56
26Fe : R = 1.12(56)1/3 fm = 4.28 fm

208
82 Pb : R = 1.12(208)1/3 fm = 6.64 fm

237
93 Np : R = 1.12(237)1/3 fm = 6.93 fm
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4. Using Eq. (14.5) for the binding energy:

4
2He : B = [2(1.007825) + 2(1.008665)− 4.002602]u

= 0.030378(931.5 MeV ) = 28.3 MeV
16
8 O : B = [8(1.007825) + 8(1.008665)− 15.994915]u

= 0.137005(931.5 MeV ) = 127.62 MeV
56
26Fe : B = [26(1.007825) + 30(1.008665)− 55.934938]u

= 0.528462(931.5 MeV ) = 492.26 MeV
208
82 Fe : B = [82(1.007825) + 126(1.008665)− 207.97665]u

= 1.75679(931.5 MeV ) = 1636.45 MeV
238
92 U : B = [92(1.007825) + 146(1.008665)− 238.05079]u

= 1.9342(931.5 MeV ) = 1801.71 MeV

To get the binding energy per nucleon, just divide by A:

4
2He : B/A = (28.3/4) MeV = 7.08MeV/nucleon
16
8 O : B/A = (127.62/16) MeV = 7.98MeV/nucleon

56
26Fe : B/A = (492.26/56) MeV = 8.79MeV/nucleon

208
82 Fe : B/A = (1636.45/208) MeV = 7.87MeV/nucleon
238
92 U : B/A = (1801.71/238) MeV = 7.57MeV/nucleon

5. To find the binding energy of a proton, take the difference between the
nuclear masses and subtract the proton mass:

Bp = m(AZX)−m(A−1
Z−1Y )−m(H)

where X and Y are the chemical symbols for the original and final nucleus,
respectively, and m(H) is the mass of hydrogen. The result is:

4
2He : Bp = m(42He)−m(31H)−m(H) = [4.002603− 3.016049− 1.007825]u

= −0.021271(931.5 MeV ) = −19.81 MeV
56
26Fe : Bp = m(5626Fe)−m(5525Mn)−m(H) = [55.93494− 54.93805− 1.00783]u

= −0.01094(931.5 MeV ) = −10.2 MeV
208
82 Pb : Bp = m(20882 Pb)−m(20781 T l)−m(H) = [207.9767− 206.9774− 1.0078]u

= −0.0085(931.5 MeV ) = −7.9 MeV

The energy to remove the proton is just E = −Bp. Note that another way to
do this is simply to subtract the binding energies of the parent and daughter
nucleus. However, tables of binding energies are not as accessible as tables of
masses.
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6. To find the binding energy of a neutron, take the difference between the
nuclear masses and subtract the neutron mass:

Bn = m(AZX)−m(A−1
Z X)−mn

where X is the chemical symbol for the original nucleus and mn is the neutron
mass. The result is:

4
2He : Bn = m(42He)−m(32He)−mn = [4.002603− 3.016029− 1.008665]u

= −0.022091(931.5 MeV ) = −20.58 MeV
56
26Fe : Bn = m(5626Fe)−m(5526Fe)−mn = [55.93494− 54.93829− 1.00867]u

= −0.01202(931.5 MeV ) = −11.2 MeV
208
82 Pb : Bn = m(20882 Pb)−m(20782 Pb)−mn = [207.9767− 206.9759− 1.0087]u

= −0.0079(931.5 MeV ) = −7.4 MeV

The energy to remove the neutron is just E = −Bn.

7. Using Eq. (14.6) to calculate the binding energies, with the parameters of
Eq. (14.7)-(14.8):

4
2He : B = 9.75 MeV, B/A = 2.44 MeV
16
8 O : B = 116.04 MeV, B/A = 7.25 MeV

56
26Fe : B = 484.18 MeV, B/A = 8.65 MeV

208
82 Fe : B = 1623.2 MeV, B/A = 7.80 MeV
238
92 U : B = 1804.6 MeV, B/A = 7.58 MeV

Except for the first case of 4He, the agreement with B/A of problem 4 is
within about 1%.

8. The semi-empirical formula without the pairing term is as follows:

B(N, Z) = aA− bA2/3 − dZ2

A1/3
− s (N − Z)2

A

When N=Z, the fourth is zero. To get the binding energy per nucleon, divide
by A:

B(N,Z)

A
= a− bA−1/3 − dZ2

A4/3

Now let Z=A/2:

Binding energy per nucleon = a− bA−1/3 − d

4
A2/3

To find the maximum, differentiate with respect to A and set equal to zero:
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1

3
A−4/3 − 1

2
dA−1/3 = 0

Solving for A (assuming A 6= 0):

A =
2b

d

Plugging in the values for b and d from Eq. (14.7), the maximum is atA = 51.3.
Rounding up, this gives A/2 ≈ 26 as given in the problem.

9. Eq. (14.13) relates the half-life to the proportionality constant λ:

t1/2 = 2 min = 120 s =
ln(2)

λ

λ =
0.693

120 s
= 0.006 s−1

The decay rate, given just below Eq. (14.12), and the given initial rate R =
1200 s−1 at t = 0:

R = 1200 s−1 = (0.006 s−1)N0(1)

giving N0 = 2.0× 105.The same equation gives the decay rates at later times:

t = 4 min = 240 s : R = (0.006s−1)(2× 105)e−0.006(240) = 284 s−1

t = 6 min = 360 s : R = (0.006s−1)(2× 105)e−0.006(360) = 138 s−1

t = 8 min = 480 s : R = (0.006s−1)(2× 105)e−0.006(480) = 67 s−1

10. Using Eq. (14.13) to calculate the decay constant:

λ =
ln(2)

t1/2
=

0.693

12.3 yr
= 0.0563 yr−1

Using Eq. (14.12) to calculate the fraction left after 40 years:

N

N0
= e−(0.0563)(40) = 0.105

About 10% of the original amount is left after waiting 40 years.

11.a) Using Eq. (14.13) to get the decay constant:

λ =
ln(2)

5730 yr
=

0.693

3.012× 109 min
= 2.30× 10−10 min−1

Using this in the rate equation to get the initial amount:

15.3 min−1 = (2.30× 10−10 min−1)N0 e
−(2.30×10−10)(1)

N0 = 6.65× 1010 atoms of 14
6 C
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The total number of carbon atoms in the sample is:

1 g · 6.022× 1023 atoms

12 g/mol
= 5.018× 1022 atoms of C

The proportion is:

6.65× 1010

5.018× 1022
=

1.32× 10−12 atoms 14
6 C

total atoms C

This indicates the rarity of 14C for isolated objects and thus its reliability for
dating ancient relics since these nuclear decays can be easily measured.

b) Using the above values for λ and N0 when the organism was alive and
the given time period:

20, 000 years = 1.051× 1010 minutes

then the rate of decays is:

R = (2.30× 10−10 min−1)(6.65× 1010 decays) e−(2.30×10−10)(1051×1010)

= 1.36 decays per minute

12. After calculating A and Z for the missing nucleus, then use the semi-
empirical mass formula, Eq. (14.6), to calculate the mass of each nucleus,
with u = 931.5 MeV from Appendix A.
a)

209
83 Bi→ 205

81 Tl + 4
2He

∆E = (208.98037− 204.97440− 4.00260) u

= 0.00337u = 3.14 MeV

b)

238
92 U→ 234

90 Th + 4
2He

∆E = (238.05078− 234.04360− 4.00260) u

= 0.00458u = 4.27 MeV

c) For the next two reactions, the Q-value of beta-decay is given, see Example
14.6. The Q-value is equal to the energy release (including the positron mass
of 0.511 MeV).

77
36Kr→ 77

35Br + e+ + νe

Q = (71655.330− 71652.265) MeV

= 3.065 MeV
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d)

77
35Br→ 77

34Se + e+ + νe

Q = (71652.265− 71650.900) MeV

= 1.365 MeV

13. The energy release can be found by taking the difference in masses be-
tween 7

4Be and 7
3Li. Note that the mass of the electron is irrelevant, since the

masses are tabulated for neutral atoms, and Li has one fewer electron than Be.
(The mass of the electron has been converted to energy via the weak decay
mechanism.) Using Table 14.2 for the 7

3Li mass and looking up the mass of
7
4Be:

∆E = (7.016930− 7.016004) u = 0.000926 u = 0.86MeV

14. The most likely decay of 6
2He is beta-decay, since it is a light nucleus and

neutron-rich:

6
2He →6

3 Li + e− + ν̄e

Q = (6.01889− 6.01512)u = 3.512 MeV

The case of 8
4Be is unusual, since it can split exactly into two 4

2He nuclei:

8
4Be →4

2 He +4
2 He

Q = (8.005305− 2 · 4.002603)u = 0.092 MeV

With 12 nucleons, 12
4 Be quickly decays via beta-decay:

12
4 Be →12

5 B + e− + ν̄e

Q = (12.02692− 12.01435)u = 11.71 MeV

The nucleus 15
8 O has more protons than neutrons, so it will emit a positron:

15
8 O →15

7 N + e+ + νe

Q = (15.00307− 15.00011)u = 2.76 MeV

Although a heavy nucleus like 240
95 Am could α-decay, this nucleus prefers to

emit a positron:

240
95 Am →240

94 Pu + e+ + νe

Q = (240.05529− 240.05381)u = 1.38 MeV

The energy releases for beta decay here are the Q-value (see Example 14.6)
which includes the electron or positron mass.
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15.a) Start by looking up the masses of each nucleus:

m(23492 U) = 234.04095 u

m(23090 Th) = 230.03313 u

m(42He) = 4.00260 u

Using u = 931.5 MeV , the energy release of the decay is:

∆E = (234.04095− 230.03313− 4.00260)u = 4.86 MeV

b) The kinetic energy of the α-particle comes from conservation of momentum:

mThvTh = mHevHe

and the sum of the kinetic energies must add to the total energy release:

1

2
mThv

2
Th +

1

2
mHev

2
He = 4.86 MeV

Solving these equations for vTh in the first equation gives:

1

2

Å
mHe

mTh
+ 1

ã
mHev

2
He = 4.86 MeV

so the kinetic energy of the α-particle is:

KEα =
4.86 MeV

1 +mHe/mTh
= 4.78 MeV

16.a Using the information in Table 14.5, along with the example of mirror
nuclei in Fig. 14.16, and the text below it. The angular momentum, j and
parity, π, of the ground states are:

17
8 O : jπ =

5

2

+

reason : one extra nucleon in 1d5/2 orbit

17
9 F : jπ =

5

2

+

reason : mirror nucleus

31
15P : jπ =

1

2

+

reason : mirror nucleus

31
16S : jπ =

1

2

+

reason : one nucleon missing in 2s1/2 orbit

32
16S : jπ = 0+ reason : even− even nucleus

40
20Ca : jπ = 0+ reason : even− even nucleus

45
21Sc : jπ =

7

2

−
reason : one nucleon in 1f7/2 orbit
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b) The single-particle excited states have one nucleon from the closed shell
moving up into the next shell. The angular momentum and parity of the
excited states are not easy to surmise, but here they are:

17
8 O : excited jπ =

1

2

+

reason : one extra nucleon in 2s1/2 shell

17
9 F : excited jπ =

1

2

+

reason : mirror nucleus

31
15P : excited jπ =

3

2

+

31
16S : excited jπ =

3

2

+

32
16S : excited jπ = 2+ reason : even− even nucleus

40
20Ca : excited jπ = 2+ reason : even− even nucleus

45
21Sc : excited jπ =

3

2

+

For the case of 17
8 O, one nucleon gets promoted from the 1d5/2 shell to the 2s1/2

shell. This single nucleon determines the spin-parity of the nucleus. The other
16 nucleons in the core are tightly bound, and not easy to excite. One could
imagine that for 31

16S, the unpaired nucleon in the 2s1/2 shell of the ground
stategets promoted to the 1d5/2 shell, which would result in jπ = (5/2)+,
but this is not what actually happens in nature. The reason for the (3/2)+

excited state can be explained as the spin-coupling between two excited nu-
cleons, which is not a simple case.

17. Following section 14.5, but now with subscripts where D represents the
deuteron, X represents the excited nucleus, and p represents the proton. Start-
ing with conservation of momentum:

pD = pp cosθ + Px

0 = pp sinθ + Py

Solving for Px and Py:

Px = pD − pp cosθ
Px = −pp sinθ

The total kinetic energy before the collision is just from the deuteron:

Ei =
p2D

2mD

The total kinetic energy after the collision is:
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Ef =
p2p

2mp
+

1

2mX

(
(pD − ppcosθ)2 + (pp sinθ)

2
)

The energy absorbed by the nucleus will be equal to the loss of kinetic energy:

E = Ei − Ef =
p2D

2mD
−

p2p
2mp

− 1

2mX
(p2D + p2p − 2pDpp cosθ)

Substitute the corresponding energies for the first two terms:

p2D
2mD

= ED

p2p
2mp

= Ep

pDpp =
√

4EDEpmDmp

The energy of the excited nucleus due to deuteron stripping is:

E = ED

Å
1− mD

mX

ã
− Ep

Å
1− mp

mX

ã
−

2
√
EDEpmDmp

mX
cosθ

18. Using conservation of momentum:

pα = −pd

Substituting this into the given energy:

E =
1

2mα
p2
α +

1

2md
p2
α

Collecting terms:

E =
1

2

Å
1

mα
+

1

md

ã
p2
α

Adding the fractions to get a common denominator:

E =
1

2

Å
md +mα

mαmd

ã
p2
α

which is the desired result.

19. The Q-value for this reaction has already been done in problem 14 above.
The result is:

Q = 0.092MeV

The mean lifetime can be estimated using the uncertainty principle:
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∆E ·∆t ∼ ~

where ∆E ' Q. Using ~c = 197.3 MeV · fm and c = 3.0 × 108 m/s =
3.0× 1023 fm/s:

∆t ∼ 197.3

0.092(3.0× 1023)
s = 7× 10−21 s

This is shorter than the observed lifetime, but this is a very crude estimate. A
better calculation of the lifetime can be obtained using WKB approximation,
which is presented in several advanced textbooks on quantum theory.

20. Start by looking up the masses of each nucleus:

m(23894 Pu) = 238.04955 u

m(23492 U) = 234.04095 u

m(42He) = 4.00260 u

Using u = 931.5 MeV , the Q-value of the decay is:

Q = (238.04955− 234.04095− 4.00260)u = 5.6 MeV

The half-life can be estimated using the uncertainty principle:

∆E ·∆t ∼ ~

where ∆E ' Q. Using ~c = 197.3 MeV · fm and c = 3.0× 1023 fm/s:

∆t ∼ 197.3

5.6(3.0× 1023)
s = 1× 10−22 s

In this case, the lifetime is off (compared with the observed lifetime) by many
orders of magnitude. The reason is that the α must penetrate the Coulomb
barrier, which is substantial in a high-Z nucleus like 238

94 Pu but much smaller
in a light nucleus (as in the previous problem). See also the comments at the
end of section 3.3.2.

21. Start by looking up the masses of each nucleus:

m(19479 Au) = 193.96534 u

m(19478 Pt) = 193.96266 u

m(19077 Ir) = 189.96059 um(42He) = 4.00260 u

Using u = 931.5 MeV , the Q-value of the β-decay is:

Q = (193.96534− 193.96266)u = 2.5 MeV
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The Q-value for the α-decay is:

Q = (193.96534− 189.96059− 4.0026)u = 2.0 MeV

The lifetime for the β-decay can be estimated as in Problem 19, and is on the
order of 10−22 s, but again this is a very crude estimate. As shown in Problem
20, it is not possible to get a good estimate on the lifetime of α-decay (see
the comments at the end of section 3.3.2) since the lifetime is very sensitive
to the height of the Coulomb barrier.
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