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Instructor Notes 

 These slides provide a high level overview of the source code optimization process 

‒ They cover some of the common optimization steps such coalescing, loop unrolling and vectorization 

‒ Students should choose some simple applications and try to apply these optimizations to their kernels. 

‒ They should  also run their kernels under tools such as  AMD CodeXL to understand the affects of their 
optimization on kernel performance 

 A number of academic papers have covered GPU kernel optimization in detail and should be read 
alongside this material, some have been listed below 

‒ Optimization principles and application performance evaluation of a multithreaded GPU using CUDA - Shane 
Ryoo et.al 

‒ Exploiting memory access patterns to improve memory performance in data-parallel architectures - B Jang 
et.al 

‒  GPU Acceleration of Iterative Digital Breast Tomosynthesis - D Schaa et.al 
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Coalescing Memory Accesses 

 Imagine a scenario where work-items are accessing elements of a buffer 

 Naively, one memory request would be generated per work-item 
‒ With thousands of work-items executing per cycles, this would quickly congest the 

memory system 

 GPU hardware supports coalescing, or combining multiple requests into fewer, 
larger requests  

work-items 

buffer 

Non-coalesced 

work-items 

buffer 

Coalesced 

Coalescing unit 
8x 4B requests 

1x 32B request 
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Coalescing Memory Accesses 

 Recall that for AMD hardware, 64 work-items form a wavefront and must 
execute the same instruction in a SIMD manner 

 

 For the AMD R9 290X GPU, memory accesses of 16 consecutive work-items are 
evaluated together and can be coalesced to fully utilize the bus 

‒ This unit is called a quarter-wavefront and is the important hardware scheduling unit 
for memory accesses 
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Coalescing Memory Accesses 

 Global memory performance for a simple data copying kernel of entirely 
coalesced and entirely non-coalesced accesses on an AMD R9 285 GPU 
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Vectorization 

 Vectorization allows a single work-item to perform multiple operations at once 

 Explicit vectorization is achieved by using vector datatypes (such as float4) in 
the source program 

‒ When a number is appended to a datatype, the datatype becomes an array of that 
length 

‒ Operations can be performed on vector datatypes just like regular datatypes  

‒ Each ALU will operate on different element of the float4 data 

 CPUs and previous generations of AMD GPUs benefit from explicit 
vectorization  

‒ Current generations of AMD and NVIDIA GPUs execute “scalar” operations on SIMD 
lanes, which do not benefit from explicit vectorization  
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Vectorization 

 On AMD Northern Islands and Evergreen GPUs, each processing element 
executes a multi-way VLIW instruction 

‒ Northern Islands: 4-way VLIW 

‒ 4 scalar operations or 

‒ 2 scalar operations + 1 transcendental operation 

‒ Evergreen: 5-way VLIW 

‒ 5 scalar operations or 

‒ 4 scalar operations + 1 transcendental operation 
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Vectorization 

 Vectorization improves memory performance on AMD Northern Islands and 
Evergreen GPUs 
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Local Memory 

 On GPUs, local memory maps to a high-bandwidth, low-latency memory located on 
chip 
‒ Useful for sharing data among work-items within a work-group 

‒ Accesses to local memory are usually much faster than accesses to global memory (even 
cached global memory) 

‒ Accesses to local memory usually do not require coalescing 

‒ More forgiving than global memory when having non-ideal access patterns 

 Additional advantages on some AMD GPUs (e.g., Radeon HD 7970) 
‒ Local memory is mapped to LDS, 4x larger than L1 cache 

‒ LDS has a lower latency than L1 cache 

 The tradeoff is that the use of local memory will limit the number of in-flight work-
groups 
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Constant Memory 

 Constant memory is a memory space to hold data that is accessed 
simultaneously by all work-items 
‒ Usually maps to specialized caching hardware that has a fixed size 
‒ It should NOT be used for general input data (e.g. an input buffer) that is read-only 

 Examples of useful data to place in constant memory 
‒ Convolution filters, Kmeans cluster centriods, etc. 

 Advantages for AMD hardware 
‒ If all work-items access the same address, then only one access request will be 

generated per wavefront  
‒ Constant memory can reduce pressure from L1 cache 
‒ Constant memory has lower latency than L1 cache 
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Occupancy 

 Work-items from a work-group are launched together on a compute unit 
‒ In general, GPU hardware threads have a large amount of state 

‒ Only the very latest GPUs from AMD support context switching in the traditional sense, though with an 
extremely high penalty 

‒ In practice, work-group state is persistent on a compute unit, even during long latency operations 

 If there are enough resources available, multiple work groups can be mapped to the same 
compute unit at the same time  
‒ Wavefronts from multiple work-group can be swapped in to hide latency 

 Resources are fixed per compute unit (number of registers, local memory size, maximum 
number of wavefronts) 
‒ Any one of these resource constraints may limit the number of work-groups on a compute unit 

 The term occupancy is used to describe how well the resources of the compute unit are 
being utilized 
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Occupancy: Registers 

 The availability of registers is one of the major limiting factor for large kernels 

 On current GPUs, the maximum number of registers required by a kernel must 
be available for all work-items of a workgroup 

‒ Example: Consider a GPU with 16384 registers per compute unit running a kernel that 
requires 35 registers per work-item 

‒ Each compute unit can execute at most 468 work-items 

‒ This affects the choice of workgroup size 
‒ A work-group of 512 is not possible 

‒ Only 1 work-group of 256 work-items is allowed at a time, even though 212 more work-items could be running 

‒ 3 work-groups of 128 work-items are allowed, providing 384 work-items to be scheduled, etc. 
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Occupancy: Registers 

 Consider another example:  

‒ A GPU has 16384 registers per compute unit 

‒ The work-group size of a kernel is fixed at 256 work-items 

‒ The kernel currently requires 17 registers per work-item 

 Given the information, each work group requires 4352 registers 

‒ This allows for 3 active work-groups if registers are the only limiting factor 

 If the code can be restructured to only use 16 registers, then 4 active work 
groups would be possible 
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Occupancy: Local Memory 

 GPUs have a limited amount of local memory on each compute unit 

‒ 64 KB local memory on AMD GPUs 

 Local memory limits the number of active work-groups per compute unit 

 Depending on the kernel, the data per work-group may be fixed regardless of 
number of work-items (e.g., histograms), or may vary based on the number of 
work-items (e.g., matrix multiplication, convolution) 
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Occupancy: Work-items/work-groups 

 GPUs have hardware limitations on the maximum number of work-items per 
work-group 

‒ OpenCL limits work-groups to 256 work-items  

 AMD GPUs have per-SIMD limits on the number of wavefronts 

‒ 40 wavefronts (2560 work-items) per compute-unit 

‒ For a 44 Compute Unit GPU such as the R9 290X there can be upto 40x44 = 1760 
wavefronts active on the device 
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Occupancy: Limiting Factors 

 The minimum of these three factors is what limits the active number of work-
items (or occupancy) of a compute unit  

 The interactions between the factors are complex 

‒ The limiting factor may have either work-item or wavefront granularity 

‒ Changing work-group size may affect register or local memory usage 

‒ Reducing any factor (such as register usage) slightly may have allow another work 
group to be active 

 AMD CodeXL plots these factors visually allowing the tradeoffs to be visualized 
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Thread Mapping 

 Thread mapping determines which threads will access which data 

‒ Proper mappings can align with hardware and provide large performance benefits 

‒ Improper mappings can be disastrous to performance 

 The paper Static Memory Access Pattern Analysis on a Massively Parallel GPU 
by Jang, et. al focuses on the task of effectively mapping threads to the data 
access patterns of an algorithm 
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Thread Mapping 

 By using different mappings, the same thread can be assigned to access 
different data elements 

‒ The examples below show three different possible mappings of threads to data 
(assuming the thread id is used to access an element) 

0 1 2 3 

4 5 6 7 

8 9 10 11 

12 13 14 15 

Thread IDs 

Mapping 
int tid =  

get_global_id(1) *  

get_global_size(0) +  

get_global_id(0); 

0 4 8 12 

1 5 9 13 

2 6 10 14 

3 7 11 15 

int tid =  

get_global_id(0) *  

get_global_size(1) +  

get_global_id(1); 

0 1 4 5 

2 3 6 7 

8 9 12 13 

10 11 14 15 

int group_size =  

get_local_size(0) * 

get_local_size(1); 

 

int tid =  

get_group_id(1) * 

get_num_groups(0) * 

group_size + 

get_group_id(0) * 

group_size +  

get_local_id(1) * 

get_local_size(0) +   

get_local_id(0) 

*assuming 2x2 groups 
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Thread Mapping 

 Consider a serial matrix multiplication algorithm 

 

 

 This algorithm is suited for output data decomposition 

‒ We will create NM threads  

‒ Effectively removing the outer two loops 

‒ Each thread will perform P calculations 

‒ The inner loop will remain as part of the kernel 

 Should the index space be MxN or NxM? 
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Thread Mapping 

 Thread mapping 1: with an MxN index space, the kernel would be: 

 

 

 Thread mapping 2: with an NxM index space, the kernel would be: 

 

 

 Both mappings produce functionally equivalent versions of the program 
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Thread Mapping 

 This figure shows the execution of the two thread mappings on NVIDIA 
GeForce 285 and 8800 GPUs 

 

 

 

 

 

 Notice that mapping 2 is far superior in performance for both GPUs 
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Thread Mapping 

 The discrepancy in execution times between the mappings is due to data 
accesses on the global memory bus 

‒ Assuming row-major data, data in a row (i.e., elements in adjacent columns) 
are stored sequentially in memory 

‒ To ensure coalesced accesses, consecutive threads in the same wavefront 
should be mapped to columns (the second dimension) of the matrices 

‒ This will give coalesced accesses in Matrices B and C 

‒ For Matrix A, the iterator i3 determines the access pattern for row-major data, so 
thread mapping does not affect it 
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Thread Mapping 

 In mapping 1, consecutive threads (tx) are mapped to different rows of 
Matrix C, and non-consecutive threads (ty) are mapped to columns of 
Matrix B 

‒ The mapping causes inefficient memory accesses 
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Thread Mapping 

 In mapping 2, consecutive threads (tx) are mapped to consecutive 
elements in Matrices B and C 

‒ Accesses to both of these matrices will be coalesced  

‒ Degree of coalescence depends on the workgroup and data sizes 
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Thread Mapping 

 In general, threads can be created and mapped to any data element by 
manipulating the values returned by the thread identifier functions 

 The following matrix transpose example will show how thread IDs can be 
modified to achieve efficient memory accesses 
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Matrix Transpose 

 A matrix transpose is a straightforward technique 
‒ Out(x,y) = In(y,x) 

 No matter which thread mapping is chosen, one operation (read/write) will produce 
coalesced accesses while the other (write/read) produces uncoalesced accesses 
‒ Note that data must be read to a temporary location (such as a register) before being written 

to a new location 

 

In Out In Out 

0 1 2 3 

coalesced uncoalesced 

0 1 2 3 

uncoalesced coalesced 

Threads 
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0 1 2 3 

4 5 6 7 

8 9 10 11 

12 13 14 15 

Matrix Transpose 

 If local memory is used to buffer the data between reading and writing, we can 
rearrange the thread mapping to provide coalesced accesses in both directions 

‒ Note that the work group must be square 

In Out 

coalesced 

0 1 2 3 

coalesced 

0 1 2 3 

0 1 2 3 

Threads 
global mem index 
local mem index 

0 1 2 3 

0 1 2 3 

0 4 8 12 

Local memory 
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Matrix Transpose 

 The following figure shows a performance comparison of the two transpose 
kernels for matrices of size NxM on an AMD 5870 GPU 

‒ “Optimized” uses local memory and thread remapping 
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Summary 

 Although writing a simple OpenCL program is relatively easy, optimizing code can 
be more difficult 
‒ Coalescing memory access 

‒ Vectorization  

‒ Local memory 

‒ Constant memory 

 When creating work groups, hardware limitations (number of registers, size of local 
memory, etc.) need to be considered 
‒ Work-groups must be sized appropriately to maximize the number of active work-items 

and properly hide latencies 

 Thread mapping, and its effect on accessing memory, is critical for OpenCL kernel 
performance 


