

GPU ARCHITECTURE

OPENCL 2.0 UNIVERSITY TOOLKIT

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 2

Conventional CPU Architecture

 CPUs are optimized to minimize the
latency of a single thread

‒ Can efficiently handle control flow intensive
workloads

 Lots of space devoted to caching and
control logic
‒ Multi-level caches used to avoid latency

 Limited number of registers due to
smaller number of active threads

 Control logic to reorder execution,
provide ILP and minimize pipeline stalls

Example Piledriver-based CPU architecture

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 3

Modern GPGPU Architecture

 Array of independent
“cores” called Compute
Units (AMD) or Streaming
Multiprocessors (NVIDIA)

 High bandwidth, banked L2
caches and main memory

‒ Banks allow multiple
accesses to occur in parallel

‒ 100s of GB/s

 Memory and caches are
generally non-coherent

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 4

Modern GPGPU Architecture

 Compute units are based on SIMD hardware

‒ Both AMD and NVIDIA have 16- wide SIMDs, but map different sized hardware
threads onto these units

 Large register files are used for fast context switching

‒ No saving/restoring state

‒ Data is persistent for entire thread execution

 Both vendors have a combination of automatic L1 cache and a user-managed
scratchpad

‒ Scratchpad is called local data share (LDS) by AMD and shared memory by NVIDIA

 Scratchpad is heavily banked and very high bandwidth (~ TB/s)

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 5

Modern GPGPU Architecture

 Work-items are automatically grouped into hardware threads called
“wavefronts” (AMD) or “warps” (NVIDIA)

‒ Single instruction stream executed on SIMD hardware

‒ 64 work-items in a wavefront, 32 in a warp

‒ Instruction is issued multiple times on 16-lane SIMD unit

 Control flow is handled by masking SIMD lanes

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 6

SIMT and SIMD

 NVIDIA coined “Single Instruction Multiple Threads” (SIMT) to denote multiple
(software) threads sharing an instruction stream

 Although each work-item has its own Program Counter (PC), they execute in
lock-step on SIMD hardware

‒ Multiple software threads are executed on a single hardware thread

 Divergence between threads handled using masking or predication

‒ Divergence between work-items is transparent to the OpenCL model and it appears
as if work-item has its own PC

 Performance is highly dependent on understanding work-items to SIMD
mapping

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 7

AMD R9 290X

 R9 200 series GPUs based on Graphics Core Next (GCN) architecture

 4 SIMDs per compute unit

 1 Scalar Unit to handle instructions common to wavefront

‒ Loop iterators, constant variable accesses, branches

‒ Has a single, integer-only ALU unit

‒ Separate branch unit used for some conditional instructions

 Radeon R9 290X

‒ 44 compute units

‒ 5.6 TFLOPS peak performance for single precision

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 8

AMD R9 290X

 Compute unit microarchitecture

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 9

AMD R9 290X

 Wavefronts are associated with a SIMD unit and a subset of the vector
registers

‒ Up to 10 wavefronts can be associated with each SIMD

‒ 4 SIMDs

‒ 40 wavefronts can be active per compute unit

 All hardware units except for the SIMDs are shared by all wavefronts on a
compute unit

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 10

AMD R9 290X

 Each cycle, wavefronts targeting one of the SIMDs are allowed to issue
instructions

‒ Every 4th cycle a wavefront will be active

 An instruction takes 4 cycles to enter the SIMD pipeline (4 subwavefronts per
wavefront)

 Scalar unit and branch unit can take 1 instruction per cycle

 All hardware units can remain fully utilized with a simplified front-end using
this round-robin technique

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 11

AMD R9 290X

 Up to 5 instructions can be issued per cycle

‒ Only 1 per wavefront

‒ Only 1 per instruction type (i.e., per hardware unit)

‒ Need multiple instructions types present to fully utilize hardware units

 Instruction types

‒ Vector Arithmetic Logic Unit (ALU)

‒ Scalar ALU or Scalar Memory Read

‒ Vector memory access (Read/Write/Atomic)

‒ Branch/Message

‒ Local Data Share (LDS)

‒ Export or Global Data Share (GDS)

‒ Internal (s_nop, s_sleep, s_waitcnt, s_barrier, s_setprio)

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 12

AMD R9 290X

 R/W L1 caches
‒ 16 KB per compute unit

‒ Write through (dirty-byte mask)

‒ 64B lines

 R/W L2 caches
‒ 16 partitions with 64 KB/partition

‒ Write back (dirty-byte mask)

‒ 64B lines

 LDS
‒ 64 KB per compute unit

‒ 32 banks

‒ Contains integer atomic units

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 13

AMD R9 290X

 Cache coherence supported at L2-level

‒ GLC-bit allows L1 caches to be bypassed

‒ Data is strided across L2s (all CUs access all caches)

‒ Bypassing L1 allows coherent view at L2-level

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 14

AMD Memory Model in OpenCL

 Global Memory
‒ Maps to cache hierarchy

‒ GDDR5 video main memory

 Constant Memory
‒ Maps to scalar unit reads

 Local Memory
‒ Maps to the LDS

‒ Shared data between work-items
of a work group

‒ High Bandwidth access from
SIMDs

 Private memory
‒ Maps to vector registers

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 15

AMD GPU Architecture in OpenCL

 R9 290X mapped to OpenCL

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 16

An Optimal GPGPU Kernel

 An ideal kernel for a GPU

‒ Has thousands of independent pieces of work

‒ Uses all available compute units

‒ Allows context switching to hide latency

‒ Is amenable to instruction stream sharing

‒ Maps to SIMD execution by preventing divergence between work items

‒ Has high arithmetic intensity

‒ Ratio of math operations to memory access is high

‒ Not limited by memory bandwidth

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 17

Summary

 We have examined a GPU architecture and how the OpenCL specification maps
onto it

‒ An important take-away is that even though vendors have implemented the spec
differently the underlying ideas for obtaining performance by a programmer remain
similar

 We have looked at the runtime compilation model for OpenCL to understand
how programs and kernels for compute devices are created at runtime

