
OPENCL INTRODUCTION
OPENCL 2.0 UNIVERSITY TOOLKIT

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 2

Instructor Notes

 These slides can serve as an introduction to OpenCL

 These slides cover the OpenCL models, the API and can serve as a reference for
the API

 Some of the OpenCL examples can be shown in an IDE along with the slides

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 3

OpenCL Architecture

 OpenCL allows parallel computing on heterogeneous devices

‒ CPUs, GPUs, FPGAs, etc.

‒ Provides portable accelerated code

 Defined in four models

‒ Platform model

‒ Execution model

‒ Memory model

‒ Programming model

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 4

Platform Model

 The platform model describes the computational resources utilized by OpenCL
and their relationship with one another

 Each OpenCL implementation (i.e. an OpenCL library) can create platforms
consisting of resources in the system with which it is capable of interacting

‒ For example, and AMD platform can consist of X86 CPUs and Radeon GPUs

 OpenCL uses an “Installable Client Driver” model

‒ The goal is to allow platforms from different vendors to co-exist

‒ Applications can choose a platform at runtime

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 5

Platform Model

 The platform model defines a host connected to one or more compute devices

 A device is divided into one or more compute units

 Compute units are divided into one or more processing elements

‒ Each processing element maintains its own program counter

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 6

Host/Devices

 The host is whatever processor the OpenCL library runs on

‒ x86 CPUs generally

 Devices are processors that the library can talk to

‒ CPUs, GPUs, FPGAs, and other accelerators

 For AMD

‒ All CPUs are combined into a single device (each core is a compute unit and
processing element)

‒ Each GPU is a separate device

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 7

Selecting a Platform

 The platform is selected using an API call

‒ There is a pattern to many OpenCL calls which allows the API to be vendor neutral

‒ A first call can be made to return storage requirements for data

‒ A second call can be made to return the data

 Robust applications will therefore usually make this call twice

‒ The first call is used to get the number of platforms available to the implementation

‒ Memory space is then allocated for the platform objects

‒ The second call is used to retrieve the platform objects

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 8

Selecting Devices

 Once a platform is selected, we can then query for the devices that it knows
how to interact with

 We can specify which types of devices we are interested in (e.g. all devices,
CPUs only, GPUs only)

 This call is performed twice as with clGetPlatformIDs

‒ The first call is to determine the number of devices, the second retrieves the device
objects

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 9

Contexts

 A context is the environment for managing OpenCL objects and resources

 To manage OpenCL programs, the following are associated with a context
‒ Devices: the things doing the execution

‒ Program objects: the program source that implements the kernels

‒ Kernels: functions that run on OpenCL devices

‒ Memory objects: data that are operated on by the device

‒ Command queues: mechanisms for interaction with the devices

‒ Commands include: data transfers, kernel execution, and synchronization

 When you create a context, you will provide a list of devices to associate with it
‒ For the rest of the OpenCL resources, you will associate them with the context as

they are created

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 10

Contexts

 This function creates a context given a list of devices

 The properties argument specifies which platform to use (if NULL, the default
chosen by the vendor will be used)

 The function also provides a callback mechanism for reporting errors to the
user

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 11

Command Queues

 A command queue is the mechanism for the host to request that an action be
performed by the device (i.e., the host sends commands to a device)

‒ Commands include initiating a memory transfer, begin executing a kernel, etc.

 The command queue properties specify:

‒ Whether out-of-order execution of commands is allowed

‒ Whether profiling is enabled

‒ Whether this queue should reside on a device

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 12

Command Queues

 Since a command queue targets a single device, a separate command queue is
required for each device

 Some commands within the queue can be specified as synchronous or
asynchronous

 Commands can execute in-order or out-of-order

 Command queues associate a context with a device

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 13

Events

 Events are OpenCL’s mechanism of specifying dependencies between
commands

 All OpenCL API calls to enqueue a command onto a command queue have the
option of generating an event, and taking a list of events that must complete
before this command can execute

‒ The list of events that specify dependencies are referred to as a wait list

 Events are also used for profiling (discussed in a later series)

 With an in-order command queue (default), each command will complete
before the next command begins, so manually specifying dependencies is not
required

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 14

Queue Synchronization

 A call to clFinish blocks a host program until all enqueued commands have
completed

‒ In practice, this call has higher overhead than specifying dependencies using events,
and should be used sparingly when high performance is required

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 15

Device-Side Enqueuing

 OpenCL 2.0 introduced device-side command queues

‒ Allows a device to enqueue commands to itself

‒ e.g. a kernel can enqueue another kernel execution onto the same device

‒ Parent and child kernels execute asynchronously

‒ A parent kernel is not registered as complete until all its child kernels have completed

 Device-side command queues are out-of-order

‒ Events can be used to enforce dependencies

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 16

Memory Objects

 Memory objects are handles to data that can be accessed by a kernel
‒ OpenCL memory object types are buffers, images, and pipes

 Buffers
‒ Contiguous chunks of memory stored sequentially and can be accessed directly

(arrays, pointers, structs)
‒ Read/write capable

 Images
‒ Opaque objects (2D or 3D)
‒ Can only be accessed via intrinsic functions read_image() and write_image()

‒ Can be read, written, or both in a kernel (new in OpenCL 2.0)

 Pipes (New in OpenCL 2.0)
‒ Ordered sequence of data items called packets
‒ Stored on the basis of a first in, first out method
‒ Can only be accessed via intrinsics read_pipe() and write_pipe()

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 17

Creating Buffers

 This function creates a buffer (cl_mem object) for the given context

 The flags specify:

‒ Reading and writing permissions on the data

‒ If the data should be copied from the host pointer

‒ If the data should be accessed directly from the host pointer itself

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 18

Transferring Data

 While the OpenCL runtime is responsible for ensuring data is accessible by a
kernel, explicit memory transfer commands can be used for improved
performance

 OpenCL provides commands to transfer data to and from devices

‒ clEnqueue{Write|Read}{Buffer|Image}

‒ Writing is copying from the host to a device

‒ Reading is copying from a device to the host

 OpenCL API calls also exist to directly map all or part of a memory object to a
host pointer

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 19

Transferring Data

 This command initializes the OpenCL memory object
‒ The command will write data from a host pointer (ptr) to the memory object

‒ Often the data will be resident on the device, but this is not explicitly required by the
OpenCL specification

 The blocking_write parameter specifies that ptr can be reused after the
command completes

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 20

Programs

 A program object is a collection of OpenCL kernels, and functions and data
used by kernels

‒ Can be source code (text) or precompiled binary

 Creating a program object requires either reading in a string (source code) or a
precompiled binary

 To compile the program

‒ Specify which devices are targeted

‒ Program is compiled for each device

‒ Pass in compiler flags (optional)

‒ Check for compilation errors (optional, output to screen)

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 21

Creating Programs

 This function creates a program object from strings of source code

‒ count specifies the number of strings

‒ The user must create a function to read in the source code to a string

 If strings are not NULL-terminated, lengths is used to specify the strings’
lengths

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 22

Compiling Programs

 This function compiles and links an executable from the program object for
each device in the context

‒ If device_list is supplied, then only those devices are targeted

 Optional preprocessor, optimization, and other options can be supplied by
options

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 23

Kernels

 A kernel is a function declared in a program that is executed on an OpenCL
device

‒ A kernel object is a kernel function along with its associated arguments

 A kernel object is created from a compiled program

 The user must explicitly associate arguments (memory objects, primitives, etc.)
with the kernel object

 Kernel objects are created from a program object by specifying the name of
the kernel function

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 24

Creating Kernels

 Creates a kernel from the given program

‒ The kernel that is created is specified by a string that matches the name of the
function within the program

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 25

Runtime Compilation of OpenCL kernels

 There is a high overhead for compiling programs and creating kernels

‒ Each operation only has to be performed once (at the beginning of the program)

‒ The kernel objects can be reused any number of times by setting different arguments

Read source code
into an array

clCreateProgramWithSource

clCreateProgramWithBinary

clBuildProgram clCreateKernel

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 26

Reporting Compile Errors

 If a program fails to compile, OpenCL requires the programmer to explicitly ask
for compiler output

‒ A compilation failure is determined by an error value returned from clBuildProgram

‒ Calling clGetProgramBuildInfo with the program object and the parameter
CL_PROGRAM_BUILD_STATUS returns a string with the compiler output

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 27

Setting Kernel Arguments

 Memory objects and individual data values can be set as kernel arguments

 Kernel arguments are set by repeated calls to clSetKernelArgs

 Each call must specify

‒ The index of the argument as it appears in the function signature, the size, and a
pointer to the data

 Examples

‒ clSetKernelArg(kernel, 0, sizeof(cl_mem), (void*)&d_iImage);

‒ clSetKernelArg(kernel, 1, sizeof(int), (void*)&a);

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 28

Execution Model

 Massively parallel programs are usually written so that each thread computes
one part of a problem

‒ For vector addition, we will add corresponding elements from two arrays, so each
thread will perform one addition

‒ If we think about the thread structure visually, the threads will usually be arranged in
the same shape as the data

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 29

Execution Model

 Consider a simple vector addition of 8 elements

‒ 2 input buffers (A, B) and 1 output buffer (C) are required

‒ 1-dimensional problem in this case

‒ Each thread is responsible for adding the indices corresponding to its ID

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 30

Execution Model

 OpenCL’s execution model is designed to be scalable

 Each instance of a kernel is called a work-item (though “thread” is commonly
used as well)

 Work-items are organized as work-groups

‒ Work-groups are independent from one-another (this is where scalability comes
from)

 An index space defines a hierarchy of work-groups and work-items

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 31

Execution Model

 Work-items can uniquely identify themselves based on:

‒ A global ID (unique within the index space)

‒ A work-group ID and a local ID within the work-group

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 32

Execution Model

 API calls allow threads to identify themselves and their data

 Threads can determine their global ID in each dimension

‒ get_global_id(dim)

‒ get_global_size(dim)

 Threads can determine their work-group ID and local ID within the workgroup

‒ get_group_id(dim)

‒ get_num_groups(dim)

‒ get_local_id(dim)

‒ get_local_size(dim)

 Relationship between global and local sizes

‒ get_global_size(0) == get_local_size(0) * get_num_groups(0)

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 33

Memory Model

 The OpenCL memory model defines the various types of memories (closely
related to GPU memory hierarchy)

Memory Description

Global
Accessible by all

work-items

Constant Read-only, global

Local Local to a work-group

Private Private to a work-item

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 34

Generic Address Space

 A single generic address space is added since OpenCL 2.0

 Supports conversion of pointers to and from private, local, and global address
spaces

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 35

Writing Kernels

 One instance of the kernel is executed for each work-item

 Kernels:

‒ Must begin with keyword __kernel

‒ Must have return type void

‒ Must declare the address space of each argument that is a memory object

‒ Use API calls (such as get_global_id()) to determine which data a work-item will work
on

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 36

Writing Kernels: Address Space Identifiers

 Inside a kernel, memory objects are specified using type qualifiers

‒ __global: memory allocated from global address space

‒ __constant: a special type of read-only memory

‒ __local: memory shared by a work-group

‒ __private: private per work-item memory

‒ automatic variables are placed in the private address space by default

 Kernel arguments that are memory objects must be global, local, or constant

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 37

Writing Kernels: A vector addition kernel

 An example vector addition kernel that adds to arrays (A, B) and stores the
result in a third array (C)

__kernel

void vectorAddition(__global int *A, __global int *B, __global int *C)

{

 // Get the work-item's unique ID

 int idx = get_global_id(0);

 // Add the corresponding locations of

 // ‘A' and ‘B', and store the result in ‘C'.

 C[idx] = A[idx] + B[idx];

}

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 38

Writing Kernels: Executing Kernels on the device

 Need to set the dimensions of the index space, and (optionally) of the work-
group sizes

 Kernels execute asynchronously from the host

‒ clEnqueueNDRangeKernel just adds the kernel to the queue, but doesn’t guarantee
that it will start executing

 A thread structure defined by the index-space that is created

‒ Each thread executes the same kernel on different data

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 39

Executing Kernels

 Tells the device associated with a command queue to begin executing the
specified kernel

 The global (index space) size must be specified and the local (work-group) sizes
are optionally specified

‒ In prior releases of OpenCL, the global size was required to be a multiple of the local
size. OpenCL 2.0 has removed this restriction.

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 40

Copying Data Back

 After kernel execution, we copy the data back from the device to the host

 Similar call as writing a buffer to a device, but data will be transferred back to
the host

 A blocking flag assures that the data in ptr is valid before the call returns

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 41

Releasing Resources

 OpenCL objects should be freed after they are done being used

 There is a clRelease{Resource} command for most OpenCL types

‒ Example: clReleaseProgram, clReleaseMemObject

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 42

Error Checking

 OpenCL commands return error codes as negative integer values

‒ Return value of 0 indicates CL_SUCCESS

‒ Negative values indicates an error

‒ cl.h defines meaning of each return value

 Errors are sometimes reported asynchronously

CL_DEVICE_NOT_FOUND -1

CL_DEVICE_NOT_AVAILABLE -2

CL_COMPILER_NOT_AVAILABLE -3

CL_MEM_OBJECT_ALLOCATION_FAILURE -4

CL_OUT_OF_RESOURCES -5

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 43

Big Picture

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 44

Programming Model

 Data parallel

‒ One-to-one mapping between work-items and elements in a memory object

‒ Work-groups can be defined explicitly or implicitly

 Task parallel

‒ Kernel is executed independent of an index space

‒ Other ways to express parallelism: enqueuing multiple tasks, using device-specific
vector types, etc.

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 45

OpenCL Compilation System

 OpenCL kernels are usually converted
into a binary representation of an
intermediate language

 Common intermediate representations
are the LLVM (Low Level Virtual
Machine) IR or the Khronos SPIR

‒ Kernels compiled to the IR

 LLVM is an open source compiler

‒ Platform, OS independent

‒ Multiple back ends

OpenCL Program

LLVM IR

AMD IL NVIDIA PTX x86

LLVM front-end

More information at http://llvm.org

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 46

Installable Client Driver

 ICD allows multiple implementations to co-exist

 Code only links to libOpenCL.so

 Application selects implementation at runtime

‒ clGetPlatformIDs and clGetPlatformInfo examine the list of available
implementations and select a suitable one

 Current GPU driver model does not easily allow devices from different vendors
in same platform

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 47

Summary

 OpenCL provides an interface for the interaction of hosts with accelerator
devices

 A context is created that contains all of the information and data required to
execute an OpenCL program

‒ Memory objects are created that can be moved on and off devices

‒ Command queues allow the host to request operations to be performed by the
device

‒ Programs and kernels contain the code that devices need to execute

