
OPENCL INTRODUCTION
OPENCL 2.0 UNIVERSITY TOOLKIT

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 2

Instructor Notes

 These slides can serve as an introduction to OpenCL

 These slides cover the OpenCL models, the API and can serve as a reference for
the API

 Some of the OpenCL examples can be shown in an IDE along with the slides

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 3

OpenCL Architecture

 OpenCL allows parallel computing on heterogeneous devices

‒ CPUs, GPUs, FPGAs, etc.

‒ Provides portable accelerated code

 Defined in four models

‒ Platform model

‒ Execution model

‒ Memory model

‒ Programming model

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 4

Platform Model

 The platform model describes the computational resources utilized by OpenCL
and their relationship with one another

 Each OpenCL implementation (i.e. an OpenCL library) can create platforms
consisting of resources in the system with which it is capable of interacting

‒ For example, and AMD platform can consist of X86 CPUs and Radeon GPUs

 OpenCL uses an “Installable Client Driver” model

‒ The goal is to allow platforms from different vendors to co-exist

‒ Applications can choose a platform at runtime

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 5

Platform Model

 The platform model defines a host connected to one or more compute devices

 A device is divided into one or more compute units

 Compute units are divided into one or more processing elements

‒ Each processing element maintains its own program counter

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 6

Host/Devices

 The host is whatever processor the OpenCL library runs on

‒ x86 CPUs generally

 Devices are processors that the library can talk to

‒ CPUs, GPUs, FPGAs, and other accelerators

 For AMD

‒ All CPUs are combined into a single device (each core is a compute unit and
processing element)

‒ Each GPU is a separate device

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 7

Selecting a Platform

 The platform is selected using an API call

‒ There is a pattern to many OpenCL calls which allows the API to be vendor neutral

‒ A first call can be made to return storage requirements for data

‒ A second call can be made to return the data

 Robust applications will therefore usually make this call twice

‒ The first call is used to get the number of platforms available to the implementation

‒ Memory space is then allocated for the platform objects

‒ The second call is used to retrieve the platform objects

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 8

Selecting Devices

 Once a platform is selected, we can then query for the devices that it knows
how to interact with

 We can specify which types of devices we are interested in (e.g. all devices,
CPUs only, GPUs only)

 This call is performed twice as with clGetPlatformIDs

‒ The first call is to determine the number of devices, the second retrieves the device
objects

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 9

Contexts

 A context is the environment for managing OpenCL objects and resources

 To manage OpenCL programs, the following are associated with a context
‒ Devices: the things doing the execution

‒ Program objects: the program source that implements the kernels

‒ Kernels: functions that run on OpenCL devices

‒ Memory objects: data that are operated on by the device

‒ Command queues: mechanisms for interaction with the devices

‒ Commands include: data transfers, kernel execution, and synchronization

 When you create a context, you will provide a list of devices to associate with it
‒ For the rest of the OpenCL resources, you will associate them with the context as

they are created

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 10

Contexts

 This function creates a context given a list of devices

 The properties argument specifies which platform to use (if NULL, the default
chosen by the vendor will be used)

 The function also provides a callback mechanism for reporting errors to the
user

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 11

Command Queues

 A command queue is the mechanism for the host to request that an action be
performed by the device (i.e., the host sends commands to a device)

‒ Commands include initiating a memory transfer, begin executing a kernel, etc.

 The command queue properties specify:

‒ Whether out-of-order execution of commands is allowed

‒ Whether profiling is enabled

‒ Whether this queue should reside on a device

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 12

Command Queues

 Since a command queue targets a single device, a separate command queue is
required for each device

 Some commands within the queue can be specified as synchronous or
asynchronous

 Commands can execute in-order or out-of-order

 Command queues associate a context with a device

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 13

Events

 Events are OpenCL’s mechanism of specifying dependencies between
commands

 All OpenCL API calls to enqueue a command onto a command queue have the
option of generating an event, and taking a list of events that must complete
before this command can execute

‒ The list of events that specify dependencies are referred to as a wait list

 Events are also used for profiling (discussed in a later series)

 With an in-order command queue (default), each command will complete
before the next command begins, so manually specifying dependencies is not
required

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 14

Queue Synchronization

 A call to clFinish blocks a host program until all enqueued commands have
completed

‒ In practice, this call has higher overhead than specifying dependencies using events,
and should be used sparingly when high performance is required

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 15

Device-Side Enqueuing

 OpenCL 2.0 introduced device-side command queues

‒ Allows a device to enqueue commands to itself

‒ e.g. a kernel can enqueue another kernel execution onto the same device

‒ Parent and child kernels execute asynchronously

‒ A parent kernel is not registered as complete until all its child kernels have completed

 Device-side command queues are out-of-order

‒ Events can be used to enforce dependencies

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 16

Memory Objects

 Memory objects are handles to data that can be accessed by a kernel
‒ OpenCL memory object types are buffers, images, and pipes

 Buffers
‒ Contiguous chunks of memory stored sequentially and can be accessed directly

(arrays, pointers, structs)
‒ Read/write capable

 Images
‒ Opaque objects (2D or 3D)
‒ Can only be accessed via intrinsic functions read_image() and write_image()

‒ Can be read, written, or both in a kernel (new in OpenCL 2.0)

 Pipes (New in OpenCL 2.0)
‒ Ordered sequence of data items called packets
‒ Stored on the basis of a first in, first out method
‒ Can only be accessed via intrinsics read_pipe() and write_pipe()

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 17

Creating Buffers

 This function creates a buffer (cl_mem object) for the given context

 The flags specify:

‒ Reading and writing permissions on the data

‒ If the data should be copied from the host pointer

‒ If the data should be accessed directly from the host pointer itself

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 18

Transferring Data

 While the OpenCL runtime is responsible for ensuring data is accessible by a
kernel, explicit memory transfer commands can be used for improved
performance

 OpenCL provides commands to transfer data to and from devices

‒ clEnqueue{Write|Read}{Buffer|Image}

‒ Writing is copying from the host to a device

‒ Reading is copying from a device to the host

 OpenCL API calls also exist to directly map all or part of a memory object to a
host pointer

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 19

Transferring Data

 This command initializes the OpenCL memory object
‒ The command will write data from a host pointer (ptr) to the memory object

‒ Often the data will be resident on the device, but this is not explicitly required by the
OpenCL specification

 The blocking_write parameter specifies that ptr can be reused after the
command completes

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 20

Programs

 A program object is a collection of OpenCL kernels, and functions and data
used by kernels

‒ Can be source code (text) or precompiled binary

 Creating a program object requires either reading in a string (source code) or a
precompiled binary

 To compile the program

‒ Specify which devices are targeted

‒ Program is compiled for each device

‒ Pass in compiler flags (optional)

‒ Check for compilation errors (optional, output to screen)

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 21

Creating Programs

 This function creates a program object from strings of source code

‒ count specifies the number of strings

‒ The user must create a function to read in the source code to a string

 If strings are not NULL-terminated, lengths is used to specify the strings’
lengths

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 22

Compiling Programs

 This function compiles and links an executable from the program object for
each device in the context

‒ If device_list is supplied, then only those devices are targeted

 Optional preprocessor, optimization, and other options can be supplied by
options

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 23

Kernels

 A kernel is a function declared in a program that is executed on an OpenCL
device

‒ A kernel object is a kernel function along with its associated arguments

 A kernel object is created from a compiled program

 The user must explicitly associate arguments (memory objects, primitives, etc.)
with the kernel object

 Kernel objects are created from a program object by specifying the name of
the kernel function

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 24

Creating Kernels

 Creates a kernel from the given program

‒ The kernel that is created is specified by a string that matches the name of the
function within the program

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 25

Runtime Compilation of OpenCL kernels

 There is a high overhead for compiling programs and creating kernels

‒ Each operation only has to be performed once (at the beginning of the program)

‒ The kernel objects can be reused any number of times by setting different arguments

Read source code
into an array

clCreateProgramWithSource

clCreateProgramWithBinary

clBuildProgram clCreateKernel

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 26

Reporting Compile Errors

 If a program fails to compile, OpenCL requires the programmer to explicitly ask
for compiler output

‒ A compilation failure is determined by an error value returned from clBuildProgram

‒ Calling clGetProgramBuildInfo with the program object and the parameter
CL_PROGRAM_BUILD_STATUS returns a string with the compiler output

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 27

Setting Kernel Arguments

 Memory objects and individual data values can be set as kernel arguments

 Kernel arguments are set by repeated calls to clSetKernelArgs

 Each call must specify

‒ The index of the argument as it appears in the function signature, the size, and a
pointer to the data

 Examples

‒ clSetKernelArg(kernel, 0, sizeof(cl_mem), (void*)&d_iImage);

‒ clSetKernelArg(kernel, 1, sizeof(int), (void*)&a);

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 28

Execution Model

 Massively parallel programs are usually written so that each thread computes
one part of a problem

‒ For vector addition, we will add corresponding elements from two arrays, so each
thread will perform one addition

‒ If we think about the thread structure visually, the threads will usually be arranged in
the same shape as the data

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 29

Execution Model

 Consider a simple vector addition of 8 elements

‒ 2 input buffers (A, B) and 1 output buffer (C) are required

‒ 1-dimensional problem in this case

‒ Each thread is responsible for adding the indices corresponding to its ID

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 30

Execution Model

 OpenCL’s execution model is designed to be scalable

 Each instance of a kernel is called a work-item (though “thread” is commonly
used as well)

 Work-items are organized as work-groups

‒ Work-groups are independent from one-another (this is where scalability comes
from)

 An index space defines a hierarchy of work-groups and work-items

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 31

Execution Model

 Work-items can uniquely identify themselves based on:

‒ A global ID (unique within the index space)

‒ A work-group ID and a local ID within the work-group

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 32

Execution Model

 API calls allow threads to identify themselves and their data

 Threads can determine their global ID in each dimension

‒ get_global_id(dim)

‒ get_global_size(dim)

 Threads can determine their work-group ID and local ID within the workgroup

‒ get_group_id(dim)

‒ get_num_groups(dim)

‒ get_local_id(dim)

‒ get_local_size(dim)

 Relationship between global and local sizes

‒ get_global_size(0) == get_local_size(0) * get_num_groups(0)

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 33

Memory Model

 The OpenCL memory model defines the various types of memories (closely
related to GPU memory hierarchy)

Memory Description

Global
Accessible by all

work-items

Constant Read-only, global

Local Local to a work-group

Private Private to a work-item

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 34

Generic Address Space

 A single generic address space is added since OpenCL 2.0

 Supports conversion of pointers to and from private, local, and global address
spaces

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 35

Writing Kernels

 One instance of the kernel is executed for each work-item

 Kernels:

‒ Must begin with keyword __kernel

‒ Must have return type void

‒ Must declare the address space of each argument that is a memory object

‒ Use API calls (such as get_global_id()) to determine which data a work-item will work
on

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 36

Writing Kernels: Address Space Identifiers

 Inside a kernel, memory objects are specified using type qualifiers

‒ __global: memory allocated from global address space

‒ __constant: a special type of read-only memory

‒ __local: memory shared by a work-group

‒ __private: private per work-item memory

‒ automatic variables are placed in the private address space by default

 Kernel arguments that are memory objects must be global, local, or constant

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 37

Writing Kernels: A vector addition kernel

 An example vector addition kernel that adds to arrays (A, B) and stores the
result in a third array (C)

__kernel

void vectorAddition(__global int *A, __global int *B, __global int *C)

{

 // Get the work-item's unique ID

 int idx = get_global_id(0);

 // Add the corresponding locations of

 // ‘A' and ‘B', and store the result in ‘C'.

 C[idx] = A[idx] + B[idx];

}

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 38

Writing Kernels: Executing Kernels on the device

 Need to set the dimensions of the index space, and (optionally) of the work-
group sizes

 Kernels execute asynchronously from the host

‒ clEnqueueNDRangeKernel just adds the kernel to the queue, but doesn’t guarantee
that it will start executing

 A thread structure defined by the index-space that is created

‒ Each thread executes the same kernel on different data

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 39

Executing Kernels

 Tells the device associated with a command queue to begin executing the
specified kernel

 The global (index space) size must be specified and the local (work-group) sizes
are optionally specified

‒ In prior releases of OpenCL, the global size was required to be a multiple of the local
size. OpenCL 2.0 has removed this restriction.

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 40

Copying Data Back

 After kernel execution, we copy the data back from the device to the host

 Similar call as writing a buffer to a device, but data will be transferred back to
the host

 A blocking flag assures that the data in ptr is valid before the call returns

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 41

Releasing Resources

 OpenCL objects should be freed after they are done being used

 There is a clRelease{Resource} command for most OpenCL types

‒ Example: clReleaseProgram, clReleaseMemObject

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 42

Error Checking

 OpenCL commands return error codes as negative integer values

‒ Return value of 0 indicates CL_SUCCESS

‒ Negative values indicates an error

‒ cl.h defines meaning of each return value

 Errors are sometimes reported asynchronously

CL_DEVICE_NOT_FOUND -1

CL_DEVICE_NOT_AVAILABLE -2

CL_COMPILER_NOT_AVAILABLE -3

CL_MEM_OBJECT_ALLOCATION_FAILURE -4

CL_OUT_OF_RESOURCES -5

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 43

Big Picture

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 44

Programming Model

 Data parallel

‒ One-to-one mapping between work-items and elements in a memory object

‒ Work-groups can be defined explicitly or implicitly

 Task parallel

‒ Kernel is executed independent of an index space

‒ Other ways to express parallelism: enqueuing multiple tasks, using device-specific
vector types, etc.

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 45

OpenCL Compilation System

 OpenCL kernels are usually converted
into a binary representation of an
intermediate language

 Common intermediate representations
are the LLVM (Low Level Virtual
Machine) IR or the Khronos SPIR

‒ Kernels compiled to the IR

 LLVM is an open source compiler

‒ Platform, OS independent

‒ Multiple back ends

OpenCL Program

LLVM IR

AMD IL NVIDIA PTX x86

LLVM front-end

More information at http://llvm.org

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 46

Installable Client Driver

 ICD allows multiple implementations to co-exist

 Code only links to libOpenCL.so

 Application selects implementation at runtime

‒ clGetPlatformIDs and clGetPlatformInfo examine the list of available
implementations and select a suitable one

 Current GPU driver model does not easily allow devices from different vendors
in same platform

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 47

Summary

 OpenCL provides an interface for the interaction of hosts with accelerator
devices

 A context is created that contains all of the information and data required to
execute an OpenCL program

‒ Memory objects are created that can be moved on and off devices

‒ Command queues allow the host to request operations to be performed by the
device

‒ Programs and kernels contain the code that devices need to execute

