
BUFFERS AND THE
HOST-SIDE MEMORY MODEL

OPENCL 2.0 UNIVERSITY TOOLKIT

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 2

INSTRUCTOR NOTES

 This lecture details memory object creation, reading, and writing

‒ Buffers are used for examples

 The OpenCL specification has very few specific requirements for data
allocation and movement. While programmers can conceptualize that writing
and reading buffers moves data to and from the device, this is not explicitly
required. The memory management examples attempt to show some of the
subtleties of real implementations.

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 3

TOPICS

 Memory object creation (buffers as an example)

‒ Memory flag options

 Writing and reading buffers

 Memory object management

 Memory object migration

 Host-accessible memory

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 4

BUFFERS

 Memory objects are used for passing large data structures to OpenCL kernels

 The most straight-forward object is a buffer

‒ A buffer is a contiguous sequence of addressable of elements similar to a C array

 Based on the memory flags provided, a host pointer can be optionally supplied
to initialize the buffer, or even provide storage for the buffer

 A buffer object is created using the following function:

 cl_mem buffer = clCreateBuffer (

 cl_context context, // Context object

 cl_mem_flags flags, // Memory flags

 size_t size, // Bytes to allocate

 void *host_ptr, // Host data

 cl_int *errcode) // Error code

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 5

MEMORY FLAGS

 Memory flag field in clCreateBuffer() allows us to define attributes of the buffer object

Memory Flag Behavior

CL_MEM_READ_WRITE

Specifies the types of accesses that are allowed by a kernel CL_MEM_WRITE_ONLY

CL_MEM_READ_ONLY

CL_MEM_USE_HOST_PTR
Use the host pointer as storage for the buffer. Implementations can still cache the

contents to device memory and use the cached copy when a kernel executes.

CL_MEM_ALLOC_HOST_PTR Allocates buffer storage in host accessible memory.

CL_MEM_COPY_HOST_PTR Initialize the buffer with data from referenced by host_ptr.

CL_MEM_HOST_WRITE_ONLY

Specifies the access types allowed by the host towards the memory object. CL_MEM_HOST_READ_ONLY

CL_MEM_HOST_NO_ACCESS

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 6

BUFFERS

 The following code creates a read-only buffer and initializes it with data from a host
array
‒ Assume that context is a valid OpenCL context

cl_int err;

int a[16];

cl_mem newBuffer = clCreateBuffer(

 context,

 CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR,

 16*sizeof(int),

 a,

 &err);

if(err != CL_SUCCESS) {

 // Handle error as necessary

}

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 7

WRITING BUFFERS

 OpenCL provides commands to read or write data from a buffer
‒ The use of a command queue also allows the runtime to copy the buffer to that device if it desires to

do so
‒ Generates an event for dependencies, or can be specified as a blocking call

 Once the command completes the host pointer can be reused
‒ A programmer can conceptualize that the data storage of the buffer object resides on the device after

the call completes, though this is not explicitly required by the OpenCL specification

cl_int clEnqueueWriteBuffer (

 cl_command_queue queue, // command queue

 cl_mem buffer, // buffer object

 cl_bool blocking_write, // blocking flag

 size_t offset, // offset into buffer to write

 size_t cb, // size of data to write

 void *ptr, // pointer to source data

 cl_uint num_in_wait_list, // number of events to wait for

 const cl_event * event_wait_list, // array of events to wait for

 cl_event *event) // event for this command

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 8

WRITING BUFFERS

 An example showing buffer creation and initialization

cl_int err;

int a[16];

for (int i = 0; i < SIZE; i++) {

 a[i] = i;

}

// Create the buffer

cl_mem buffer = clCreateBuffer(context, CL_MEM_READ_WRITE, SIZE*sizeof(int),a, &err);

if(err != CL_SUCCESS) {// Handle error as necessary }

// Initialize the buffer

err = clEnqueueWriteBuffer (

 queue,

 buffer, // destination

 CL_TRUE, // blocking write

 0, // don’t offset into buffer

 SIZE*sizeof(int), // number of bytes to write

 a, // host data

 0, NULL, // don’t wait on any events

 NULL); // don’t generate an event

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 9

WRITING BUFFERS

 The following example shows that we can create and initialize a buffer, and use
it in a kernel, without explicitly writing the buffer

a) Creating and initializing a buffer in host memory
(initialization is done using CL_MEM_COPY_HOST_PTR).

b) Implicit data transfer from the host to device prior to
kernel execution. The runtime could also choose to have the
device access the buffer directly from host memory.

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 10

WRITING BUFFERS

 As an alternative, a runtime may decide to create the buffer directly in device
memory

a) Creating a buffer in device memory (at the discretion of
the runtime) b) Copying host data to the buffer directly in GPU memory

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 11

READING BUFFERS

 The complimentary call to writing a buffer, reads the buffer back to host
memory

‒ The following diagram assumes that the buffer data had been moved to the device by
the runtime

c) Reading the output data from the buffer back to
host memory (continued from the previous slide)

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 12

MIGRATING MEMORY OBJECTS

 OpenCL provides an API call to migrate memory objects between devices

‒ Unlike reading and writing a buffer this call guarantees that memory objects will be
located on the device when the command completes

‒ Allows multiple memory objects to be migrated with a single command

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 13

HOST-ACCESSIBLE MEMORY

 When creating a memory object, flags can specify that it should be created in host-
accessible memory
‒ I.e., requires allocation in a place that can be mapped into the host’s address space

 CL_MEM_ALLOC_HOST_PTR
‒ Simply tells the runtime to create the buffer in host-accessible memory

 CL_MEM_USE_HOST_PTR
‒ Tells the runtime to use the supplied host pointer as storage for the buffer

‒ Can be used to prevent redundant copies of data, especially in APU environments

 For both options, it is reasonable to assume that implementations will have the
device access the buffer from host (CPU) memory
‒ This is commonly referred to as zero-copy memory
‒ This is not explicitly required by the OpenCL specification

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 14

HOST-ACCESSIBLE MEMORY

 AMD-specific treatment of the flags

 CL_MEM_ALLOC_HOST_PTR and CL_MEM_USE_HOST_PTR

‒ If devices support virtual memory, storage will be created as pinned (non-pageable)
host memory, and accessed as zero-copy data

‒ Without virtual memory, storage will be allocated on the device

 CL_MEM_USE_PERSISTENT_MEM_AMD

‒ Vendor-specific extension

‒ Accesses to this memory object from the host will occur directly from device memory

 When specifying where data should be stored, make sure you understand the
performance implications of your choices

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 15

MAPPING DATA TO HOST MEMORY

 OpenCL provides API calls to map and unmap memory objects from the host’s
memory space

 When a memory object is mapped, a pointer valid on the host will be returned

‒ The parameters to the map function should look similar to reading/writing a buffer

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 16

MAPPING DATA TO HOST MEMORY

 The example below shows one possible scenario for the map and unmap
functions

a) Create an uninitialized
buffer in device memory

b) Map the buffer into the host’s
address space. Access the buffer
via a host pointer.

c) Unmap the buffer from the
host’s address space

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 17

SUMMARY

 Memory objects are created and managed by the host using OpenCL API calls

 Options provided during creation can be used to describe the programmer’s
intent to the runtime

 Remember that it is ultimately up to the runtime to determine where data is
allocated and resides, and when and where it should be transferred

