
GPU THREADING MODEL
OPENCL 2.0 UNIVERSITY TOOLKIT

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 2

INSTRUCTOR NOTES

 This section describes how work-groups are scheduled for execution on the
compute units of devices

 We cover effects of divergence of work-items within a group and its negative effect
on performance

 Reasons for discussing wavefronts/warps because even though they are not part of
the OpenCL specification
‒ Serve as another hierarchy of threads and their implicit synchronization enables interesting

implementations of algorithms on GPUs

‒ Implicit synchronization and write combining property in local memory used to implement
warp voting

‒ Use of predication for divergent work-items even though all threads in a warp are issued in
lockstep

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 3

TOPICS

 Wavefronts and warps

 Thread scheduling on GPUs

 Predication

 Warp voting and synchronization

 Pitfalls of wavefront/warp specific implementations

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 4

WORK GROUPS TO HW THREADS

 OpenCL kernels are structured into work-groups that map to device compute units

 Compute units on GPUs consist of SIMT processing elements

 Work-groups automatically get broken down into hardware schedulable groups of
threads for the SIMT hardware
‒ This “schedulable group” is known as a wavefront (AMD) or a warp (NVIDIA)

WG

<0,1>

WG

<0,L>

...

WG

<i,j>

WG

<K,0>

WG

<K,L>

.

.

.

WI

<0,0>

WI

<0,1>

WI

<0,N>

WI

<1,0>
...

WI

<M,0>

WI

<M,N>

.

.

.

NDRange

WG

<0,0>

WG

<1,0>

work-item

Workgroup (i, j)

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 5

WORK-ITEM SCHEDULING

 Hardware creates wavefronts by grouping
work-items of a work-group
‒ Along the X dimension first

 All work-items in a wavefront execute the
same instruction

‒ Work-items within a wavefront execute in
lockstep

 Work-items have their own register state
and are free to execute different control
paths
‒ Work-item masking used by HW

‒ Predication can be set by compiler

0,0 1,0 14,0 15,0

Example 16x16 Workgroup

Grouping of work-group into wavefronts

0,14 1,14 14,14 15,14

0,15 1,15 14,15 15,15

Work-item
0,1 1,1 14,1 15,1

0,2 1,2 14,2 15,2

0,3 1,3 14,3 15,3

Wavefront 0 = 16x4 = 64 work items

Wavefront 1 = 16x4 = 64 work items

Wavefront 2 = 16x4 = 64 work items

Wavefront 3 = 16x4 = 64 work items

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 6

WAVEFRONT SCHEDULING

 Wavefront size is 64 work-items
‒ Vector instructions performed with one lane per

work-item
‒ Scalar instructions are performed once for entire

wavefront
‒ Vector load/store instructions supply one address

per work-item

 A SIMD lane (SL) executes one vector
instruction
‒ 16 stream cores execute 16 vector instructions on

each cycle

 A quarter of the wavefront (16 work-items) is
issued on each cycle to the SIMD
‒ The entire wavefront is issued over four

consecutive cycles
‒ The entire wavefront issues to the other units in a

single cycle

SL 0

SL 2

SL 1

SL15

Branch Unit

Local Data Share

Compute Unit: wavefront view

Scalar Unit

Load/Store unit

SIMD

unit

W
a

v
e

fr
o

n
t
S

c
h

e
d

u
le

r

In
s
tr

u
c
ti
o

n
 I
s
s
u

e

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 7

WAVEFRONT SCHEDULING

 In the case of Read-After-Write (RAW) hazard, one wavefront will stall for four extra
cycles
‒ If another wavefront is available it can be scheduled to hide latency
‒ After eight total cycles have elapsed, the ALU result from the first wavefront is ready, so

the first wavefront can continue execution

 Two wavefronts (128 work-items) completely hide a RAW latency
‒ The first wavefront executes for four cycles
‒ Another wavefront is scheduled for the next four cycles
‒ The first wavefront can then run again

 Note that two wavefronts are needed just to hide RAW latency, the latency to
global memory is much greater
‒ During this time, the compute unit can process other independent wavefronts, if they are

available

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 8

GPU OCCUPANCY TRADEOFFS

 Local memory and registers are persistent within compute unit once a work-group
is scheduled
‒ Traditional context switching is not used
‒ Allows for no-overhead wavefront interleaving

 Number of active wavefronts supported per compute unit is limited
‒ Decided by

‒ local memory required per work-group
‒ register usage per work-item

 Number of active wavefronts possible on a compute unit can be expressed using a
metric called occupancy

 Larger numbers of active wavefronts allow for better latency hiding on both AMD
and NVIDIA GPUs

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 9

DIVERGENT CONTROL FLOW

 Although work-items have unique program counters, in practice they are
executed in lockstep on SIMD hardware

 Work-items can execute different path from other work-items in the wavefront
using masking or predication

 For correctness, lock-step execution is transparent to the programmer

 In practice, branching should be limited to a wavefront granularity whenever
possible to fully utilize SIMD execution units

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 10

PREDICATION AND CONTROL FLOW

 How do we handle work-items going down different execution paths when the
same instruction is issued for all the work-items in a wavefront ?

 Predication is a method for mitigating the costs associated with conditional
branches

‒ Beneficial in case of branches to short sections of code

‒ Based on fact that executing an instruction and squashing its result may be as
efficient as executing a conditional

‒ Compilers may replace “switch” or “if then else” statements by using branch
predication

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 11

PREDICATION FOR GPUS

 Predicate is a condition code that is set to
true or false based on a conditional

 Both cases of conditional flow get
scheduled for execution

‒ Instructions with a true predicate are
committed

‒ Instructions with a false predicate do not
write results or read operands

 Removes branches

‒ Benefits performance only for very short
conditionals

Predicate = True for work-items 0,2,4….

__kernel void test()

{

 int tid= get_local_id(0);

 if(tid %2 == 0)

 Do_Some_Work();

 else

 Do_Other_Work();

}

Predicate = False for work-items 1,3,5….

Predicates switched for the else condition

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 12

DIVERGENT CONTROL FLOW

 Case 1: All odd work-items will execute if conditional while all even work-items execute
the else conditional. The if and else block need to be issued for each wavefront

 Case 2: All work-items of the first wavefront will execute the if case while other
wavefronts will execute the else case. In this case only one out of if or else is issued for
each wavefront

int tid = get_local_id(0)

if (tid % 2 == 0) // even work-Items

 DoSomeWork()

else // odd work-Items

 DoSomeWork2()

Case 1

With divergence Without divergence

int tid = get_local_id(0)

if (tid / 64 == 0) // first wavefront

 DoSomeWork()

else if (tid /64 == 1) // second wavefront

 DoSomeWork2()

Case 2

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 13

EFFECT OF PREDICATION ON PERFORMANCE

T = tstart

T = tstart + t1 + t2

Do_Some_Work()

Do_Other _Work()

T = 0

Squash invalid

results, invert mask
T = tstart + t1

t1

t2

if(tid %2 == 0)

Work-items

Squash invalid

results

Green values are written

Red values are written

Final results

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 14

SUMMARY

 Divergence within a work-group should be restricted to a wavefront/warp granularity for
performance

 A tradeoff between schemes to avoid divergence and simple code which can quickly be predicated

‒ Branches are usually highly biased and localized which leads to short predicated blocks

 The number of wavefronts active at any point in time should be maximized to allow latency hiding

‒ Number of active wavefronts is determined by the requirements of resources like registers and
local memory

 Wavefront specific implementations can enable more optimized implementations and enables
more algorithms to GPUs

‒ Maintaining performance and correctness may be hard due to the different wavefront sizes on
AMD and NVIDIA hardware

