
OPTIMIZING KERNELS
OPENCL 2.0 UNIVERSITY TOOLKIT

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 2

Instructor Notes

 These slides provide a high level overview of the source code optimization process

‒ They cover some of the common optimization steps such coalescing, loop unrolling and vectorization

‒ Students should choose some simple applications and try to apply these optimizations to their kernels.

‒ They should also run their kernels under tools such as AMD CodeXL to understand the affects of their
optimization on kernel performance

 A number of academic papers have covered GPU kernel optimization in detail and should be read
alongside this material, some have been listed below

‒ Optimization principles and application performance evaluation of a multithreaded GPU using CUDA - Shane
Ryoo et.al

‒ Exploiting memory access patterns to improve memory performance in data-parallel architectures - B Jang
et.al

‒ GPU Acceleration of Iterative Digital Breast Tomosynthesis - D Schaa et.al

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 3

Coalescing Memory Accesses

 Imagine a scenario where work-items are accessing elements of a buffer

 Naively, one memory request would be generated per work-item
‒ With thousands of work-items executing per cycles, this would quickly congest the

memory system

 GPU hardware supports coalescing, or combining multiple requests into fewer,
larger requests

work-items

buffer

Non-coalesced

work-items

buffer

Coalesced

Coalescing unit
8x 4B requests

1x 32B request

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 4

Coalescing Memory Accesses

 Recall that for AMD hardware, 64 work-items form a wavefront and must
execute the same instruction in a SIMD manner

 For the AMD R9 290X GPU, memory accesses of 16 consecutive work-items are
evaluated together and can be coalesced to fully utilize the bus

‒ This unit is called a quarter-wavefront and is the important hardware scheduling unit
for memory accesses

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 5

Coalescing Memory Accesses

 Global memory performance for a simple data copying kernel of entirely
coalesced and entirely non-coalesced accesses on an AMD R9 285 GPU

0

100

200

300

1 4 16 32 64 128 256

B
an

d
w

id
th

 (
G

B
/s

)

Data Size (MB)

Coalesced

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 6

Vectorization

 Vectorization allows a single work-item to perform multiple operations at once

 Explicit vectorization is achieved by using vector datatypes (such as float4) in
the source program

‒ When a number is appended to a datatype, the datatype becomes an array of that
length

‒ Operations can be performed on vector datatypes just like regular datatypes

‒ Each ALU will operate on different element of the float4 data

 CPUs and previous generations of AMD GPUs benefit from explicit
vectorization

‒ Current generations of AMD and NVIDIA GPUs execute “scalar” operations on SIMD
lanes, which do not benefit from explicit vectorization

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 7

Vectorization

 On AMD Northern Islands and Evergreen GPUs, each processing element
executes a multi-way VLIW instruction

‒ Northern Islands: 4-way VLIW

‒ 4 scalar operations or

‒ 2 scalar operations + 1 transcendental operation

‒ Evergreen: 5-way VLIW

‒ 5 scalar operations or

‒ 4 scalar operations + 1 transcendental operation

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 8

Vectorization

 Vectorization improves memory performance on AMD Northern Islands and
Evergreen GPUs

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 9

Local Memory

 On GPUs, local memory maps to a high-bandwidth, low-latency memory located on
chip
‒ Useful for sharing data among work-items within a work-group

‒ Accesses to local memory are usually much faster than accesses to global memory (even
cached global memory)

‒ Accesses to local memory usually do not require coalescing

‒ More forgiving than global memory when having non-ideal access patterns

 Additional advantages on some AMD GPUs (e.g., Radeon HD 7970)
‒ Local memory is mapped to LDS, 4x larger than L1 cache

‒ LDS has a lower latency than L1 cache

 The tradeoff is that the use of local memory will limit the number of in-flight work-
groups

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 10

Constant Memory

 Constant memory is a memory space to hold data that is accessed
simultaneously by all work-items
‒ Usually maps to specialized caching hardware that has a fixed size
‒ It should NOT be used for general input data (e.g. an input buffer) that is read-only

 Examples of useful data to place in constant memory
‒ Convolution filters, Kmeans cluster centriods, etc.

 Advantages for AMD hardware
‒ If all work-items access the same address, then only one access request will be

generated per wavefront
‒ Constant memory can reduce pressure from L1 cache
‒ Constant memory has lower latency than L1 cache

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 11

Occupancy

 Work-items from a work-group are launched together on a compute unit
‒ In general, GPU hardware threads have a large amount of state

‒ Only the very latest GPUs from AMD support context switching in the traditional sense, though with an
extremely high penalty

‒ In practice, work-group state is persistent on a compute unit, even during long latency operations

 If there are enough resources available, multiple work groups can be mapped to the same
compute unit at the same time
‒ Wavefronts from multiple work-group can be swapped in to hide latency

 Resources are fixed per compute unit (number of registers, local memory size, maximum
number of wavefronts)
‒ Any one of these resource constraints may limit the number of work-groups on a compute unit

 The term occupancy is used to describe how well the resources of the compute unit are
being utilized

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 12

Occupancy: Registers

 The availability of registers is one of the major limiting factor for large kernels

 On current GPUs, the maximum number of registers required by a kernel must
be available for all work-items of a workgroup

‒ Example: Consider a GPU with 16384 registers per compute unit running a kernel that
requires 35 registers per work-item

‒ Each compute unit can execute at most 468 work-items

‒ This affects the choice of workgroup size
‒ A work-group of 512 is not possible

‒ Only 1 work-group of 256 work-items is allowed at a time, even though 212 more work-items could be running

‒ 3 work-groups of 128 work-items are allowed, providing 384 work-items to be scheduled, etc.

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 13

Occupancy: Registers

 Consider another example:

‒ A GPU has 16384 registers per compute unit

‒ The work-group size of a kernel is fixed at 256 work-items

‒ The kernel currently requires 17 registers per work-item

 Given the information, each work group requires 4352 registers

‒ This allows for 3 active work-groups if registers are the only limiting factor

 If the code can be restructured to only use 16 registers, then 4 active work
groups would be possible

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 14

Occupancy: Local Memory

 GPUs have a limited amount of local memory on each compute unit

‒ 64 KB local memory on AMD GPUs

 Local memory limits the number of active work-groups per compute unit

 Depending on the kernel, the data per work-group may be fixed regardless of
number of work-items (e.g., histograms), or may vary based on the number of
work-items (e.g., matrix multiplication, convolution)

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 15

Occupancy: Work-items/work-groups

 GPUs have hardware limitations on the maximum number of work-items per
work-group

‒ OpenCL limits work-groups to 256 work-items

 AMD GPUs have per-SIMD limits on the number of wavefronts

‒ 40 wavefronts (2560 work-items) per compute-unit

‒ For a 44 Compute Unit GPU such as the R9 290X there can be upto 40x44 = 1760
wavefronts active on the device

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 16

Occupancy: Limiting Factors

 The minimum of these three factors is what limits the active number of work-
items (or occupancy) of a compute unit

 The interactions between the factors are complex

‒ The limiting factor may have either work-item or wavefront granularity

‒ Changing work-group size may affect register or local memory usage

‒ Reducing any factor (such as register usage) slightly may have allow another work
group to be active

 AMD CodeXL plots these factors visually allowing the tradeoffs to be visualized

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 17

Thread Mapping

 Thread mapping determines which threads will access which data

‒ Proper mappings can align with hardware and provide large performance benefits

‒ Improper mappings can be disastrous to performance

 The paper Static Memory Access Pattern Analysis on a Massively Parallel GPU
by Jang, et. al focuses on the task of effectively mapping threads to the data
access patterns of an algorithm

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 18

Thread Mapping

 By using different mappings, the same thread can be assigned to access
different data elements

‒ The examples below show three different possible mappings of threads to data
(assuming the thread id is used to access an element)

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Thread IDs

Mapping
int tid =

get_global_id(1) *

get_global_size(0) +

get_global_id(0);

0 4 8 12

1 5 9 13

2 6 10 14

3 7 11 15

int tid =

get_global_id(0) *

get_global_size(1) +

get_global_id(1);

0 1 4 5

2 3 6 7

8 9 12 13

10 11 14 15

int group_size =

get_local_size(0) *

get_local_size(1);

int tid =

get_group_id(1) *

get_num_groups(0) *

group_size +

get_group_id(0) *

group_size +

get_local_id(1) *

get_local_size(0) +

get_local_id(0)

*assuming 2x2 groups

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 19

Thread Mapping

 Consider a serial matrix multiplication algorithm

 This algorithm is suited for output data decomposition

‒ We will create NM threads

‒ Effectively removing the outer two loops

‒ Each thread will perform P calculations

‒ The inner loop will remain as part of the kernel

 Should the index space be MxN or NxM?

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 20

Thread Mapping

 Thread mapping 1: with an MxN index space, the kernel would be:

 Thread mapping 2: with an NxM index space, the kernel would be:

 Both mappings produce functionally equivalent versions of the program

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 21

Thread Mapping

 This figure shows the execution of the two thread mappings on NVIDIA
GeForce 285 and 8800 GPUs

 Notice that mapping 2 is far superior in performance for both GPUs

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 22

Thread Mapping

 The discrepancy in execution times between the mappings is due to data
accesses on the global memory bus

‒ Assuming row-major data, data in a row (i.e., elements in adjacent columns)
are stored sequentially in memory

‒ To ensure coalesced accesses, consecutive threads in the same wavefront
should be mapped to columns (the second dimension) of the matrices

‒ This will give coalesced accesses in Matrices B and C

‒ For Matrix A, the iterator i3 determines the access pattern for row-major data, so
thread mapping does not affect it

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 23

Thread Mapping

 In mapping 1, consecutive threads (tx) are mapped to different rows of
Matrix C, and non-consecutive threads (ty) are mapped to columns of
Matrix B

‒ The mapping causes inefficient memory accesses

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 24

Thread Mapping

 In mapping 2, consecutive threads (tx) are mapped to consecutive
elements in Matrices B and C

‒ Accesses to both of these matrices will be coalesced

‒ Degree of coalescence depends on the workgroup and data sizes

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 25

Thread Mapping

 In general, threads can be created and mapped to any data element by
manipulating the values returned by the thread identifier functions

 The following matrix transpose example will show how thread IDs can be
modified to achieve efficient memory accesses

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 26

Matrix Transpose

 A matrix transpose is a straightforward technique
‒ Out(x,y) = In(y,x)

 No matter which thread mapping is chosen, one operation (read/write) will produce
coalesced accesses while the other (write/read) produces uncoalesced accesses
‒ Note that data must be read to a temporary location (such as a register) before being written

to a new location

In Out In Out

0 1 2 3

coalesced uncoalesced

0 1 2 3

uncoalesced coalesced

Threads

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 27

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Matrix Transpose

 If local memory is used to buffer the data between reading and writing, we can
rearrange the thread mapping to provide coalesced accesses in both directions

‒ Note that the work group must be square

In Out

coalesced

0 1 2 3

coalesced

0 1 2 3

0 1 2 3

Threads
global mem index
local mem index

0 1 2 3

0 1 2 3

0 4 8 12

Local memory

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 28

Matrix Transpose

 The following figure shows a performance comparison of the two transpose
kernels for matrices of size NxM on an AMD 5870 GPU

‒ “Optimized” uses local memory and thread remapping

0

0.01

0.02

0.03

0.04

1024 2048 3072 4096

Ti
m

e
 (

s)

Matrix Order

Naive

Optimized

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 29

Summary

 Although writing a simple OpenCL program is relatively easy, optimizing code can
be more difficult
‒ Coalescing memory access

‒ Vectorization

‒ Local memory

‒ Constant memory

 When creating work groups, hardware limitations (number of registers, size of local
memory, etc.) need to be considered
‒ Work-groups must be sized appropriately to maximize the number of active work-items

and properly hide latencies

 Thread mapping, and its effect on accessing memory, is critical for OpenCL kernel
performance

