Appendix F

Supplemental Data for Table 10-2. Selected 1,12-C₂B₁₀H₁₂ Derivatives

Compound ^a	Information ^b	References
Synthesis and Characterization		
Parent	<i>K</i> _a association constant with β-cyclodextrin	[898]
Nontransition metal derivatives		
$1,12\text{-}C_2B_{10}H_{12}$ and $CB_{11}H_{12}{}^-$ isosteric pairs; nematic liquid crystals	Effect of molecular polarity on nematic phase stability	[933]
	Photo-fragmentation, double cation formation photoelectron-photoion- photoion coincidence (PEPIPICO) spectroscopy; MS (time-of-flight mass analysis)	[866]
$H-(CB_{10}H_{10}C)_n-H n = 1-4$ (FF)	S, B (n=1-3)	[613]
Alkyl derivatives		
1-Me	Heat of formation	[65,81,82]
	S (small scale via pyrolysis of 1,2- $C_2B_{10}H_{12})$	[937]
1-CHMe ₂	B (substituent effects), H, IR	[21]
$1-C_7H_6-12-C_5H_4$	Hyperpolarizability; NLO	[90]
1-C ₇ H ₇ -12-[<i>cyclo</i> -C ₅ H ₄ -1-OH-3,4-Me ₂]	S, H, B, C, IR, UV, MS, NLO	[620]
1-C ₇ H ₇ -12-[<i>cyclo</i> -C ₅ H ₃ -3,4-Me ₂]	S, X, H, B, C, IR, UV, MS, NLO	[620]
$1-C_5H_{11}-CB_{10}H_{10}C-(C_6H_4)_2R R = C_8H_{17}, OC_8H_{17} (FF)$	H, MS, DSC, polarizing microscopy, ferroelectric liquid crystal properties	[622]
$1-C_5H_{11}$ — $CB_{10}H_{10}C$ — C_6H_4 — $C_6H_2F_3$ nematic liquid crystals	S, H, DSC, opto-electrical properties	[623]
C_5H_{11} — $CB_{10}H_{10}C$ — $C(O)O$ — C_6H_4 — O — C_3H_6 -R liquid crystals— smectic phase induction via fluorination (FF)	S, H, phase transitions	[624]
C_5H_{11} — O — C_6H_4 — $CB_{10}H_{10}C$ — L — C_6H_4 — O_n — C_5H_{11} L= CH_2CH_2 , C(O)O, CH=CHC(O)O, CH=N, CH=CH, C(O)NH, CH ₂ CH ₂ O(O)C n=0,1 liquid crystals—effect of linking group on mesogenic properties (FF)	S, H, C, MS, phase transition temperature	[625]
C_nH_{2n+1} — $C(O)O$ — C_6H_4 — $CB_{10}H_{10}C$ — L — C_6H_4 — $C(O)O$ — C_nH_{2n+1} effects of phenylalkyl connecting groups on mesogenic properties	S	[626]

Continued

e142 APPENDIX | **F** Supplemental Data for Table 10-2. Selected $1,12-C_2B_{10}H_{12}$ Derivatives

Compound	Information	References
$Me_2N-C_6H_4-p-CB_{10}H_{10}C-p-C_6H_4-NO_2$	Dipole moment	[627]
Dipentyl derivatives	Molecular dynamics in liquid crystals	[630]
$HCB_{10}Me_{10}C$ —(CH_{2}) ₃ $S(O)Me$ (FF)	S, H, B, C, IR, MS	[916]
Haloalkyl derivatives		
$1-CH_2X X = CI, Br, I$	Dipole moment	[344]
$[Br(CH_2)_n]HC_2B_{10}Me_{10} n=5, 6 (FF)$	S, H, B, C, MS	[106]
1-CH ₂ Cl-12-R R=H, Me, Ph, I, Cl, CH ₂ Cl	E (reduction; comparison with 1,2- and 1,7- $C_2B_{10}H_{12}$ derivatives)	[104]
$1 - (n - C_6 H_{12} - 6' - Br)$	S	[102]
Aryl derivatives		
1-Ph-12-R R=H, Me	Friedel-Crafts acylation (triflic acid catalysis); Taft σ constants.	[633]
	p <i>K</i> _a	[53]
1,12-(p-CH ₂ C ₆ H ₄ -Me) ₂	S	[189]
$1,12-(p-RC_{6}H_{4}-C\equiv C-C_{6}H_{4})C_{2}B_{10}H_{10} R = H, 1,12-C_{2}B_{10}H_{11} (FF)$	S, X, H, B, C, IR, MS	[637]
1-(<i>p</i> -C ₆ H ₄ Ph)-12-H	S, H, IR, UV, MS	[107]
$1,12-(p-C_6H_4Ph)_2$	S, H, IR, UV, MS	[107]
1-C ₆ H ₄ R-12-R' R=NO ₂ , CN; R'=H, (CH ₂) _n OH, (CH ₂) _n OSiMe ₃ , C(O) OMe, C(O)OH	S, H, C, MS, binding affinity	[638]
$1-(3'-C_5H_5N)-12-CH_2OH$ and rogen receptor ant agonist	S	[639]
1-CH ₂ OH-12-C ₆ H ₄ - <i>p</i> - <i>cyclo</i> -(CNHC(=S)ONC) oxadiazole; hydrophilic pharmacore of androgen receptor ligands	S	[640]
$1,12-(C_6H_4-o/m/p-OR)_2$ R = H, Me, n-C ₃ H ₇ , n-C ₅ H ₁₁ , OMe, OCSiMe ₃	S, H, C, binding affinity to estrogen receptor $\boldsymbol{\alpha}$	[643]
1-(C_6H_4 - p -CN)-12-CH ₂ C(O)R R=Me, Et, CHMe ₂ , cyclopropyl, n -C ₅ H ₁₁ , Ph nonsteroidal progesterone (PR) antagonists (cyclopropyl most potent)	S, H, C, binding affinity	[951]
$-[C_{13}H_9(C_6H_{13})_2-CB_{10}H_{10}C-C_{13}H_9(C_6H_{13})_2]_n$ fluorenyl polymer	S, H, C, DSC, UV, fluorescence	[644]
(m -NC-C ₆ H ₄)-CB ₁₀ H ₁₀ C-CH(OH)CH ₂ -X- p -C ₆ H ₄ R) X = O, X, SO ₂ , NH and rogen receptor antagonist candidates (FF)	S, H, C, MS, binding affinity, transient transactivation assay	[903]
1,12-(CH ₂ -C ₆ H ₄ -CH=CH ₂) ₂ C ₂ B ₁₀ H ₁₀ (FF)	Cross-linker in micelles, obtained via radical polymerization; carborane- confined nanoparticles for BNCT	[914]
$1-C_7H_7-12$ -cyclo- $C_5H_2Me_2CN$	S, X, H(2d), C(2d), IR, MS, UV	[917]
$1-C_7H_7-12$ -cyclo-C ₅ HMe ₂ (CN) ₂	S, H(2d), C(2d), IR, MS, UV	[917]
2-R R = CH_2Ph , C_6H_4Me , C_6H_4F	S	[95]
2-(o -C ₆ H ₄ R) R=H, OH, OMe proton-driven conformational change; intramolecular H bonding)	S, X(OH), H	[645]
2-C ₆ H ₄ - <i>o</i> -OMe	S, H, C, MS	[647]
	Pd-catalyzed demethylation with 2- MeOPhMgBr	[647]
2-C ₆ H ₄ - <i>o</i> -OH	S(from Pd-catalyzed reaction of C ₂ B ₁₀ H ₁₁ -2-I with 2-MeOPhMgBr), H, C, MS	[647]

Compound	Information	References
1-(C ₆ H ₃ -3'-Me-4'-OH)-12-R R=H, CH ₂ OH, C ₆ H ₃ -3'-Me-4'-OH	S	[893]
1-(C ₆ H ₁₀ - p -OH)-12-R R=H, CH ₂ OH estrogen receptor- β ligands	S, H, MS	[893]
$1-C_{5}H_{11}-12-C_{6}H_{4}-p-R R = C \equiv C - C_{6}H_{4}-OC_{8}H_{17},$ N=CHC_{6}H_{4}OC_{8}H_{17}, N=NC_{6}H_{4}C(O)OC_{5}H_{11}*	S, H, B, C, dielectric constant, liquid crystal behavior, polarizability, X-ray powder diffraction	[947]
$1-C_5H_{11}-O-C_6H_4-CB_{10}H_{10}C-L-C_6H_4-p-OC_5H_{11}L=CH_2CH_2, CH=CH (FF)$	S, H, B, C, dielectric constant, liquid crystal behavior, polarizability, X-ray powder diffraction	[947]
1-CH(C ₆ H ₄ - <i>p</i> -OH) ₂	S, H, C. S	[900]
Haloaryl derivatives		
$1-CH_2CH_2C_6H_{10}-C_6H_4F$	S, H, B, C, MS	[619]
$1-R-12-n-C_5H_{11}R = CH_2CH_2C_6H_{10} - C_6H_4F, \ p-C_6H_4Br$	S, H, B, C, MS	[619]
$1-(p-C_6H_4Br)_2-12-(C_6H_4-p-NC_5H_4-p-NC_5H_4)$ bipyridine	S, H, B	[649]
1,2- $(2',3'-C_6H_3Cl_2)_2$ for inclusion in TPP TPP = tris(<i>o</i> -phenylenedioxy) cyclotriphosphazene dipolar molecular rotors	S, H(2d), C	[922]
$[1-(2',3'-C_6H_3Cl_2)-12-(C_6H_4)_2-n-C_5H_{11}]$ @TPP TPP = tris(o-phenylenedioxy)cyclotriphosphazene dipolar molecular rotors	DSC, C(solid state), X-ray powder	[922]
$[1,2-(2',3'-C_6H_3Cl_2)_2]$ @TPP TPP = tris(<i>o</i> -phenylenedioxy) cyclotriphosphazene dipolar molecular rotors	DSC, C(solid state), X-ray powder	[922]
2- <i>m/p</i> -C ₆ H ₄ F	S	[146]
1-R R=ganciclovir (GCV), acyclovir (ACV), cidofovir (CDV) valganciclovir (VCDV) lipophilic anti-HCMV drugs	S, cytotoxicity	[928]
1,12-F ₂ -2- <i>p</i> -C ₆ H ₄ OH	S, H, B, C, estrogen receptor $\boldsymbol{\beta}$ binding affinity	[853]
1-C ₆ H ₄ - <i>p</i> -NC ₁₂ H ₈ <i>N</i> -carbazolyl donor-acceptor dyad complexes photoelectron charge transfer	S, H, B, C, MS, UV, E, transient absorption	[865]
$(porphyrin)[C_{6}F_{4}-p-SCH_{2}-1-(1,12-C_{2}B_{10}H_{11}]_{4}]$	S, H, F, UV, MS, dark & phototoxicity toward T98G cells, BBB permeability	[934]
Alkenyl derivatives		
1-R-12-R' R=CH=CH ₂ , CMe=CH ₂ ; R'=SnMe ₃ , SnEt ₃ , Sn(n -C ₄ H ₉) ₃	S, IR	[473]
$1,12-[CH_2=CH]_2C_2B_{10}Me_{10}$ (FF)	S, H, B, C, MS	[153]
$2-CH_2CH=CH_2$	S	[95]
1-CH=CH-C ₆ H ₄ -C=C-C ₆ H ₄ -CH=CH-C ₆ H ₄ -NPh ₂ two-photon acceptors	UV(absorption, fluorescence)	[915]
Alkynyl derivatives		
$1-C \equiv CR R = H, Ph$	S	[161]
$1,12-(C \equiv CR)_2 R = H, Ph$	S	[161]
$1-C \equiv C - C \equiv C - CMe_2OH$	S, H, B, C, IR, MS	[652]
$1,12-[Me(CH_2)_3OC(O)C\equiv C]_2C_2B_{10}Me_{10}$ (FF)	S, H, B, C, MS	[153]
1,12-HCB ₁₀ Me ₁₀ C-C=C-C=C-CB ₁₀ Me ₁₀ CH (FF)	s, h, b, c, ms, uv	[153]
$[1,12-RC \equiv C - CB_{10}Me_{10}C - C \equiv C - CE - CB_{10}Me_{10} - C - C \equiv C - CB_{10}Me_{10} - C - C \equiv C -]_2 R - H, Me, C(O)O(CH_2)_3Me (FF)$	S, H, B, C, MS	[153]
1,12-RCB ₁₀ Me ₁₀ C-C=C-C=C-CB ₁₀ Me ₁₀ CR' R, R'=H, C(O)OMe (FF)	S, H, B, C, MS	[153]

Compound	Information	References
$HCB_{10}H_{10}C - C \equiv C - C_6H_3I - C \equiv C - CB_{10}H_{10}CH (FF)$	S, H, C, IR, MS	[655]
Thioxanthene(naphtha[2,1- <i>b</i>]-thiopyran- {C=C-C ₆ H ₃ (C=C-CB ₁₀ H ₁₀ CH) ₂ } ₂ (FF) motorized nanocar	S, H, C, IR, MS, kinetics of thermal isomerization	[655]
$\begin{array}{l} (MeCB_{10}H_{10}C - C \equiv C)_2 C_6 H_3 - C \equiv C [C_6 H_2 (OC_{10}H_{21})_2 - \\ C \equiv C]_2 C_6 H_2 [C \equiv C - C_6 H_2 (OCC_{10}H_{21})_2 C \equiv C - C_{60}]_2 \text{ nanodragster} \end{array}$	S, H, C, IR, MS	[656]
$N_2[C_6H_4 - C \equiv C - C_6H_3(C \equiv C - CB_{10}H_{10}CH)_2]_2$ nanoworm	S, H, C, IR, UV	[658]
$[HCB_{10}H_{10}C - C \equiv C - C_6H_3(OC_3H_7)_2 - C \equiv C - C_6H_4]_2N_2$	S, H, C, IR, photo-isomerization	[659]
$\begin{array}{l} HCB_{10}H_{10}C{-}C{\equiv}C{-}C_{6}H_{3}(C{\equiv}C{-}C_{6}H_{4}{-}N{-}N{-}Ph){-}\\ C{\equiv}C{-}CB_{10}H_{10}CH \end{array}$	S, H, C, IR, photo-isomerization	[659]
1',3',5'-{[C=C-C ₆ H ₂ -2',5'-(OC ₃ H ₇) ₂] ₂ -C=C-CB ₁₀ H ₁₀ CH} ₃ C ₆ H ₃ nanocar (FF)	S, H, C, IR, UV, fluorescence	[660]
$H_2C_2B_{10}H_9-2-C \equiv C-2-H_2C_2B_{10}H_9$ (FF)	S, H, B, C, MS	[661]
2-I- $H_2C_2B_{10}H_8$ -9-C=C-9- $H_2C_2B_{10}H_8$ -2-C=C-9- $H_2C_2B_{10}H_8$ -2-I (FF)	s, h, b, c, ms	[661]
2,5-(MeO) ₂ -1,4-[C=C-C ₆ H ₃ -2',5'-(C=C-CB ₁₀ H ₁₀ CH) ₂] ₂ C ₆ H ₂ motorized nanocar (FF)	S, H, C, IR, UV, fluorescence	[660]
2,5-(C=C $-CB_{10}H_{10}CH$) ₂ -1,4-[C=C $-C_6H_3$ -2',5'- (C=C $-CB_{10}H_{10}CH$) ₂] ₂ C ₆ H ₂ nanocaterpillar (FF)	S, H, C, IR, UV, fluorescence	[660]
$1',4'-(1,12-HCB_{10}H_{10}C-C\equiv C)_2C_6H_3-2'-C\equiv C-C_6H_2-2',5-(OMe)_2-4'-C_6H_2-1',4'-(C\equiv C-1,12-CB_{10}H_{10}CH)_2-2'-tetramethylrhodamine-isothiocyanate and other similarly labeled nanocars (FF)$	S, micrometer-scale translation and fluorescence monitoring of nanocars on a glass surface	[904]
$C_6H_3-1', 6'-(CB_{10}H_{10}CH_2-2'-[C \equiv C-C_6H_2(OMe)_2-p-C \equiv C-C_6H_2-1', 6'-(CB_{10}H_{10}CH)_2-2'-C_6H_3(OCHMe_2)(CH = RuCl_2L)] L = P(C_6H_4-p-CHMe_2), cyclo-CHN_2Mes_2C_2H_4 ROMP catalysis of 1,5-cyclooctadiene; ROMP-propelled nanocars (FF)$	S(olefin metathesis), H, C, P	[907]
1-CH=CH- <i>p</i> -C ₆ H ₄ -C=C- <i>p</i> -C ₆ H ₄ -CH=CH-C ₆ H ₂ -4-R-3',5'-R' R=NPh ₂ , R=R'=OC ₁₂ H ₂₅ ; R=R'=O(CH ₂ CH ₂ O) ₃ Me (FF) 2-photon absorbing chromophores	S, UV(visible and emission), fluorescence microscopy	[952]
1-CH=CH- C_6H_4 -C=C- C_6H_4 -CH=CH- C_6H_4 -NPh ₂ two-photon acceptors	UV(absorption, fluorescence)	[915]
$1-(C \equiv C - C_6H_4 - p - I) - 12 - C \equiv C = C_6H_4 - p - C_6H_4 - p - SiEt_3$	S, X	[919]
1-(C≡C−C ₆ H ₄ - <i>p</i> -C≡C−C ₆ H ₄ - <i>p</i> -R)-12-(C≡C−C ₆ H ₄ - <i>p</i> -C≡C−C ₆ H ₄ - <i>p</i> -R') R=C ₃₇ H ₄₂ N ₂ BF ₂ O ₃ (borondipyrrolemethene), R'=C ₆ H ₂₀ N ₂ O ₂ (CH ₂ Ph) ₂ (C ₆ H ₄ - <i>p</i> -NMe ₂) (diketopyrrole) unsymmetrical linker for donor-acceptor dyads	S, H, C, MS, UV, fluorescence	[919]
$\begin{aligned} & RCB_{10}H_{10}C{-}C{\equiv}C{-}C_5H_6{-}C{\equiv}C{-}CB_{10}H_{10}CR \ (FF) \ R{=}Si(C_6H_{13})_3, \\ & H, \ C(O)OH \ \text{and} \ \text{related species} \ C_5H_6{=}bicyclo[1.1.1] \text{pentane} \end{aligned}$	S, X[C(O)OH], H, C, P, IR, MS	[923]
$\begin{array}{l} R-C_{6}H_{4}-C\equiv C-[-C_{6}H_{4}-C\equiv C-CB_{10}H_{10}C-C=C-C_{6}H_{4}-C\equiv C-]n-C_{6}H_{4}-R' n=1-5 \ (FF)\\ R, R'=dipyrrolopyrrole chromophores dyads for electronic energy transfer \end{array}$	S, H, C, MS, UV, fluorescence	[924]
$ \begin{array}{l} (dibenzophenazine) Ir(N_2C_{10}H_8) - \\ C \equiv C - C_6H_4 - C \equiv C - CB_{10}H_{10}C - C \equiv C - C_6H_4 - C \equiv C - N_2 \\ C_{10}H_8) Ir(NC_{11}H_6F_2)^{2+} \text{ donor-acceptor complexes} \end{array} $	S, MS, UV, E	[926]
1-(CH ₂) ₃ C≡CH	S, H, B, C, MS	[949]
2-C≡C-uridine	S, H, B, C, MS, UV, IR, cytotoxic activity vs. DNA and RNA viruses	[949]

Compound	Information	References
2-C≡C-deoxyuridine	S, H, B, C, MS, UV, IR, cytotoxic activity vs. DNA and RNA viruses	[949]
2-(deoxy-ribo-beta-D-furanosyl-dihydrofuropyrimidine-one)	S, H, B, C, MS, UV, IR, cytotoxic activity vs. DNA and RNA viruses	[949]
$1-(CH_2)_3C \equiv C$ -nucleosides	S, H, B, C, MS, UV, IR, cytotoxic activity vs. DNA and RNA viruses	[949]
Alcohols and C- and B-hydroxy derivatives		
1-CH ₂ OH	heats of combustion and formation	[183]
$(HOCH_2)HC_2B_{10}Me_{10}$ (FF)	S, H, B, C, MS	[663]
$(HOCH_2)HC_2B_{10}HMe_9-2-R$ R = NHMe, NH ₂ , CN (FF)	S, H, B, C, MS	[663]
$(HOCH_2)HC_2B_{10}HMe_9-2-CH=NOH (FF)$	S, X, H, B, C, MS	[663]
$[(HOCH_2)HC_2B_{10}HMe_9-2-CH=NO-]_2$ (FF)	S, X, H, B, C, MS	[663]
1-OH-12-CH(OEt) ₂	S, H, B, C	[666]
1-CH ₂ OH-12-C ₆ H ₄ - <i>p-cyclo</i> -(CNHC(=S)ONC) oxadiazole; hydrophilic pharmacore of androgen receptor ligands	S	[640]
$[HO(CH_2)_3]MeC_2B_{10}Me_{10}$ (FF)	S, H, B, C, MS	[614]
$n-p-C_6H_4OH n=1,2$	S, partition coefficients (log P)]; Hansch- Fujita hydrophobic parameters; drug design	[669]
	p <i>K</i> _a , hydrophobicity, estrogen receptor binding affinity	[191]
1,12-(CH ₂ - <i>p</i> -C ₆ H ₄ OH) ₂	S	[188,189]
1-R-12-R' R = H, R' = OH, CH ₂ OH, NH ₂ ; R = R' = OH complexes with β -cyclodextrin	$K_{\rm a}$ (association constants)	[195]
1-OH-12-(CH ₂) ₂ C(O)OH propionic acid	S	[670]
1- $(m$ -C ₆ H ₄ OH)-12-R R=H, OH, (CH ₂) _n OH n=1-3 estrogen agonists; hydrophobic pharmacore; estrogen receptor modulation; steroid receptors	s, H, Ms	[196]
1-(<i>m</i> -C ₆ H ₄ OMe)-12-R R=H, OH, (CH ₂) _n OH <i>n</i> =1-3	S, H, MS	[196]
1-R-12-CH ₂ SCMe ₃ R=(CH ₂) ₃ OH, CH ₂ CH ₂ C(O)OH	S, H, C, IR, MS	[671]
$1,12-[HO(CH_2)_2]_2C_2B_{10}Me_{10}$ (FF)	S, H, B, C, MS	[153]
$1,12-H[HO(CH_2)_2]C_2B_{10}Me_{10}$ (FF)	S, H, B, C, MS	[153]
$1-(CH_2)_2OCH_2CH(OH)(CH_2)_2OH-12-(CH_2)_2-O-CH_2C(O)CMe_3$ nonsecosteroidal vitamin D analogs	S, H, HL-60 cell differentiation activity	[931]
$1-(CH_2)_2OCH_2CH(OH)(CH_2)_2OH-12-(CH_2)_2-O-CH_2CH(OH)CMe_3$ nonsecosteroidal vitamin D analogs	S, H, HL-60 cell differentiation activity	[931]
1-(CH ₂) ₄ CEt ₂ OH-12-CH ₂ O(CH ₂) ₂ C(OH)CHR- CH ₂ OH R=OH, O(CH ₂) _n OH $n=2,3,4$ tetraols nonsecosteroidal vitamin D analogues very high VDR activity for $n=4$	S, vitamin D receptor activity	[936]
1-(CH ₂) ₄ CEt ₂ OH-12-(CH ₂) ₂ OCH ₂ CH(OH)-(CH ₂) ₂ OH tetraols nonsecosteroidal vitamin D analogues	S, X	[936]
Alkoxy and aryloxy derivatives		
1-B[OCPhCH ₂ CPhO]-12-R R=CH(OEt) ₂ , C(O)H boronic acids	S	[666]

e146 APPENDIX | **F** Supplemental Data for Table 10-2. Selected $1,12-C_2B_{10}H_{12}$ Derivatives

Compound	Information	References
Aldehydes		
1-CH(OEt) ₂ acetaldehyde diethyl acetal	S	[211]
$(CF_3SO_2CH_2)_2C_2B_{10}Me_{10}$ (FF)	S, X, H, B, C, MS	[614]
$1-C(O)H-12-(p-C_6H_4-OC_5H_{11})$	S, dielectric constants, mesogenic properties	[675]
1-C(O)H-12-R R = B(OEt) ₂ , B(OCPhCH ₂ CPhO) boronic acid	S	[666]
Carboxylic acids and carboxylates		
1-C(O)OH-12- <i>n</i> -C ₅ H ₁₁	S, H, B, C, IR	[619,679]
1-C(O)OH-12-CH ₂ CHMeEt	S, H, B, C, IR	[619]
1-C(O)OH-12-Me	pK_{a} , E (half-neutralization potential)	[226]
1-C(O)OH-12-NHC(O)OC(CH ₂) ₃	S, H, C, IR	[234]
1-C(O)OH-12- <i>p</i> -C ₆ H ₄ OMe	S, H, MS	[196]
1-C(O)OH-12-(p-C ₆ H ₄ OR) R=Me, H liquid crystals	S, H, DSC, mesogenic properties	[680]
1-CH ₂ CH ₂ C(O)OH-12-CH ₂ SH	S, H, C, IR, MS	[671]
1-R-12-CH ₂ SCMe ₃ $R = (CH_2)_3OH$, $CH_2CH_2C(O)OH$	S, H, C, IR, MS	[671]
$n-SCH_2C(O)OH n = 1,2$	MS, pK _a	[176]
1-C(O)OH-12-Me	S, IR (actual spectrum)	[600]
1,12-[C(O)OH] ₂	Complex with α -cyclodextrin in aqueous solution; K_{a} (association constant)	[227]
1-C(O)OH-12-N(boc)NH(boc) boc = tert-butyloxycarbonyl]hydrazino	S, X, H, B, C, MS	[268]
$[HO(O)C]MeC_2B_{10}Me_{10} (FF)$	p <i>K</i> _a	[237]
$ \{1,12-[OC(O)]_2C_2B_{10}H_{10}\}^{2-} [Mo(N,N'-di-p-anisyl-formamidinate)^+]_2 (FF) $	S, X, H	[683]
$HO(O)C-CB_{10}H_{10}C-C_{6}H_{4}-pCB_{10}H_{10}C-C(O)OH$ (FF) incorporation in porous 3D Zn(II) coordination polymers	S, X, H, C, B, X-ray powder diffraction, thermogravimetric analysis	[909]
1,12-{3',5'-C ₆ H ₃ [C(O)OH] ₂ } ₂ (FF) bis(isophthalic acid) incorporated in Cu-based MOF CH ₄ and H ₂ storage	S, X, gas absorption	[927]
1-[C(O)OC ₆ H ₄ - <i>p</i> -R]CB ₁₀ H ₁₀ C-12-C ₆ H ₁₃ R = (CH ₂) ₂ - <i>bicyclo</i> -C ₈ H ₁₂ - <i>p</i> -C ₅ H ₁₃ , N=N-C ₆ H ₄ - <i>p</i> -OC ₆ H ₁₃ , OC(O)C ₈ H ₁₇ ; comparison with ionic analogues; effect of coulombic interactions on mesophase stability (FF)	Thermal analysis, X-ray diffraction patterns	[940]
Esters and acyl halides		
1-C(O)OMe-12- <i>p</i> -C ₆ H ₄ OMe	S, H, MS	[196]
1-C(O)OCHMeC ₆ H ₁₃ -2-OC(O)- p -C ₂ H ₄ C ₆ X ₁₃ (X = H, P) liquid crystals	S, electrooptical properties	[686]
$1-[C(O)OCH_2CH=CH_2]_2$	S	[253]
$[C(O)CI]HC_2B_{10}Me_{10} (FF)$	S	[682]
$1-[CH_2C_6H_4-p-OC(O)Me]$	S	[251]
1-[(C ₆ H ₄) ₂ - <i>p</i> -OC(O)Me]	S	[251]
1-C(O)OCH ₂ Ph-12-NHC(O)OC(CH ₂) ₃	S, H, C, IR	[234]
1-C(O)OCH ₂ Ph-12-NH ₂	S, H, C, IR	[234]
1-CH ₂ NH-CH[C(O)OMe]CH ₂ CHMe ₂	S, H, C, MS	[205]

Compound	Information	References
$1-CH=NCH[C(O)OMe]CH_2CHMe_2$	S, H, C, MS	[205]
1-C ₅ H ₁₁ -12-[C(O)-O-(C ₆ H ₄) ₂ -O-C ₈ H ₁₇] liquid crystal	S, H, B, C, IR, MS, phase transition	[687]
1-C ₅ H ₁₁ -12-[C(O)-O-C ₆ H ₄ -CH ₂ CH ₂ - <i>cyclo</i> -C ₆ H ₁₀ - <i>cyclo</i> -C ₅ H ₁₁ liquid crystals - broad nematic phases	S, thermal analysis, optical microscopy	[688]
1-CH(OEt) ₂ -12-X X=Me ₃ SiO, OH	S, H(OH), B(OH), C(OH),	[666]
$1-CH_2=CH-C(O)O(CH_2)_3$ propyl acrylate	S, H, B, C	[664]
$eq:mecH2OC(O)CMe-[CH2CHC(O)O(CH2)_3CB10H10CH]_nBr (FF) poly(p-carborane) propyl acrylate$	S, H, B, C	[664]
p-C ₆ H ₄ OR diesters	S, liquid crystalline behavior; conformational analysis	[691]
1-(<i>p</i> -C ₆ F ₄ OR)-12-Ph	S, X(Et), H, C, F, IR	[138]
$1-(CH_2)_3OSiPh_2CMe_3-2-RR = H, C(O)OH, (CH_2)_3OH, (CH_2)_2C(O)OH$	S, H, MS, aqueous solubility	[665]
$CMe[C_{6}H_{4}-OC(O)(CH_{2})_{2}-CB_{10}H_{10}C-(CH_{2})_{2}OSiPh_{2}CMe_{3}]_{3}\ (FF)$	S, H, MS, aqueous solubility	[665]
2-(C ₆ H ₄ - <i>p</i> -OMe)	S (Pd-catalyzed cross-coupling), H, B, C	[646]
Nitro and nitroso derivatives and nitrates		
$(ONOCH_2)HC_2B_{10}Me_{10}$ (FF)	S, H, B, C, MS	[663]
1-NO	S	[676]
$(HOCH_2)HC_2B_{10}HMe_9-2-CH=NOH (FF)$	S, X, H, B, C, MS	[663]
$[(HOCH_2)HC_2B_{10}HMe_9-2-CH=NO-]_2$ (FF)	S, X, H, B, C, MS	[663]
Amines and imines		
1-NH ₂	S, H, C, Ms, complex with α -cyclodextrin in aqueous solution; K_a (association constant)	[227]
1-NH ₂	S	[676]
1-NH ₂ -12- <i>p</i> -C ₆ H ₄ OH estrogen agonists; hydrophobic pharmacore; estrogen receptor modulation; steroid receptors	s, h, ms	[196]
$1-p-C_6H_4RR = NMe_2, NH_2$	S, B, C, IR, UV, MS	[634]
$1,12-(p-C_6H_4R)_2 R = NMe_2, NH_2$	S, B, C, IR, UV, MS	[634]
1-R-12-C(O)OH R = NH ₂ , NHC(O)OCMe ₃	S, H, B, C, IR	[230]
1-NH ₂ -12-C(O)OCH ₂ Ph	S, H, C, IR	[234]
2-NH ₂	р <i>К</i> а	[237]
$[H_2N(CH_2)_3]HC_2B_{10}Me_{10}$ (FF)	S, H, B, C, MS	[106]
$[H_2N(CH_2)_n]HC_2B_{10}Me_{10} n=5, 6 (FF)$	S, H, B, C, MS	[106]
$2-NHC_6H_4R$ R=H, Cl, OMe	S, H, B	[673]
Heterocyclic amines		
2-R R=furyl, 2'/3'-thienyl, methylindolyl, pyridyl, quinolyl, pyridylethynyl, quinolylethynyl	s, h, b, ms	[281]
$1-(p-C_6H_4Br)_2-12-(C_6H_4-p-NC_5H_4-p-NC_5H_4)$ bipyridine	S, H, B	[649]
1,12-(C ₆ H ₄ - p -NC ₅ H ₄ - p -NC ₅ H ₄) ₂ bipyridine	S, H, B	[649]
1-C(O)NCH ₂ -C ₆ H ₄ - <i>p</i> - <i>cyclo</i> -CN ₄ CH tetrazinyl	S, X, H, B, C, MS	[946]

e148 APPENDIX | F Supplemental Data for Table 10-2. Selected $1,12-C_2B_{10}H_{12}$ Derivatives

Compound	Information	References
1-C(O)NCH ₂ -C ₆ H ₄ - <i>p</i> -bicyclo-C ₁₀ N ₂ H ₁₃ OH Diels-Alder product	s, h, b, c, ms, uv	[946]
$NC_5H_4 - NC_5H_3 - C \equiv C - C_6H_4 - C \equiv C - CB_{10}H_{10}C - C \equiv C - C_6H_4 - C \equiv C - R R = SiMe_3, H, (N_2C_{10}H_6)Ir(NC_{11}H_6F_2)_2^+$ donor-acceptor complexes	S, MS, UV, E	[926]
$1-(CH_2)_3$ - <i>cyclo</i> -N ₃ C ₂ H-(CH ₂) ₃ -2"-O-adenosine	S, H, B, MS, U(fluorescence), neutrophil response to PNA stimulation	[935]
$1-C \equiv C-2''-O$ -adenosine	S, H, B, MS, U(fluorescence), neutrophil response to PNA stimulation	[935]
1-H-2-S(8'-BODIPY) BODIPY = $C_9H_2Me_4N_2BF_2$	S, H, C, MS, UV, fluorescence, permeability across hCMEC/D3 cell monolayers	[948]
Amides and imides		
1-NHC(O)OMe methyl carbamate	S, X, H, B, C, IR, MS	[694]
1-NHC(O)OCMe ₃ -12-C(O)OCH ₂ Ph	s, h, c, ir	[234]
ethylene oxide-modified 3- <i>p</i> -carboranyl thymidine derivatives for BNCT	S	[696]
2-[C ₆ H ₄ -p-NHC(O)Me]	S (Pd-catalyzed cross-coupling), H, B, C	[646]
2-NHC(O)CH ₂ NHEt ₂ lidocaine analogues local anesthetics	S, H, B, IR, MS, analgesic activity	[881]
Azides		
1-N(boc)NH(boc)-12-C(O)OH boc <i>=tert</i> -butyloxycarbonyl] hydrazino	S, X, H, B, C, MS	[268]
1-NHNH ₂ CF ₃ C(O)OH-12-C(O)OH	S, H, B, C, MS	[268]
Nitriles and isonitriles		
$(HOCH_2)HC_2B_{10}HMe_9-2-CN$ (FF)	s, h, b, c, ms	[663]
$[NC(CH_2)_3]HC_2B_{10}Me_{10}$ (FF)	s, h, b, c, ms	[106]
1-C ₆ H ₄ CN-12-CH ₂ OH androgen receptor antagonist	S, X, H, docking study with hAR LBD	[912]
Phosphorus derivatives		
1-P(O)Me(OMe)-12-R R = H, CMe=CH ₂	S	[697]
1-PMe(OEt)-12-R R = H, Me, CH_2 =CMe, Ph	S	[297]
$1-[PMe(OEt) = N-C_6H_4-p-NO_2]-12-R R = H, Me, CH_2 = CMe, Ph$	S	[297]
1-PMe(OEt)R• $R = OCMe_3$, Me phosphoranyl radicals	ESR	[298]
$1-P(O)(OEt)OCH=CCI_2$	S	[699]
$HCB_{10}H_{10}C$ —PPh ₂ -CH ₂ —(CH ₂ —O—CH ₂) ₃ —CH ₂ —PPh ₂ -CB ₁₀ H ₁₀ CH ²⁺ 2X ⁻ X=Br, I (FF) water-soluble phosphonium salts for BNCT	S, X, H, B, C, P, MS	[701]
1,12-{P(O)[OCH ₂ - <i>cyclo</i> -C ₅ H ₅ (OH) ₄ O] ₂ } ₂ water-soluble glycophosphonates for BNCT	S, H, B, C, P, MS, IR	[305]
Sulfur derivatives		
1-CH ₂ SH-12-CH ₂ CH ₂ C(O)OH	S, H, C, IR, MS	[671]
1-CH ₂ SCMe ₃	S, H, C, IR, MS	[671]
1-CH ₂ SCMe ₃ -12-R R=(CH ₂) ₃ OH, CH ₂ CH ₂ C(O)OH	S, H, C, IR, MS	[671]
1-SC ₄ H ₉ -12-R R=H, SiPh ₃ , CH ₂ CHMeEt	S, H, B, C, IR, MS	[619]

Compound	Information	References
p-C ₆ H ₄ (CB ₁₀ H ₁₀ C-C ₄ H ₃ S) ₂ thiophene (FF)	s, h, c, ms	[317]
<i>cis/trans</i> -1-CH=CH-C ₄ HBr ₂ S thiophene	S, H, B, C, MS	[875]
1,12-[S(O) ₂ Ph] ₂ sulfone	S, IR	[311]
$[S(O)_2OR]_2C_2B_{10}(OH)_{10} R = H, Me (FF)$	S, X(H), H, B, C, IR, MS	[702]
$[M^{+}]_{2} \{ [S(O)_{2}O]_{2}C_{2}B_{10}(OH)_{10} \}^{2-} M = Na, K (FF)$	S, X, H, B, C, IR, MS	[702]
1-CPhH(OSO ₃ C ₆ H ₄ Me)-12-C ₆ H ₄ R R = H, CF ₃ , Me, OMe, NMe ₂ tosylates	S, rate constants, electronic effects of substituents	[320]
1-benzyl p-toluenesulfonates (tosylates)	Hydrolysis kinetics	[322]
$1',3',5'-\{1,12\text{-}[Et_2S-(CH_2)_3\text{-}]_2MeSi]C_2B_{10}H_{10}\}_3C_6H_3 \ (FF)$	S, H, B, C, IR, MS	[632]
Chloro derivatives		
1-Cl-12-Me	S, IR (actual)	[600]
1-Cl	Dipole moment	[344]
2, <i>n</i> -Cl ₂ <i>n</i> =3,4,7,9,10	ESR, dipole moment	[707]
B-Cl _n n=3, 4, 5	S	[601,706]
Bromo derivatives		
1-Br	Dipole moment	[344]
1-Br-12-Me	S	[600,677]
	IR (actual)	[600]
	H (substituent effects)	[22]
2,9-Br ₂	S	[601]
Iodo derivatives		
1-1	Dipole moment	[344]
1,12-l ₂	S	[600,676,677]
	H (substituent effects)	[22]
	В	[22]
	IR (actual spectrum)	[600]
	IR	[22]
1-I-12-Me	S	[600,677]
	IR (actual)	[600]
	H (substituent effects)	[22]
Exo-Polyhedral Main-Group Metal and Metalloid Element Derivatives		
Silicon		
1-SiMePh ₂	S, H, B, C, IR, MS	[702]
1-SiPh ₃ -12-R R = <i>n</i> -C ₅ H ₁₁ , EtCHMeCH ₂ , SC ₄ H ₉ , C≡C−C ₅ H ₁₁ , C ₆ H ₄ −OC ₇ H ₁₅ , CH ₂ CH ₂ C ₆ H ₁₀ C ₆ H ₄ F	S, H, B, C, IR, MS	[619]
1-Si(C ₆ H ₁₃) ₃ -12-C(CH ₂) ₃ Cl	S, H, B, C, IR, MS	[713]
1-OSiMe ₃ -12-CH(OEt) ₂	S	[666]

Continued

e150 APPENDIX | F Supplemental Data for Table 10-2. Selected $1,12-C_2B_{10}H_{12}$ Derivatives

Compound	Information	References
$HCB_{10}H_{10}C$ — $(CB_{10}H_{10}C)_2$ — $CB_{10}H_{10}C$ — $SiR_3 R = n - C_6H_{13}$, $n - C_4H_9$ (FF)	S, X (<i>n</i> -C ₄ H ₉), H, B, C, IR, MS	[714]
B-CH ₂ CH ₂ SiMe ₃	MS (detailed)	[461]
$B,B'-(CH_2CH_2SiMe_3]_2$	MS (detailed)	[461]
$B-CH_2CH_2SiR_3 R=CI$, Me	S	[462]
$B_{1}B_{2}CH_{2}CH_{2}SiR_{3})_{2}R = CI, Me$	S	[462]
n-CH ₂ CH ₂ SiCl ₃ n =1, B	MS (fragmentation patterns)	[715]
$B-CH_2CH_2SiR_3 R=Me, Cl$	IR (detailed study; inductive effect)	[460]
$B,B'-(CH_2CH_2SiR_3)_2 R = Me, Cl$	IR (detailed study; inductive effect)	[460]
$1',3',5'-\{1,12-[Et_2S-CH_2)_3-]_2-MeSi]C_2B_{10}H_{10}\}_3C_6H_3$ (FF)	S, H, B, C, IR, MS	[632]
$1,12-\{Co_2C_2[SiMe_3](CO)_4[PPh_2CH_2PPh_2]\}_2$	S, X, H, B, IR, E	[716]
Tin		
1-SnEt ₃ -12-R	¹¹⁹ Sn γ-resonance spectra; quadrupole splittings; acceptor properties of cage	[475]
$\{-SnMe_2-[1,7-CB_{10}H_{10}C]-SnMe\}_2-1,12-CB_{10}H_{10}C]\}_n$ polymer (FF)	S	[466]
$1,12-[(CH_2)_nC(O)O^- SnMe_3^+]_2 n=0, 1$	Mössbauer, pK_a , E (half-neutralization potential)	[226]
Exo-Polyhedral Transition Metal Complexes		
Molybdenum		
$1-C \equiv C-Mo(C_7H_7)[Ph_2P(CH_2)_2PPh_2]$	S, X, H, B, C, P, IR, UV, E, ESR(cation)	[910]
$1-C \equiv C-Mo(C_7H_7)[Ph_2P(CH_2)_2PPh_2]-12-C \equiv CH$	S, X, H, B, C, P, IR, UV, E, ESR(cation)	[910]
$1,12-\{C \equiv C-Mo(C_7H_7)[Ph_2P(CH_2)_2PPh_2]_2$	S, X, H, B, C, P, IR, UV, E	[910]
Iron		
$1-(\eta^6-naphthyl)FeCp^+$	S, ESR	[510]
$1-[C_6H_4-p-CH=CHC_6H_4FeCp]$	S, UV, E, NLO(β hyperpolarizability)	[513]
Ruthenium		
$(bpy)_2Ru(NC_5H_4-NC_5H_3-p-C_6H_4-CB_{10}H_{10}C-p-C_6H_4Br)^{2+}$ bpy=bipyridine (FF)	S, H, B, MS	[649]
$(bpy)_2Ru(NC_5H_4-NC_5H_3-p-C_6H_4-CB_{10}H_{10}C-p-C_6H_4-NC_5H_3-NC_5H_4)Ru(bpy)_2^{4+}$ bpy=bipyridine (FF) photoluminescent complex	S, H, B, MS,UV,E	[649]
Cobalt		
$1-Co_2C_2[SiMe_3](CO)_4[PPh_2CH_2PPh_2]$	S, X, H, B, IR, E	[720]
$1,12-\{Co_2C_2[SiMe_3](CO)_4[PPh_2CH_2PPh_2]\}_2$	S, X, H, B, IR, E	[716,720]
$[Co_4(OH)_2(O_2C-CB_{10}H_{10}C-CO_2)_3(DMF)_2]_n$ polymers for CO_2 adsorption	S, TGA, variable-temp. X-ray diffraction	[722]
Rhodium and Iridium		
$(N_2C_{12}H_8)Ir(N_2C_{10}H_8 - 1, 12 - CB_{10}H_{10}CH)_2^+ PF_6^-$ enhances phosphorescence emission	S, H, B, C, MS, UV, phosphorescence	[839]

Compound	Information	References
(HCB ₁₀ H ₁₀ C—C ₆ H ₄ - p -2'-C ₅ H ₄ N) ₃ Ir 3 Ir—N, 3 Ir—C <i>fac/mer</i> isomers (FF)	S, X, H, B, C, MS, UV, photoluminescence, luminescence/ phosphorescence efficiency	[854]
$cyclo\mathchar`{1,12-}(O_2C)_2C_2B_{10}H_8\mathchar`{2,10-}[IrCp*(cyclo\mathchar`{NC_4}H_4N)IrCp*]_2\mathchar`{2,2,10-} H_8B_{10}C_2(CO_2)_2\}\ 4\ B\mathchar`{L}$	S, X, H, B, MS	[857]
$cyclo$ -[Cp*M(NC ₅ H ₄ -CH=N)-R-(N=CH-C ₅ H ₄ N)MCp*] ₂ {[1,12-C(O)O] ₂ C ₂ B ₁₀ H ₁₀ } ₂ M=Rh, Ir R=C ₆ H ₄ , C ₆ Me ₄ , C ₁₀ H ₆ naphthyl	S, X, H, B, I	[939]
Platinum		
$1-CH_2SPt(terpyridine)^+ OSO_2CF_3^-$	s, H, B, C, Ms	[314]
$1,12-[(CH_2)_3SPt(terpyridyI)]_2C_2B_{10}H_{10}^{2+}$ [OSO ₃ CF ₃ ⁻] ₂ (FF)	S, H, B, C, Pt, MS, cell toxicity	[536]
1,12-[C \equiv C $-$ C ₅ H ₄ N- <i>trans</i> -Pt[PEt ₃] ₂ OSO ₂ CF ₃] ₂	S, H, C, F, IR	[533]
$\begin{split} & cyclo\ensuremath{\left[1,8\text{-}C_{14}H_8\right]_2} \left\{ Pt[PEt_3]_2 - NC_5H_4 - C {\equiv} C - CB_{10}H_{10}C - \\ & C {\equiv} C - C_5H_4N - Pt[PEt_3]_2 \right\}_2^{4+} \\ & C_{14}H_8 {=} anthracene; rectangular macrocycle (FF) \end{split}$	s, h, c, ir	[533]
$\begin{split} & cyclo\mbox{-}\{(CH_2)_3\text{Pt}[\text{PEt}_3]_2]_4\big\{C\equiv C-C_5H_4N-\text{Pt}[\text{PEt}_3]_2-C\equiv C-\\ & CB_{10}H_{10}C-C\equiv C-\text{Pt}[\text{PEt}_3]_2-NC_5H_4-C\equiv C\big\}_4^{8+}\\ & \text{square macrocycle (FF)} \end{split}$	S, H, C, IR	[533]
$cyclo$ -({C(O)O-Pt[PEt_3]_2-1,8-C_{14}H_8}C_2B_{10}H_{10})_2 C_{14}H_8=anthracene rectangular macrocycle (FF)	S, X, H, P	[534]
$cyclo$ -({C(O)O-Pt[PEt ₃] ₂ -2,9-C ₁₄ H ₈ }C ₂ B ₁₀ H ₁₀) ₂ C ₁₄ H ₈ =phenanthrene; rhomboidal macrocycle (FF)	S, X, H, P	[534]
Gold		
$Au(PPh_{2}-CB_{10}H_{10}C-PPh_{2})_{2}^{+}CI^{-}(FF)$	S, H, B, C	[698]
1,12-(PPh ₂ AuCl) ₂	S, H, B, C	[698]
1,12-(AuPPh ₂ -1,2-CB ₁₀ H ₁₀ CMe) ₂ -1,12-C ₂ B ₁₀ H ₁₀ pyrolysis and deposit on Si \rightarrow Au crystals; microcrystalline materials	S, H, P, IR, UV(luminescence emission)	[932]
Mercury		
$Hg(CB_{10}H_{10}CMe)_2$ (FF)	MS (detailed)	[547]
$Hg(CB_{10}H_{10}C-Ph)_2 \cdot 2, 2'$ -bipyridine (FF)	S, X	[632]
$\{Hg(CB_{10}H_{10}C-Ph)_2\}_2 \cdot 2, 2'-bipyridine (FF)$	S, X	[632]
2-R R=HgOC(O)CF ₃ , HgCl	S	[548]
Theoretical Studies		
Molecular and electronic structure calculations		
$C_2B_{10}H_{11}^{\bullet}$, $C_2B_{10}H_{10}^{\bullet\bullet}$ radicals	DFT, CASPT2	[587]
1,12- X_2 X = Li, BeH, F, Cl, CN, Me, SiH ₃ , OH, SH, H ₂ , BH ₂	Ab initio; cluster parameters	[703]
n-SCH ₂ C(O)OH n =1,2	EHMO, NEMO; charge distribution	[176]
1,12-(SH) ₂ /9,12-(SH) ₂ attached to surface of Au microcrystals	Dipole moments	[704]
$RCB_{10}H_{10}CR^{2-}R = B_{12}H_{11}, B_{12}H_{10}-C_7H_6; R' = H, C_5H_4, C_7H_6$ (FF)	β (first hyperpolarizability); NLO	[589]
$1-CH_2X X = CI, Br, I$	Dipole moment	[344]
1-X X=Cl, Br, I	Dipole moment	[344]
$Me_2N-C_6H_4 p-CB_{10}H_{10}C-p-C_6H_4-NO_2$	Dipole moment; electronic effects transmission	[627]

Continued

e152 APPENDIX | F Supplemental Data for Table 10-2. Selected 1,12-C₂B₁₀H₁₂ Derivatives

Compound	Information	References
$\label{eq:checker} \begin{array}{l} \mbox{EtMeCHCH}_2CB_{10}\mbox{H}_{10}\mbox{C}C(\mbox{O})\mbox{O}(C_6\mbox{H}_4)_2cycloC_5\mbox{H}_{11} \mbox{ optically} \\ \mbox{active mesogenic esters (FF)} \end{array}$	Conformational energies	[689]
$(18\text{-}crown-6)^+ [(p-C_6H_4OH)(p-C_6H_4OH)C_2B_{10}H_{10}]^- (FF)$	Electron densities	[634]
1-[C(O)OC ₆ H ₄ - <i>p</i> -R]CB ₁₀ H ₁₀ C-12-C ₆ H ₁₃ R=(CH ₂) ₂ - <i>bicyclo</i> -C ₈ H ₁₂ - <i>p</i> -C ₅ H ₁₃ , N=N-C ₆ H ₄ - <i>p</i> -OC ₆ H ₁₃ , OC(O)C ₈ H ₁₇ comparison with ionic analogues; effect of coulombic interactions on mesophase stability (FF)	Molecular modeling	[940]
$1-[Cp*Ru(Ph_2PCH_2CH_2PPh_2)-C\equiv C]$	DFT, electronic structure	[719]
1,12-[Cp*Ru(Ph ₂ PCH ₂ CH ₂ PPh ₂)—C \equiv C] ₂	DFT, electronic structure	[719]
$(cyclo-O_2C_3HMe_2)Ir(N_2C_{10}H_8-1,12-CB_{10}H_{10}CH)_2$	DFT: HOMO-LUMO levels	[839]
${(N_2C_{12}H_8)Ir(N_2C_{10}H_8-1,12-CB_{10}H_{10}CH)_2}^+ \ {PF_6}^-$	DFT: HOMO-LUMO levels	[839]
1,12-{ $cyclo$ -[B-N(R)- o -C ₆ H ₄ -N(R)-]} ₂ R=Et, Ph; diazaborolyl	Molecular geometry, GIAO NMR	[847]
Ph- $(p-C_6H_4)_2$ —CB ₁₀ H ₁₀ C—R R=Me, C ₆ H ₃ -2',3'-Cl ₂ inclusion compounds with tris- <i>o</i> -phenylenedioxycyclotriphosphazene (TPP)	DFT: geometry optimization	[929]
$n-C_5H_{11}-CB_{10}H_{10}C-C_6H_4-p-C_6H_2FX_2 X = H, F (FF)$	DFT: molecular structure	[930]
$1-C_{5}H_{11}-12-C_{6}H_{4}-p-R R = C \equiv C-C_{6}H_{4}-OC_{8}H_{17},$ N=CH-C_{6}H_{4}-OC_{8}H_{17}, N=N-C_{6}H_{4}-C(O)O-C_{5}H_{11}*	DFT: dipole moment, polarizability, geometry	[947]
$1-C_5H_{11}-O-C_6H_4-CB_{10}H_{10}C-L-C_6H_4-p-OC_5H_{11}L=CH_2CH_2, CH=CH$	DFT: dipole moment, polarizability, geometry	[947]
Other calculations		
1-(C ₆ H ₁₀ - p -OH)-12-R R=H, CH ₂ OH estrogen receptor-beta ligands	Docking models with $\text{ER}\alpha$ and $\text{ER}\beta$ sites	[893]
1,12-l ₂	Zero-point vibrational energy and B—X bond length (X = I, Xe) vs. 1,12- $C_2B_{10}H_{10}Xe_2^+$ ion obtained via radioactive decay	[950]

^aSubstituents on the carborane cage. "FF" indicates that the full formula of the compound is given. ^bS, synthesis; X, X-ray diffraction; H, ¹H NMR; B, ¹¹B NMR; C, ¹³C NMR; F, ¹⁹F NMR; P, ³¹P NMR; Pt, ¹⁹⁵Pt NMR; IR, infrared data; MS, mass spectroscopic data; UV, UV-visible data; E, electrochemical data; ESR, electron spin resonance; NLO, nonlinear optical properties; DSC, differential scanning calorimetry; BNCT, boron neutron capture therapy; ED, gas phase electron diffraction; STM, scanning tunneling microscopy; XPS, X-ray photoelectron spectroscopy.