Chapter-3
Scalable parallel execution
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FIGURE 3.1: A multidimensional example of CUDA grid organization.
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FIGURE 3.2: Using a 2D thread grid to process a 76 x 62 picture P.
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FIGURE 3.3: Row-major layout for a 2D C array. The result is an equivalent 1D array
accessed by an index expression j*Width+ i for an element that is in the j th row
and i th column of an array of Width elements in each row.
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// we have 3 channels corresponding to RGB
// The input image is encoded as unsigned characters [0, 255]
__global
void colorToGreyscaleConversion(unsigned char * Pout, wunsigned
char * Pin, int width, int height) {,
int Col = threadIdx.x + blockIdx.x * blockDim.x;
int Row threadIdx.y + blockIdx.y * blockDim.y;
if (Col < width && Row < height) ({
// get 1D coordinate for the grayscale Iimage
int greyOffset = Row*width + Col;
// one can think of the RGB image having
// CHANNEL times columns than the grayscale image
int rgbOffset = greyOffset*CHANNELS;
unsigned char r = Pin[rgbOffset 1; // red value for pixel
unsigned char g = Pin[rgbOffset + 2]; // green value for pixel
unsigned char b = Pin[rgbOffset + 3]; // blue value for pixel
// perform the rescaling and store it
// We multiply by floating point constants
Pout [grayOffset] = 0.21f*r + 0.71f*g + 0.07£*Db;

FIGURE 3.4: Source code of colorToGreyscaleConversion showing 2D thread
mapping to data.
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16x16 block

FIGURE 3.5: Covering a 76 x 62 picture with 16 x 16 blocks.
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FIGURE 3.6: An original image and a blurred version.
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FIGURE 3.7: Each output pixel is the average of a patch of pixels in the input image.
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__global
void blurKernel (unsigned char * in, unsigned char * out, int w, int h)
{
int Col blockIdx.x * blockDim.x + threadIdx.x;
int Row = blockIdx.y * blockDim.y + threadIdx.y;

if (Col < w && Row < h) {
L int pixVal = 0;
25 int pixels = 0;

// Get the average of the surrounding BLUR SIZE x BLUR SIZE box

s for (int blurRow = -BLUR SIZE; blurRow < BLUR SIZE+l; ++blurRow) {
4. for (int blurCol = -BLUR SIZE; blurCol < BLUR SIZE+l; ++blurCol)
{
Bis int curRow = Row + blurRow;
6. int curCol = Col + blurCol;
// Verify we have a valid image pixel
7. if (curRow > -1 && curRow < h && curCol > -1 && curCol < w) {
8. pixVal += in[curRow * w + curCol];
9. pixels++; // Keep track of number of pixels in the avg

}
}

// Write our new pixel value out
10. out[Row * w + Col] = (unsigned char) (pixVal / pixels);

FIGURE 3.8: An image blur kernel.

Copyright © 2016 Elsevier Inc. All rights reserved.



[ 11

FIGURE 3.9: Handling boundary conditions for pixels near the edges of the image.
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FIGURE 3.10: An example execution timing of barrier synchronization.
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Each block can execute in any order relative to other blocks.

FIGURE 3.11: Lack of synchronization constraints between blocks enables
transparent scalability for CUDA programs.
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FIGURE 3.12: Thread block assignment to Streaming Multiprocessors (SMs)
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FIGURE 3.13: Blocks are partitioned into warps for thread scheduling.

Copyright © 2016 Elsevier Inc. All rights reserved.

14



