Chapter-3
Scalable parallel execution

host device

Grid 1
Block Block
Kernel 1 o) (0, 0) (0, 1)
B
4 \
(1,0) # \
7 7 v
7 d vl

y: / \
7/ \

. 4 \
Grid % ’ / \

\

Block (1,1)
(1,0,0) (1,0,1) (1,0,2) (1,0,3)

Thread| Thread| Threadf§ Thread
(0,0,0) | (0,0,1)} (0,0,2)§ (0,0,3)

Thread | Thread| Threadf| Thread
(0,1,0)} (0,1,1)} (0,1,2)§ (0,1,3)

FIGURE 3.1: A multidimensional example of CUDA grid organization.

Copyright © 2016 Elsevier Inc. All rights reserved.

16%16 blocks

FIGURE 3.2: Using a 2D thread grid to process a 76 x 62 picture P.

Copyright © 2016 Elsevier Inc. All rights reserved.

o]t [s o R RO

l Row*Width+Col = 2*4+1=9 ——>

TR v v . 1

Mo | My | My | My [My | Mg | Mg | My

FIGURE 3.3: Row-major layout for a 2D C array. The result is an equivalent 1D array
accessed by an index expression j*Width+ i for an element that is in the j th row
and i th column of an array of Width elements in each row.

Copyright © 2016 Elsevier Inc. All rights reserved. 4

// we have 3 channels corresponding to RGB
// The input image is encoded as unsigned characters [0, 255]
__global
void colorToGreyscaleConversion(unsigned char * Pout, wunsigned
char * Pin, int width, int height) {,
int Col = threadIdx.x + blockIdx.x * blockDim.x;
int Row threadIdx.y + blockIdx.y * blockDim.y;
if (Col < width && Row < height) ({
// get 1D coordinate for the grayscale Iimage
int greyOffset = Row*width + Col;
// one can think of the RGB image having
// CHANNEL times columns than the grayscale image
int rgbOffset = greyOffset*CHANNELS;
unsigned char r = Pin[rgbOffset 1; // red value for pixel
unsigned char g = Pin[rgbOffset + 2]; // green value for pixel
unsigned char b = Pin[rgbOffset + 3]; // blue value for pixel
// perform the rescaling and store it
// We multiply by floating point constants
Pout [grayOffset] = 0.21f*r + 0.71f*g + 0.07£*Db;

FIGURE 3.4: Source code of colorToGreyscaleConversion showing 2D thread
mapping to data.

Copyright © 2016 Elsevier Inc. All rights reserved.

16x16 block

FIGURE 3.5: Covering a 76 x 62 picture with 16 x 16 blocks.

Copyright © 2016 Elsevier Inc. All rights reserved.

FIGURE 3.6: An original image and a blurred version.

Copyright © 2016 Elsevier Inc. All rights reserved.

Col

Row=»-

FIGURE 3.7: Each output pixel is the average of a patch of pixels in the input image.

Copyright © 2016 Elsevier Inc. All rights reserved. 3

__global
void blurKernel (unsigned char * in, unsigned char * out, int w, int h)
{
int Col blockIdx.x * blockDim.x + threadIdx.x;
int Row = blockIdx.y * blockDim.y + threadIdx.y;

if (Col < w && Row < h) {
L int pixVal = 0;
25 int pixels = 0;

// Get the average of the surrounding BLUR SIZE x BLUR SIZE box

s for (int blurRow = -BLUR SIZE; blurRow < BLUR SIZE+l; ++blurRow) {
4. for (int blurCol = -BLUR SIZE; blurCol < BLUR SIZE+l; ++blurCol)
{
Bis int curRow = Row + blurRow;
6. int curCol = Col + blurCol;
// Verify we have a valid image pixel
7. if (curRow > -1 && curRow < h && curCol > -1 && curCol < w) {
8. pixVal += in[curRow * w + curCol];
9. pixels++; // Keep track of number of pixels in the avg

}
}

// Write our new pixel value out
10. out[Row * w + Col] = (unsigned char) (pixVal / pixels);

FIGURE 3.8: An image blur kernel.

Copyright © 2016 Elsevier Inc. All rights reserved.

[11

FIGURE 3.9: Handling boundary conditions for pixels near the edges of the image.

Copyright © 2016 Elsevier Inc. All rights reserved.

10

Time =3

LLICEL KON — >
Thread 1 [>
Thread 2 | >
Thread 3 % —
thread;s | —>
Thread N-3 | > _
Thread N-2 | >
Thread N-1 ————N >

FIGURE 3.10: An example execution timing of barrier synchronization.

Copyright © 2016 Elsevier Inc. All rights reserved. 11

Device

ook ook 1

=0 =

ook | moce s

Block 6 |l Block 7

Kernel grid

m Device

="

Block 0 f Block 1 f Block 2 f Block 3

time
Block s

Each block can execute in any order relative to other blocks.

FIGURE 3.11: Lack of synchronization constraints between blocks enables
transparent scalability for CUDA programs.

Copyright © 2016 Elsevier Inc. All rights reserved.

12

tDt1tE..

T[], SMO SM

5 wﬁ

MT IU

PRRIR>
ffffll

llllliii

MT IU

| !
gr S

e
hAhhbhii

{i

Blocks

Shared
Memory Memory

Shared :

FIGURE 3.12: Thread block assignment to Streaming Multiprocessors (SMs)

Copyright © 2016 Elsevier Inc. All rights reserved

13

Block 1 Warps _L Block 2 Warps J_

t0 t1 t2 ... t31 t0 t1 t2 ... t31
\\\\\\\\\\‘b NNNNNNNNNNYN)
2
S— [< e

Block 3 Warps]_

t0t1t2 ... t31
SNNNNNNNNNY

v

Streaming Multiprocess

or

Instruction Fetch/Dispatch

FIGURE 3.13: Blocks are partitioned into warps for thread scheduling.

Copyright © 2016 Elsevier Inc. All rights reserved.

14

