Chapter-4
Memory and data locality

FIGURE 4.1: The most executed part of the image blurring kernel in Fig. 3.8.

Copyright © 2016 Elsevier Inc. All rights reserved.

Col

FIGURE 4.2: Matrix multiplication using multiple blocks by tiling P.

Copyright © 2016 Elsevier Inc. All rights reserved.

__global__ void MatrixMulKernel (float* M, float* N, float* P,
int Width) {
// Calculate the row index of the P element and M
int Row = blockIdx.y*blockDim.y+threadIdx.y;
// Calculate the column index of P and N
int Col = blockIdx.x*blockDim.x+threadIdx.x;
if ((Row < Width) && (Col < Width)) {
float Pvalue = 0;
// each thread computes one element of the block sub-matrix
for (int k = 0; k < width; ++k) {
Pvalue += M[Row*Width+k]*N[k*Width+Col];
}
P[Row*Width+Col] = Pvalue;

FIGURE 4.3: A simple matrix multiplication kernel using one thread to compute one
P element.

Copyright © 2016 Elsevier Inc. All rights reserved.

BLOCK_WIDTH =2
Block(0,0) Block(0,1)

\ Thread(0,1) /

Thread(0,0)

Thread(1,0)
Thread(1,1)

Block(1,0) Block(1,1)

FIGURE 4.4: A small execution example of matrixMulKernel.

Copyright © 2016 Elsevier Inc. All rights reserved.

FIGURE 4.5: Matrix multiplication actions of one thread block.

Copyright © 2016 Elsevier Inc. All rights reserved.

Device code can:

R/W per-thread registers

R/W per-thread local memory
R/W per-block shared memory
R/W per-grid global memory

Read only per-grid constant
memory

Host code can

FIGURE 4.6: Overview of the CUDA device memory model.

Transfer data to/from per grid

global and constant memories

Grid

Block (0, 0)

e
el

Block (0, 1)

Host

Copyright © 2016 Elsevier Inc. All rights reserved.

Memory « ITe

I F 3

Processing unit

N Register
\ AL file

'y
I
i
I
I

Control unit
PC IR

Processor

FIGURE 4.7: Memory vs. registers in a modern computer based on the von
Neumann model.

Copyright © 2016 Elsevier Inc. All rights reserved.

-----» Memory —1 /0
| 7 s
Processing unit
| — !
Shared N\ Register||
| FIEEIEY gaﬁ \ALU/ | ile g
1 3 1
A — —
: : k ! o E
Control unit
PC IR

Processor (SM)

FIGURE 4.8:

Shared memory vs. registers in a CUDA device SM.

Copyright © 2016 Elsevier Inc. All rights reserved.

MOO M01 MOZ MOB

M1.O M1,1 M1,2 M1,3

FIGURE 4.9: A small example of matrix multiplication. For brevity, we show
M[y*Width+ x], N[y*Width + x], P[y*Width+ x] as My, x, Ny,x Py,x.

Copyright © 2016 Elsevier Inc. All rights reserved.

Access order

thread o *No,o | Mo 1 * Mo2 " Noo | Mg3™ N3p
thread 4 “No1 | Mg1 " Nqq | Mgo™ Ny | Mg3™ Ng 4
thread; o | My * Ngg | M ; Mi2"Noo | M13™ N3
threadq; | My " Ng 1 [M4 Nqq [Myo"Npq | My3™ N3,

FIGURE 4.10: Global memory accesses performed by threads in block0,0.

Copyright © 2016 Elsevier Inc. All rights reserved.

11

L= F3

FIGURE 4.11: Reducing traffic congestion in highway systems.

Copyright © 2016 Elsevier Inc. All rights reserved.

12

Good — people have similar schedules

Worker A sleep work dinner
Time
Worker B sleep work dinner

Bad — people have very different schedules

Worker A party sleep work
Time
Worker B sleep work dinner

FIGURE 4.12: Carpooling requires synchronization among people.

Copyright © 2016 Elsevier Inc. All rights reserved. 13

Good — threads have similar access timing

Thread 1
Thread 1 \

Time

Thread 2

Time
Thread 2

Bad — threads have very different timing

FIGURE 4.13: Tiled Algorithms require synchronization among threads.

Copyright © 2016 Elsevier Inc. All rights reserved.

14

Mo,o[Mo 1 4 I°%

k P02 l30,3

FIGURE 4.14: Tiling M and N to utilize shared memory.

Copyright © 2016 Elsevier Inc. All rights reserved. 15

thread0,0

Phase 1

PValueg o +=
MdSO,O*NdSO,O +
MdSO’»]*NdS—‘ 0

Phase 2

PValueg (+=
MdSO,O*NdSO,O +
MdSO’»]*NdS‘] 0

thready 4

PvalueO,1 +=
MdSO,O*NdSO,1 +
MdSO,»]*NdS»] 1

Pvalueoj +=
MdS0,0*NdSO’1 +
Mds; 1*Nds 4

thread,

PValue, o +=
MdS1 ,O*NdSO,O +
MdS1 ’1*Nd31 0

Pvalue»],o +=
MdS1 ,O*NdSO,O +
MdS1 ’1*NdS1 0

thread1 y

PValue, 4 +=
Mds, o*Nds 4 +
MdS1,1*NdS1,1

PValue, 4+=
Mds (*Ndsg 4 +
MdS1 y1*NdS1 1

time

FIGURE 4.15: Execution phases of a tiled matrix multiplication.

Copyright © 2016 Elsevier Inc. All rights reserved.

16

_global__ void MatrixMulKernel (float* d_M, float* d_N, float* d_P,
int wWidth) {

1 _ shared__ float Mds[TILE_WIDTH] [TILE_WIDTH] ;
e _ shared_ float Nds[TILE_WIDTH] [TILE_WIDTH];
3. int bx = blockIdx.x; int by = blockIdx.y;
4. int tx = threadIdx.x; int ty = threadIdx.y;

// Identify the row and column of the d_P element to work on
5. int Row = by * TILE_WIDTH + ty;

6. int Col = bx * TILE_WIDTH + tx;
7. float Pvalue = 0;

// Loop over the d_M and d_N tiles required to compute d_P element
8. for (int ph = 0; ph < Width/TILE_WIDTH; ++ph) {

// Collaborative loading of d_M and d_N tiles into shared memory

9. Mds [ty] [tx] = d_M[Row*Width + ph*TILE_WIDTH + tx];
10. Nds[ty] [tx] = A_N[(ph*TILE_WIDTH + ty)*Width + Coll];
11. _ syncthreads () ;
12. for (int k = 0; k < TILE_WIDTH; ++k) {
13; Pvalue += Mds[ty][k] * Nds[k][tx];
}
14. _ syncthreads () ;
}
1.5 d_P[Row*Width + Col] = Pvalue;

FIGURE 4.16: A tiled Matrix Multiplication Kernel using shared memory.

Copyright © 2016 Elsevier Inc. All rights reserved. 17

TILE_WIDTH

o o
=
=]
s
w
=
=

Row
Pdgus

TILE_WIDTHE

TILE_WIDTH TILE_WIDTH TILE_WIDTH

WIDTH WIDTH

FIGURE 4.17: Calculation of the matrix indexes in tiled multiplication.

Copyright © 2016 Elsevier Inc. All rights reserved.

18

Threads (1,0) and (1,1) need special

treatment in loading N tile

No,0 No,a No,»

N1 o|Ni4|Ns.

Ny, o[NNz 5 N?TJ N1 Shared Memory

Shared Memory =

Mo, 0| Mo, 1|Mo 2 B> Po,0| Po,1]Po,2

M, o|Mi4|M3 "‘"‘..Ez > Pi0|P1.1]P1.2

M; o[My 4|M; 5 P20/ P2,1|P2,2

Threads (0,1) and (1,1) need
special treatment in loading M tile

FIGURE 4.18: Loading input matrix elements that are close to the edge—phase 1 of
BlockO,0.

Copyright © 2016 Elsevier Inc. All rights reserved.

19

Threads (0,1) and (1,1) need special
treatment in loading N tile

1N
m"’ 5 Shared Memory

| [Po.o|Po.1|Po.
Shared Memorylp1,g P 1|P1.2

: oM, | P2.0[P2,1]P2,2
: >

Threads (1,0) and (1,1) need
special treatment in loading M tile

LY

\d

B

FIGURE 4.19: Loading input elements during phase 0 of block1,0.

Copyright © 2016 Elsevier Inc. All rights reserved.

20

// Loop over the M and N tiles required to compute P element
8 for (int ph = 0; ph < ceil(Width/(float)TILE_WIDTH); t+ph) 4

// Collaborative loading of M and N tiles into shared memory

9 if ((Row< Width) && (ph*TILE WIDTH+tx)< Width)

Mds[ty] [tx] = M[Row*Width + ph*TILE WIDTH + tx];
10. if ((ph*TILE WIDTH+ty)<Width && Col<Width)

Nds[ty] [tx] = N[(ph*TILE WIDTH + ty)*Width + Col];
11. __syncthreads() ;
12. for (int k = 0; k < TILE WIDTH; ++k) {
13 Pvalue += Mds[ty] [k] * Nds[k][tx];

}
14. __syncthreads() ;
}

15. if ((Row<Width) && (Col<Width)P[Row*Width + Col] = Pvalue;

FIGURE 4.20: Tiled matrix multiplication kernel with boundary condition checks.

Copyright © 2016 Elsevier Inc. All rights reserved. 21

