Chapter-4
Memory and data locality



FIGURE 4.1: The most executed part of the image blurring kernel in Fig. 3.8.
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FIGURE 4.2: Matrix multiplication using multiple blocks by tiling P.
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__global__ void MatrixMulKernel (float* M, float* N, float* P,
int Width) {
// Calculate the row index of the P element and M
int Row = blockIdx.y*blockDim.y+threadIdx.y;
// Calculate the column index of P and N
int Col = blockIdx.x*blockDim.x+threadIdx.x;
if ((Row < Width) && (Col < Width)) {
float Pvalue = 0;
// each thread computes one element of the block sub-matrix
for (int k = 0; k < width; ++k) {
Pvalue += M[Row*Width+k]*N[k*Width+Col];
}
P[Row*Width+Col] = Pvalue;

FIGURE 4.3: A simple matrix multiplication kernel using one thread to compute one
P element.
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FIGURE 4.4: A small execution example of matrixMulKernel.
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FIGURE 4.5: Matrix multiplication actions of one thread block.
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Device code can:

R/W per-thread registers

R/W per-thread local memory
R/W per-block shared memory
R/W per-grid global memory

Read only per-grid constant
memory

Host code can

FIGURE 4.6: Overview of the CUDA device memory model.
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FIGURE 4.7: Memory vs. registers in a modern computer based on the von
Neumann model.
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FIGURE 4.8:

Shared memory vs. registers in a CUDA device SM.
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FIGURE 4.9: A small example of matrix multiplication. For brevity, we show
M[y*Width+ x], N[y*Width + x], P[y*Width+ x] as My, x, Ny,x Py,x.
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Access order

thread o *No,o | Mo 1 * Mo2 " Noo | Mg3™ N3p
thread 4 “No1 | Mg1 " Nqq | Mgo™ Ny | Mg3™ Ng 4
thread; o | My * Ngg | M ; Mi2"Noo | M13™ N3
threadq; | My " Ng 1 [ M4 Nqq [ Myo"Npq | My3™ N3,

FIGURE 4.10: Global memory accesses performed by threads in block0,0.
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L= F3

FIGURE 4.11: Reducing traffic congestion in highway systems.
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Good — people have similar schedules

Worker A sleep work dinner
Time
Worker B sleep work dinner

Bad — people have very different schedules

Worker A party sleep work
Time
Worker B sleep work dinner

FIGURE 4.12: Carpooling requires synchronization among people.
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Good — threads have similar access timing

Thread 1
Thread 1 \

Time

Thread 2

Time
Thread 2

Bad — threads have very different timing

FIGURE 4.13: Tiled Algorithms require synchronization among threads.
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FIGURE 4.14: Tiling M and N to utilize shared memory.
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FIGURE 4.15: Execution phases of a tiled matrix multiplication.
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_global__ void MatrixMulKernel (float* d_M, float* d_N, float* d_P,
int wWidth) {

1 _ shared__ float Mds[TILE_WIDTH] [TILE_WIDTH] ;
e _ shared_ float Nds[TILE_WIDTH] [TILE_WIDTH];
3. int bx = blockIdx.x; int by = blockIdx.y;
4. int tx = threadIdx.x; int ty = threadIdx.y;

// Identify the row and column of the d_P element to work on
5. int Row = by * TILE_WIDTH + ty;

6. int Col = bx * TILE_WIDTH + tx;
7. float Pvalue = 0;

// Loop over the d_M and d_N tiles required to compute d_P element
8. for (int ph = 0; ph < Width/TILE_WIDTH; ++ph) {

// Collaborative loading of d_M and d_N tiles into shared memory

9. Mds [ty] [tx] = d_M[Row*Width + ph*TILE_WIDTH + tx];
10. Nds[ty] [tx] = A_N[(ph*TILE_WIDTH + ty)*Width + Coll];
11. _ syncthreads () ;
12. for (int k = 0; k < TILE_WIDTH; ++k) {
13; Pvalue += Mds[ty][k] * Nds[k][tx];
}
14. _ syncthreads () ;
}
1.5 d_P[Row*Width + Col] = Pvalue;

FIGURE 4.16: A tiled Matrix Multiplication Kernel using shared memory.
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FIGURE 4.17: Calculation of the matrix indexes in tiled multiplication.
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Threads (1,0) and (1,1) need special

treatment in loading N tile

No,0 No,a No,»
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Threads (0,1) and (1,1) need
special treatment in loading M tile

FIGURE 4.18: Loading input matrix elements that are close to the edge—phase 1 of
BlockO,0.
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Threads (0,1) and (1,1) need special
treatment in loading N tile
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FIGURE 4.19: Loading input elements during phase 0 of block1,0.
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// Loop over the M and N tiles required to compute P element
8 for (int ph = 0; ph < ceil(Width/(float)TILE_WIDTH); t+ph) 4

// Collaborative loading of M and N tiles into shared memory

9 if ((Row< Width) && (ph*TILE WIDTH+tx)< Width)

Mds[ty] [tx] = M[Row*Width + ph*TILE WIDTH + tx];
10. if ((ph*TILE WIDTH+ty)<Width && Col<Width)

Nds[ty] [tx] = N[(ph*TILE WIDTH + ty)*Width + Col];
11. __syncthreads() ;
12. for (int k = 0; k < TILE WIDTH; ++k) {
13 Pvalue += Mds[ty] [k] * Nds[k][tx];

}
14. __syncthreads() ;
}

15. if ((Row<Width) && (Col<Width)P[Row*Width + Col] = Pvalue;

FIGURE 4.20: Tiled matrix multiplication kernel with boundary condition checks.
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