Chapter-6 Numerical considerations

2's complement	Decimal value	Excess-3	
101	-3	000	
110	-2	001	
111	-1	010	
000	0	011	
001	1	100	
010	2	101	
011	3	110	
100	Reserved pattern	111	

FIGURE 6.1: Excess-3 encoding, sorted by excess-3 ordering.

000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

FIGURE 6.2: Representable numbers of a 3-bit unsigned integer format.

FIGURE 6.3: Representable numbers of a 3-bit unsigned integer format.

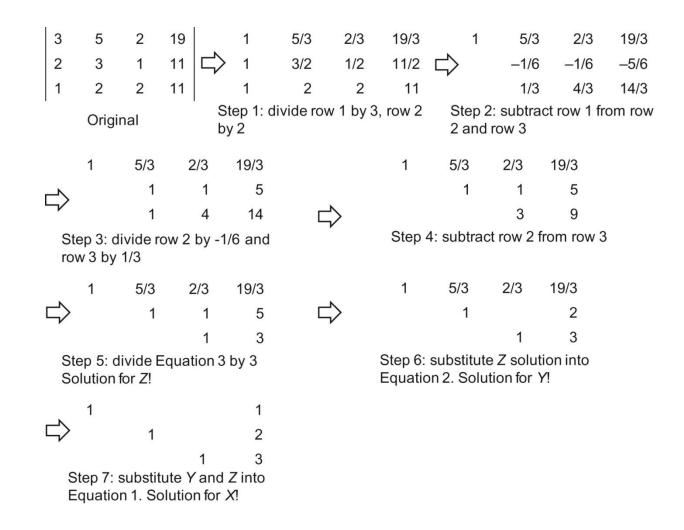
		No-zero		Abrupt	underflow	Denorm		
Е	М	S = 0 S = 1		S = 0	S = 1	S = 0	S = 1	
	00	2 ⁻¹	-(2 ⁻¹)	0	0	0	0	
00	01	2 ⁻¹ +1*2 ⁻³	-(2 ⁻¹ +1*2 ⁻³)	0	0	1*2 ⁻²	-1*2 ⁻²	
	10	$2^{-1} + 2^{+}2^{-3}$	-(2 ⁻¹ +2*2 ⁻³)	0	0	2*2 ⁻²	-2*2 ⁻²	
	11	2 ⁻¹ +3*2 ⁻³	-(2 ⁻¹ +3*2 ⁻³)	0	0	3*2 ⁻²	-3*2 ⁻²	
	00	2 ⁰	-(2 ⁰)	2 ⁰	-(2 ⁰)	2 ⁰	-(2 ⁰)	
01	01	2 ⁰ +1*2 ⁻²	-(2 ⁰ +1*2 ⁻²)	2 ⁰ +1*2 ⁻²	-(2 ⁰ +1*2 ⁻²)	2 ⁰ +1*2 ⁻²	$-(2^{0}+1^{*}2^{-2})$	
	10	2 ⁰ +2*2 ⁻²	$-(2^{0}+2^{*}2^{-2})$	2 ⁰ +2*2 ⁻²	$-(2^{0}+2^{*}2^{-2})$	2 ⁰ +2*2 ⁻²	$-(2^{0}+2^{*}2^{-2})$	
	11	2 ⁰ +3*2 ⁻²	$-(2^{0}+3^{*}2^{-2})$	2 ⁰ +3*2 ⁻²	$-(2^0+3^*2^{-2})$	2 ⁰ +3*2 ⁻²	$-(2^{0}+3^{*}2^{-2})$	
	00	2 ¹	-(2 ¹)	2 ¹	-(2 ¹)	2 ¹	-(2 ¹)	
10	01	2 ¹ +1*2 ⁻¹	$-(2^{1}+1^{*}2^{-1})$	2 ¹ +1*2 ⁻¹	-(2 ¹ +1*2 ⁻¹)	2 ¹ +1*2 ⁻¹	-(2 ¹ +1*2 ⁻¹)	
	10	2 ¹ +2*2 ⁻¹	$-(2^{1}+2^{*}2^{-1})$	2 ¹ +2*2 ⁻¹	-(2 ¹ +2*2 ⁻¹)	2 ¹ +2*2 ⁻¹	$-(2^{1}+2^{*}2^{-1})$	
	11	2 ¹ +3*2 ⁻¹	-(2 ¹ +3*2 ⁻¹)	2 ¹ +3*2 ⁻¹	-(2 ¹ +3*2 ⁻¹)	2 ¹ +3*2 ⁻¹	-(2 ¹ +3*2 ⁻¹)	
11	Reserved pattern							

FIGURE 6.4: Representable numbers of no-zero, abrupt underflow, and denorm formats.



FIGURE 6.5: Representable numbers of the no-zero representation.

FIGURE 6.6: Representable numbers of the abrupt underflow format.


FIGURE 6.7: Representable numbers of a denormalization format.

Exponent	Mantissa	Meaning
111	≠ 0	NaN
111	= 0	(−1) ^S *∞
000	≠0	denormalized
000	= 0	0

FIGURE 6.8: Special bit patterns in the IEEE standard format.

3X + 5Y + 2Z = 19 X + 5/3Y + 2/3Z = 19/3 X + 5/3Y + 2/3Z = 19/3 $2X + 3Y + Z = 11 \square X + 3/2Y + 1/2Z = 11/2 \square X$ -1/6Y - 1/6Z = -5/6X + 2Y + 2Z = 11 X + 2Y + 2Z = 111/3Y + 4/3Z = 14/3Step 1: divide Equation 1 by 3, Step 2: subtract Equation 1 from Original Equation 2 by 2 Equation 2 and Equation 3 + 5/3Y + 2/3Z = 19/3X + 5/3Y + 2/3Z = 19/3X + Z = 5Y + Z = 5+4Z = 14+ 3Z = 9Y Step 4: subtract Equation 2 from Step 3: divide Equation 2 by -1/6 Equation 3 and Equation 3 by 1/3 + 5/3Y + 2/3Z = 19/3+ 5/3Y + 2/3Z = 19/3X Х Y + Z = 5Y = 2 Z = Z = 33 Step 5 : divide Equation 3 by 3 Step 6: substitute Z solution into Equation 2. Solution for Y! Solution for Z! Х Y 2 3 7 = Step 7: substitute Y and Z into Equation 1. Solution for X!

FIGURE 6.9: Gaussian elimination and backward substitution for solving systems of linear equations.

FIGURE 6.10: Gaussian elimination and backward substitution in matrix view

	5	2	16	2	3	1	11	1	3/2	2 1/2	2 11/2
2	3	1	11 🖒	>	5	2	16	\Rightarrow	;	5 2	2 16
1	2	2	11	1	2	2	11	1			2 11
Original Pivoting: Swap row 1 (Equation1) Step 1: divide row 1 by 3, no with row 2 (Equation 2) need to divide row 2 or row 3											
	1	3/2	1/2	11/2			1	3/2	1/2	11/2	
- N		5	2	16				1	2/5	16/5	
\Box		1/2	3/2	11/2	ل ے			1	3	11	
Step 2: subtract row 1 from row 3 (column 1 of row 2 is already 0)Step 3: divide row 2 by 5 and row 3 by 1/2											
	1	3/2	1/2	11/2			1	5/3	2/3	19/3	
\Rightarrow		1	2/5	16/5	\Rightarrow			1	2/5	16/5	
			13/5	39/5				1	3		
Step 4: subtract row 2 from row 3						Step 5: 0 Solution	divide row for Z!	3 by 13/	5		
	1	5/3	2/3	19/3			1			1	
\Box		1		2		>		1		2	
r			1	3					1	3	
Step 6: substitute Z solution intoStep 7: substitute Y andEquation 2. Solution for Y!Equation 1. Solution for J								nto			

FIGURE 6.11: Gaussian elimination with pivoting.