Population Analysis

On p. 665, electronic density p is defined. If the wave function is a Slater determinant (p. 397)
and assuming the double occupancy of orbitals ¢;, we have (see 11.7)

p(r) =2 [|¢1 OF + o2 () +-. oy (r)ﬂ . .

The density distribution p may be viewed as a cloud carrying a charge —Ne, and Eq. (S.1)
says that the cloud is composed of the individual clouds of the molecular orbitals, each carry-
ing two electrons. On the other hand, in the LCAO (Linear Combination of Atomic Orbitals)
approximation, any molecular orbital is represented by a sum of atomic orbitals. If we insert
the LCAO expansion into p, then p becomes a sum of the contributions, each being a product
of two atomic orbitals. There is a temptation to go even further and to divide p somehow into
contributions of particular atoms, calculate the charge corresponding to such contribution, and
locate the (point) charge right on the nucleus." We might ask, therefore, what the “electron
population” residing on the particular atoms are (hence the name population analysis).

Mulliken Population Analysis

Such tricks are possible, of course, and one of them is the so-called Mulliken population
analysis. From Eq. (S.1), after using the LCAO expansion ¢; = ) _, c»i xr, We have (S, stand
for the overlap integrals between the atomic orbitals » and s, ¢ are the corresponding LCAO
coefficients)

N/2
2
N = /p (r)dv = 22/ @i (F)[7dV = D> " 2¢kicsiSes = Y ProSry = Te(PS),
i=1 i rs rs
(S.2)
where P is the so-called charge and bond-order matrix
Py =) 2ckicy. (S.3)
i

1 This number need not be an integer.
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The summation r and s may be carried out with highlighting from which atom A the particular
atomic orbital comes (we assume that the AO are centered on the nuclei). We get an equivalent
formula (A ad B denote atoms):

) 3) 33 AN
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Afterward we may choose the partitionings described next.

Atomic Partitioning

NZXA:CIA
0 =z<zzpmsm),
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where g are the so-called Mulliken charges. They are often computed in practical applications
and serve to provide information on how much of the electronic density p is concentrated on
atom A. Such a quantity is of interest because it may be directly linked to the reactivity of atom
A, which is often identified with its ability to be attacked by a nucleophilic or an electrophilic
agent.” Also, if somebody measures the dipole moments, then he would like to know why this
moment in a molecule is particularly large. Performing Mulliken analysis, we are able to identify
those atoms that are responsible for that. This might be of value when interpreting experimental
data.

Atomic and Bond Partitioning

The same summation may be performed in a slightly different way:

N = Z Z Pers-l-Z ZZPNSN—ZQA-FZC]AB

A r,s€A A<B reAseB A<B

The first term represents the contributions g4 of the atoms, and the second term pertains to
the atomic pairs g4p.

The last populations are large and positive for those pairs of atoms for which chemists
assign chemical bonds.

2 We have to remember that besides electrons, this atom has the nucleus. This has to be taken into account when
calculating the atomic net charge.
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The bond population g 4 p may be treated as a measure of whether the bonding or antibonding
character prevails in the A — B atomic interaction.” If for two atoms, §4p < 0, then we may
say that they are not bound by any chemical bond. If g4p is large, then we may treat it as an
indication that these two atoms are bound by a chemical bond or bonds.

Example 1. Hydrogen Molecule

Let us take the simplest example. First, let us consider the electronic ground state in the simplest
molecular orbital approximation; i.e., the two electrons are described by the normalized orbital
in the following form (a, b denote the 1s atomic orbitals centered on the corresponding nuclei;
note that what we take is the famous bonding orbital):

p1 = Nj (a—i—b),

1

2, and S = (alb). Then, P, = Y, 2¢% ¢ = 2¢ e = (14+5) 7,
1 11

independent of the indices r and s. Of course, § = ( s f) and therefore PS = ( | 1). Thus,

Tr (PS) = 2 = the number of electrons = P11S11 + P22522 +2P12512 = ga + 9B +qgap, with

ga=qp = (1+ S)_l, and gap = 12+—SS > 0. Thus, we immediately see that the HH bond has

the electronic population greater than zero; i.e., the atom-atom interaction is bonding.
Let us now consider H, with the two electrons occupying the normalized orbital of different

character’ ¢y = Na(a — b), with Ny = (2 — 28)72, then Py, = ¥, 2ckcqi = 2¢5,¢00 =
(1= 8)~!for (r,s) = (1, 1) and (r, s) = (2,2) while P,y = —(1 — §)~! for (r, s) = (1,2)
and (r,s) = (2, 1).

Now let us calculate PS = (

where Ni = (2 + 2S)

] _
-1 1
P112§11 + P»S» +2P12S12 = qa + g + qag, butnow g4 = g = (1 — S)~!, and gap =

—1=%5 < 0. Thus, gap tells us that this time, the atoms are interacting in the antibonding way.

A similar analysis for polyatomic molecules gives more subtle and more interesting results.

1
) and Tr(PS) = 2 = the number of electrons =

Other Population Analyses

Partitioning of the electron cloud of N electrons according to Mulliken population analysis
represents only one of possible choices. For a positively definite matrix’ S (and the overlap

3 Pys is a sum (over the occupied orbitals) of products of the LCAO coefficients of two atoms in each of the

occupied molecular orbitals. Equal signs of these coefficients (with S,¢ > 0) means a bonding interaction (recall
p- 439 and Appendix R available at booksite.elsevier.com/978-0-444-59436-5 on p. e135) and such a contribution
increases Prg. The opposite signs of the coefficients (with S,¢ > 0) correspond to the antibonding interactions,
and in such a case, the corresponding contribution decreases Prs. If S5 < 0, then the words “bonding” and
“antibonding” have to be exchanged, but the effect remains the same. This means that the product P Sy in all
cases controls correctly the bonding (PrySys > 0) or antibonding (PrySys < 0) effects.

The orbital is notorious for its antibonding character.

That is, all the eigenvalues are positive.
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matrix is always positively definite), we may introduce the powers of the matrix® $*, where x is
an arbitrary real number (in a way shown in see Appendix J available at booksite.elsevier.com/
978-0-444-59436-5 on p. €98), and we have §! =S¥ = §. Then, we may write’

N = Tr(PS) = Tr(S*PS' ™). (S.4)

Now we may take any x, and for this value, construct the corresponding partition of N
electronic charges into atoms. If x = 0 or 1, then one has the Mulliken population analysis, if
X = % then we have the so-called Lowdin population analysis, etc.

Multipole Representation

Imagine a charge distribution p(r). Let us choose a Cartesian coordinate system. We may
compute the Cartesian moments of the distribution as follows: f p(r)dV (i.e., the total charge);
[xp@)dV, [ yp@)dV, [zp@)dV (i.e., the components of the dipole moment); [ x2p(r)dV,
[y*o@dV, [2p@)dV, [xyp@)dV, [xzp@)dV, [yzp(@r)dV - (the components of the
quadrupole moment), etc. The moments mean a complete description of p(r) as it concerns its
interaction with another (distant) charge distribution. The higher the powers of x, y, z (i.e., the
higher the moment), the more important are the distant parts of p(r). If p(r) extends to infinity
(and for atoms and molecules, it does), higher-order moments tend to infinity. This means
trouble when the consecutive interactions of the multipole moments are computed (multipole
expansion, see Appendix X available at booksite.elsevier.com/978-0-444-59436-5) and indeed,
the multipole expansion “explodes” (i.e., diverges).® This would not happen if the interacting
charge distributions did not overlap.

There is also another problem: where should one locate the origin of the coordinate system,
with respect to which the moments are calculated? The answer is: anywhere. Wherever such
origin is located, it is all right from the point of view of mathematics. However, such choices
may differ enormously from the practical point of view. For instance, let us imagine a spherically
symmetric charge distribution. If the origin is located in its center (as “most people would do™),
then one has a very simple description of p (r) by using the moments—namely, the only nonzero
moment is the charge; i.e., f p(r)dV.If, however, the origin was located off center, then all the
moments would be nonzero. All they are needed to calculate accurately the interaction (with
something) of such simple object as a sphere. As we can see, it is definitely better to locate the
origin in the center of p(r).

But what if the charge distribution p(r) were divided into segments and each segment rep-
resented by a set of the multipoles? It would be better, though, in view of the above example,
to locate the corresponding origins in the centers of the segments. It is clear that in particular,

6 They are symmetric matrices as well.

7 We easily check that Tr(ABC) = Tr(CAB). Indeed, Tr(ABC) = Zi,k,l Ak BriCj;i, while Tr(CAB) =
Zi,k,l CirAp By . Changing summation indices k — i,/ — k,i — [ in the last formula, we obtain Tr(ABC).

8 Note, however, that the first terms (i.e., before the “explosion”) may give accurate results.
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it would be all right if the segments were very small; e.g., the cloud is cut into tiny cubes and
one considers every cube’s content as a separate cloud.” But, then, what are the multipoles for?
Indeed, it would be sufficient to take the charges of the cubes only, because they approximate the
original charge distribution. In this situation, higher multipoles would certainly be irrelevant.
Thus, we now discuss two extreme cases:

* A single origin and an infinite number of multipoles
* An infinite number of centers and the monopoles (charges) only

It is seen that when the origins are located on atoms, we have an intermediary situation,
and it might be sufficient to have a few multipoles per atom.'" This is what the concept of the
so-called cumulative atomic multipole moments is all about (CAMM'"). Besides the isotropic

(000)

atomic charges g, = M,

(klm)

multipoles M, (atomic dipoles, quadrupoles, octupoles, etc.) representing the anisotropy of
the atomic charge distribution (i.e., they describe the deviations of the atomic charge distributions
from spherical ones):

computed in an arbitrary population analysis, we also have higher

kl
M) = Zoxbyldt = 303 Dy (rit s

rea s
k l m
=22 2 () ) L
k'<k I'<l m'<m,
K'U'm’y # (klm)
k kycll l m m’ Mél:lm

klm) . . . . .
where Mcg m) is the multipole moment of the klm order with respect to the Cartesian coordi-

(000)

nates x, y, and z located on atom a (M, standing for atomic charge; e.g., from the Mulliken
population analysis); Z, denotes the nuclear charge of the atom a; (rlxk ylizm IS) stands for the
one-electron integral of the corresponding multipole moment; and Dy, x,* xs represents the elec-
tronic density contribution related to AOs: x, and x, and calculated by any method (LCAO MO
SCF, CI, MP2, DFT, etc.). We may also use the multipole moments expressed by the spherical
harmonic functions as proposed by Stone.'”

9 The clouds might eventually overlap.

10 If the clouds overlap, the description of each center by an infinite number of multipoles would lead to a redundancy
(“overcompleteness”). 1 do not know about any trouble of that kind, but in my opinion, there would be difficulties
if the numbers of the origins were large. This is fully analogous to the overcompleteness of the LCAO expansion.
These two examples differ by a secondary feature: in the LCAO instead of moments, we have the s,p.d,... orbitals;
i.e., some moments multiplied by exponential functions.

1w A. Sokalski and R. Poirier, Chem. Phys. Lett., 98, 86 (1983); W.A. Sokalski and A. Sawaryn, J. Chem. Phys.,
87,526 (1987).
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