CHAPTER 8 SOLUTIONS TO REINFORCEMENT EXERCISES IN TECHNIQUES OF DIFFERENTIATION
8.3.1
Geometrical interpretation of differentiation



8.3.1A.
Evaluate the slopes of the following curves at the points specified


  i)   y  =  x3 – x          x  =  1 
 ii)
  y  =  sin x,            x  =  (

iii)  y  =  2ex              x  =  0          
iv)
  y  =   EQ \f(3,x)                     x  =  1

Solution


i)
   To find the slope of the curve  y  =  x3 – x at  x  =  1, we evaluate the derivative  EQ \f(dy,dx)   at this point. 


We have:


 EQ \f(dy,dx)  =  3x2 – 1


So, at x = 1 this gives a slope of  3(1)2 – 1 =  3 – 1 = 2.


ii)  If y = sinx then 

 EQ \f(dy,dx)  = cos x


and so the slope of y = sin x at x  =  ( is cos ( = – 1.


iii)  If  y  =  2ex     then, remembering  EQ \f(d(ex),dx)  = ex,            

 EQ \f(dy,dx)  =  2ex             


and so the slope of  y  =  2ex at x  =  0  is  2e0  = 2, since   e0 = 1.          


iv)    y  =   EQ \f(3,x)   is one of those things that you might find tricky to differentiate, but remember that we first express it in a form more amenable to differentiation - namely, in terms of powers, y =  3x– 1. Then

 EQ \f(dy,dx)  =  EQ \f(d ,dx) (  \f(3,x)  )  =   EQ \f(d ,dx) (3x– 1)  = 3 (– 1)x– 2 = – 3x– 2

So, at x= 1, the slope of  y  =   EQ \f(3,x)   is given by  – 3(1)– 2 = – 3.

8.3.1B.
Determine where the slope of the curve  y  =  2x3 + 3x2 – 12x + 6 is zero.

Solution



First we must find the slope, by differentiating. We obtain

 EQ \f(dy,dx)  =  EQ \f(d ,dx) ( 2x3 + 3x2 – 12x + 6 )  =  6x2 + 6x – 12 


This will be zero when 


 6x2 + 6x – 12 =  6(x2 + x – 2) = 0


We can here cancel the factor of 2, because this is an equation (UEM 40), to give the quadratic equation 

 x2 + x – 2 = (x – 1)(x + 2) = 0


on factorizing. Remember, of course that  6x2 + 6x – 12 is not the same as  x2 + x – 2 in general, only if they both equal zero. The factorized form gives for the solution of this equation, x = 1 or x = – 2. For either case the derivative of y  =  2x3 + 3x2 – 12x + 6 is zero and therefore the slope of this function is zero. So the slope of y  =  2x3 + 3x2 – 12x + 6 is zero when x = 1 or x = – 2.  
8.3.2
Differentiation from first principles






Differentiate from first principles :-


i)  3x
              ii)  x2 + 2x + 1
                 iii)  x3                 iv)  cos x

Solution

i)  If y =  f(x)  =  3x, then



  y + y = f EQ \b(x + dx)   =  3 EQ \b(x + dx) 



         =  3x + 3 x    


So




y = f EQ \b(x + dx )  – f(x)  = 3x + 3 x – 3x =    3 x


and                           EQ \f(dy,dx)      =   EQ \f(f\b(x + dx ) – f(x),dx)   =   EQ \f(3 dx,dx)  = 3    


So, in the limit, as x ( 0



            EQ \f(dy,dx)   =   EQ \f(df,dx)   =  EQ \s\do9(\a(lim,dx(0))     \f(f\b(x + dx) – f(x),dx)     




         =   EQ \s\do9(\a(lim,dx( 0))      3





         = 3  


ii)  If  y =  f(x)  =  x2+ 2x + 1 then



  y + y = f EQ \b(x + dx)   =   EQ \b(x + dx) 2 + 2(x + x) + 1




         = x2 + 2x x +  EQ \b(dx) 2 + 2x + 2 x + 1


Hence




y = f EQ \b(x + dx )  – f(x)  =  2x x +  EQ \b(dx) 2  +  2 x   


and                           EQ \f(dy,dx)      =   EQ \f(f\b(x + dx ) – f(x),dx)   =  2x +  x + 2


So, in the limit, as x ( 0



            EQ \f(dy,dx)   =   EQ \f(df,dx)   =  EQ \s\do9(\a(lim,dx ( 0))     \f(f\b(x + dx) – f(x),dx)     




         =   EQ \s\do9(\a(lim,dx ( 0))      (2x + dx + 2)    




         =  2x + 2



ii)  If  y =  f(x)  =  x3 then


  y + y = f EQ \b(x + dx)   =   EQ \b(x + dx) 3



         =  x3 + 3x2 x + 3x  EQ \b(dx) 2 +  EQ \b(dx) 3

by the binomial theorem (UEM 71).


Hence




y = f EQ \b(x + dx )  – f(x)  =  3x2 x + 3x  EQ \b(dx) 2 +  EQ \b(dx) 3 


and                           EQ \f(dy,dx)      =   EQ \f(f\b(x + dx ) – f(x),dx)   =   3x2 + 3x  EQ \b(dx)  +  EQ \b(dx) 2


So, in the limit, as x ( 0



            EQ \f(dy,dx)   =   EQ \f(df,dx)   =  EQ \s\do9(\a(lim,dx ( 0))     \f(f\b(x + dx) – f(x),dx)     




         =   EQ \s\do9(\a(lim,dx ( 0))       3x2 + 3x  EQ \b(dx)  +  EQ \b(dx) 2





         =   3x2 


iv)  If y =  f(x)  =  cos x then we have to be more imaginative, and will need to remember our trig identities and other properties of trig functions. We have


  y + y = f EQ \b(x + dx)   = cos (x + x)


This is the cosine of a sum, which suggests using the compound angle formula (UEM 187) 

cos(A + B) = cos A cos B – sin A sin B


to get 

 cos (x + x) = cos x cos (x) – sin x sin (x) 


Things such as cos (x) and sin (x) are not very welcome, but if we remember that x can be as small as we wish, then we can use the small angle formulae to write

cos (x)    1 and sin (x)    x


We have not covered these results before, but the first can be understood from the series for cos x  (UEM 434)  and the second from the limit for sin x/x as x tends to zero (UEM 416).


So, using these small angle results, we obtain


   y + y = f EQ \b(x + dx)   = cos (x + x)     cos x  – sin x (x)


This approximation gets better and better as  x gets smaller and smaller. Hence



y = f EQ \b(x + dx )  – f(x)  =  – sin x (x)


and                           EQ \f(dy,dx)      =   EQ \f(f\b(x + dx ) – f(x),dx)   = – sin x


So, in the limit, as x ( 0



            EQ \f(dy,dx)   =   EQ \f(df,dx)   =  EQ \s\do9(\a(lim,dx ( 0))     \f(f\b(x + dx) – f(x),dx)     




         =   EQ \s\do9(\a(lim,dx ( 0))      – sin x





         =  – sin x  

8.3.3
Standard derivatives







8.3.3A.

Differentiate without reference to a standard derivatives table



i)
ex
ii)
cosx
iii)
x31
iv)
ln x



v)
sin x
vi)
x EQ \s\up9(\f(1,3)) 
vii)
tan x
viii)
 EQ \f(1,x3) 
Solution

This exercise justs tests how well you have remembered your standard derivatives (or not!). Only vi) and viii) require anything more than checking with the answers. For these we have


vi)     EQ \f(d ,dx) (x\s\up9(\f(1,3)))  =  EQ \f(1,3)  x EQ \s\up9(\f(1,3))   – 1 =  EQ \f(1,3)  x EQ \s\up9(- \f(2,3))  

viii)   EQ \f(d ,dx) (\f(1,x3))  =    EQ \f(d ,dx) (x– 3)  = – 3 x– 2 = –  EQ \f(3,x2) 

One point to note is that it is usual to present the answer in the same form as the given question. 

8.3.3B.
What are the most general functions that you need to differentiate to obtain the following functions



i)
x4
ii)
cos x
iii)
ex
iv)
sin x



v)
 EQ \f(1,x4) 
vi)
 EQ \r(x) 
vii)
 EQ \f(1,x) 
viii)
0



ix)
 EQ \f(1,cos2x) 
Solution


This question is a relatively gentle look ahead at integration (Chapter 9). In each case the idea is to find or guess the function that you need to differentiate to obtain the given result. You have to remember of course that if you differentiate any constant, then you will get zero and so you will need to add an arbitrary constant to every answer. In each question you are not expected to integrate the function - rather, you have to think of what you might have differentiated to obtain the given function - this may require a bit of trial and error before you get it right.


i) Remembering 

 EQ \f(d(xn),dx)  = nxn – 1


tells us that differentiating x5  will give us 5x4, which is almost what we want - to get x4  we only need to divide by the 5. So differentiating 

 EQ \f(1,5)   x5 


will give us  x4 as required - but then so of course will

 EQ \f(1,5)   x5 + C


where C is an arbitrary constant, which is our final answer. Notice that we have not really used a set routine procedure here - all we have done is rely on knowing something so well (the derivative of xn ) that we can actually reverse it.

ii)  Remembering that  EQ \f(d ,dx) (sin x)  = cos x gives, in this case, sin x + C as the most general function we can differentiate to get cos x.


iii)    EQ \f(d ,dx) (ex)  = ex, so the answer in this case is ex + C


iv)    EQ \f(d ,dx) (cos x)  = – sin x and so to get sin x we differentiate – cos x, or more generally, – cos x + C

v)    In the case  of   EQ \f(1,x4) 
it is easier to write it in power form x–4. It is now easier to recognise it as another example of 

 EQ \f(d(xn),dx)  = nxn – 1


To get an x–4 we would need to differentiate an x–3. But

 EQ \f(d ,dx) ( \f(1,x3))  =   EQ \f(d ,dx) ( x–3)  = – 3 x–4 = –  EQ \f(3,x4) 

So, to obtain   EQ \f(1,x4)  we must differentiate –  EQ \f(1,3x3)  , or more generally 

–  EQ \f(1,3x3)  + C

vi)    EQ \r(x)  is another example that is best put in power form, x1/2. To get the power  EQ \f(1,2)  on using differentiation of a power, we would have to differentiate x3/2. But this would differentiate to  EQ \f(3,2)  x1/2 and so we must in fact differentiate  EQ \f(2,3)  x3/2, or more generally   EQ \f(2,3)  x3/2 + C. Another way to think of this is that we need the  EQ \f(2,3)  factor to cancel out the  EQ \f(3,2)  that we bring down on differentiation. 


vii)  Faced with  EQ \f(1,x)  many beginners think of its power form x–1 and then proceed to think that this comes from differentiating x–1 + 1 = x0, which is of course wrong!  EQ \f(1,x)  = x–1 is the one exception to the power rule of differentiation. It is not obtained by differentiating a power but it is the standard derivative of the natural log function, ln x.

 EQ \f(d ,dx)  (lnx)  =   EQ \f(1,x)  

So the most general function that we can differentiate to obtain the reciprocal function is 

ln x + C

viii)
The only way we can obtain zero as a derivative is by differentiating a constant, C, so in this case the answer is simply C.


ix) No, differentiating ln (cos2 x) won't give us   EQ \f(1,cos2x)  !  Instead, we note that   EQ \f(1,cos2x)  = sec2 x and then (hopefully) remember that this is the standard derivative of tan x

 EQ \f(d ,dx) (tan x)  = sec2 x 


So, the answer in this case is tan x + C. Again notice that this relies on us knowing the standard derivative of tan x so well that it immediately springs to mind when we use   EQ \f(1,cos2x)  = sec2 x.  
8.3.4
Rules of differentiation






8.3.4A.


Using the definition of the functions and appropriate rules of differentiation obtain the derivatives of the following elementary functions (See Chapter 4 for hyperbolic functions - UEM 138).



i)
sec x
ii)
cosec x
iii)
cot x
iv)
cosh x



v)
sinh
vi)
tanh x
vii)
cosech x
viii)
sech x




ix)
coth x

Solution

i)  
In each of these questions the idea is to put the given function into terms with which we are more familiar. Thus, sec x = 1/cos x = (cos x)–1. We know that the derivative of cos x is – sinx, and here we have a function (reciprocal) of this function. So we have a function of a function y = (cos x)–1 to differentiate. The appropriate rule is therefore

 EQ \f(dy,dx)  =  EQ \f(dy,du) \f(du,dx) 

where u = cos x and y = u–1. We have

 EQ \f(du,dx)  =  EQ \f(d ,dx) (cos x)  = – sinx


and

 EQ \f(dy,du)  =  EQ \f(d ,du) (u–1)  = – u–2 = – (cos x)–2 


So

 EQ \f(dy,dx)  =  EQ \f(dy,du) \f(du,dx)  = – (cos x)–2 ( – sinx) =  EQ \f(sin x,cos2 x) 

For tidiness we now want to put this back into the original terms we had, and for this we notice that 

  EQ \f(sin x,cos2 x)   =  EQ \f(1,cos x) \f(sin x, cos x)  = sec x tan x


So finally we have 

 EQ \f(d , dx) (sec x)  = sec x tan x

This is in fact a very sophisticated problem, and if you have not seen it before it will probably require quite a lot of help - you might like to come back to it later!


ii)
  From the previous question 
you can see that y = cosec x can be treated in just the same way, and this time we will be a little more concise, leaving you to fill in the gaps.


 EQ \f(d ,dx) (cosec x)  =  EQ \f(d ,dx) (\f(1,sin x))  =  EQ \f(d ,dx) ((sin x)–1)  
= – (sin x)–2 (cos x) 

= –   EQ \f(cos x,sin2 x)   = – cosec x cot x


So   EQ \f(d ,dx) (cosec x)  = – cosec x cot x 

Note that in this solution I have not used u = sin x explicitly in the function of a function rule. You may find it instructive to do this and fill in the details yourself. However, ideally, you should aim to develop, after a number of examples, sufficient facility that you can avoid this, working through as shown above. 


iii)
We remember that cot x =  EQ \f(cos x,sin x)  and so in this case the quotient rule is more appropriate:

 EQ \f(d,dx) \b(\f(u,v))   =   EQ \b     (v \f(du,dx) – u \f(dv,dx)) /v2

where u = cos x and v = sin x. We have 
 EQ \f(du,dx)  =  EQ \f(d ,dx) (cos x)  = – sinx


and

 EQ \f(dv,dx)  =  EQ \f(d ,dx) (sin x)  = cosx


So

 EQ \f(d,dx) \b(\f(cos x,sin x))   =   EQ \b     (sin x \f(d(cos x),dx) – cos x \f(d(sin x),dx)) /sin2x

=   EQ \b     (sin x (– sin x) – cos x (cos x)) /sin2x

=  –  EQ \b     (sin2 x + cos2 x) /sin2x

= – 1/sin2x = – cosec2 x

So, finally,

  EQ \f(d ,dx) (cot x)  = – cosec2 x

iv)
From Chapter 4 (UEM 138) we know that cosh x =  EQ \f(1,2) (ex +  e–x) . Also, we know that   EQ \f(d(ex),dx)  = ex. To differentiate e–x we use the function of a function rule:

  EQ \f(d(e–x),dx)  = e–x   EQ \f(d(– x),dx)   =  e–x (–1) = – e–x   


So, putting all this together, we have 

  EQ \f(d(cosh x),dx)  =   EQ \f(d( \f(1,2) (ex +  e–x)),dx)  =  EQ \f(1,2) \f(d ,dx) (ex +  e–x)  
=  EQ \f(1,2) \f(d ,dx) (ex)  +  EQ \f(1,2) \f(d ,dx) (e–x)  =   EQ \f(1,2) (ex)  +   EQ \f(1,2) (– e–x)  
=  EQ \f(1,2) (ex –  e–x)  = sinh x


So  

 EQ \f(d(cosh x),dx)  = sinh x


v)

We can differentiate sinh x exactly as we did cosh x:


  EQ \f(d(sinh x),dx)  =   EQ \f(d( \f(1,2) (ex –  e–x)),dx)  =  EQ \f(1,2) \f(d ,dx) (ex –  e–x)  
=  EQ \f(1,2) \f(d ,dx) (ex)  –  EQ \f(1,2) \f(d ,dx) (e–x)  =   EQ \f(1,2) (ex)  –   EQ \f(1,2) (– e–x)  
=  EQ \f(1,2) (ex +  e–x)  = cosh x


So 

 EQ \f(d(sinh x),dx)  = cosh x


vi)
tanh x =  EQ \f(sinh x,cosh x)   so, following the same approach as for cot x in iii) we have

 EQ \f(d ,dx)(tanh x)  =  EQ \f(d,dx)\b(\f(sinh x,cosh x))  
=  EQ \b     (cosh x \f(d(sinh x),dx) – sinh x \f(d(cosh x),dx)) /cosh2x

=   EQ \b     (cosh x (cosh x) – sinh x (sinh x)) /cosh2x

=   EQ \b     (cosh2 x – sinh2 x) /cosh2x

=  1/cosh2x = sech2 x


where we have used the hyperbolic identity (UEM 138)

  cosh2 x – sinh2 x = 1


So

  EQ \f(d ,dx) (tanh x)  = sech2 x


vii)
cosech x can be dealt with just like cosec x in ii). Thus

 EQ \f(d ,dx) (cosech x)  =  EQ \f(d ,dx) (\f(1,sinh x))  =  EQ \f(d ,dx) ((sinh x)–1)  
= – (sinh x)–2 (cosh x) 

= –   EQ \f(cosh x,sinh2 x)   = – cosech x coth x


So   EQ \f(d ,dx) (cosech x)  = – cosech x coth x 

viii)
You should now be getting the hang of it!

 EQ \f(d ,dx) (sech x)  =   EQ \f(d ,dx) (\f(1,cosh x))  =  EQ \f(d ,dx) ((cosh x)–1)  
= – (cosh x)–2 (sinh x) 

= –   EQ \f(sinh x,cosh2 x)   = – sech x tanh x


So   EQ \f(d ,dx) (sech x)  = – sechx tanh x 
ix)    Using the quotient rule we have


 EQ \f(d ,dx) (coth x)  =  EQ \f(d,dx) \b(\f(cosh x,sinh x))   =   EQ \b     (sinh x \f(d(cosh x),dx) – cosh x \f(d(sinh x),dx)) /sinh2x

=   EQ \b     (sinh x (sinh x) – cosh x (cosh x)) /sinh2x

=   EQ \b     (sinh2 x – cosh2 x) /sinh2x

= – 1/sinh2x = – cosech2 x

(Again using cosh2 x – sinh2 x = 1)

So, finally,

  EQ \f(d ,dx) (coth x)  = – cosech2 x

8.3.4B.

Differentiate



i)
ln(sec x)
ii)
ln(sin x)
iii)
ln(sec x + tanx)



iv)
ln(cosec x + cot x)
v)
ln(cosh x)



vi)
ln(sinh x)

Solution


In this question you are meant to use the results of A, along with the differentiation of the log function, ln x, and the function of a function rule. If they seem strange things to differentiate, bear with us - you will see that in fact they all essentially 'standard derivatives'.



i)
To differentiate y = ln(sec x) put u = sec x, so y = ln u and use the function of a function rule:


 EQ \f(dy,dx)  =  EQ \f(dy,du) \f(du,dx) 

So,  EQ \f(dy,du)  =     EQ \f(d ,du) (ln u)  =  EQ \f(1,u)   =  EQ \f(1,sec x)   and   EQ \f(du,dx)  =  EQ \f(d ,dx) (sec x)  = sec x tan x from A. i) and therefore


 EQ \f(dy,dx)  =  EQ \f(1,sec x)  sec x tan x = tan x


So 

 EQ \f(d ,dx) (ln (sec x))  = tan x

ii)
Again, you can fill in the details yourself here. We have

 EQ \f(d ,dx) (ln(sin x))  =  EQ \f(1,sin x) \f(d ,dx) (sin x)  =  EQ \f(cos x,sinx)  = cot x


So


 EQ \f(d ,dx) (ln(sin x))  = cot x


iii)
 EQ \f(d ,dx) (ln(sec x + tanx))  =  EQ \f(1,sec x + tanx) \f(d ,dx) (sec x + tanx) 
=   EQ \f(1,sec x + tanx)  (sec x tan x + sec2 x) 
 EQ \f(sec x(sec x + tan x),(sec x + tan x))  = sec x


So 


 EQ \f(d ,dx) (ln(sec x + tanx))  = sec x



iv)
 EQ \f(d , dx)  (ln(cosec x + cot x))  =  EQ \f(1,cosec x + cot x) \f(d ,dx) (cosec x + cot x) 
=  EQ \f(1,cosec x + cot x) (– cosec x cot x – cosec2 x)  = – cosec x


So 

 EQ \f(d , dx)  (ln(cosec x + cot x)) = – cosec x



v)  
 EQ \f(d ,dx) (ln(cosh x))  =  EQ \f(1,cosh x) \f(d ,dx) (cosh x)  =   EQ \f(1,cosh x) \(sinh x) = tanh x 

So

  EQ \f(d ,dx) (ln(cosh x))  = tanh x


vi)
 EQ \f(d ,dx) (ln(sinh x))  =  EQ \f(1,sinh x) \f(d ,dx) (sinh x)  =   EQ \f(1,sinh x) \(cosh x) = coth x 

So

  EQ \f(d ,dx) (ln(sinh x))  = coth x

8.3.4C.

Differentiate


i)
x7 – 2x5 + x4 – x2 + 2

ii)
 EQ \b(x2 + 2) tan x


iii)
 EQ \f(lnx,x2 + 1)  
iv)
exp EQ \b(x3 – 2x) 
v)
 EQ \f(x,\r(x2 – 1)) 

vi)
ln(cos x + 1)
vii)
sin  EQ \b(\f(x + 1,x) ) 
viii)
sec x tan x


ix)
e6x
x)
xex

xi)
e–x2

xii)
ln5x
xiii)
exlnx
xiv)
lne2x
Solution

          Lots of practice in all the rules of differentiation here!


i)
To differentiate x7 – 2x5 + x4 – x2 + 2 we differentiate each term, using the sum and difference rule for differentiation


 EQ \f(d ,dx) (x7 – 2x5 + x4 – x2 + 2)  = 7x6 –10x4 + 4x3 – 2x  


ii)
For  EQ \b(x2 + 2) tan x we use the product rule

 EQ \f(d ,dx) ( \b(x2 + 2)tan x)  = tan x  EQ \f(d ,dx)  \b(x2 + 2)  +  EQ \b(x2 + 2) \f(d ,dx)  (tan x) 
= tanx (2 x) +   EQ \b(x2 + 2)  sec2 x

 
So

 EQ \f(d ,dx) ( \b(x2 + 2)tan x)  =2 x tanx +   EQ \b(x2 + 2)  sec2 x


iii)   For y =    EQ \f(lnx,x2 + 1)  we can use the quotient rule, or the product rule and function of a function.


By the quotient rule 

 EQ \f(d,dx) \b(\f(ln x,x2 + 1))   =   EQ \b     ((x2 + 1) \f(d(ln x),dx) – ln x \f(d(x2 + 1),dx)) /(x2 + 1)2
=   EQ \b     ((x2 + 1)(\f(1,x)) – ln x (2x)) /(x2 + 1)2
=  EQ \f(x2 + 1 – 2x2 ln x,x(x2 + 1)2) 

By the product rule

 EQ \f(d,dx) \b(\f(ln x,x2 + 1))   =  EQ \f(1,(x2 + 1)) \f(d ,dx) (ln x)  + ln x  EQ \f(d ,dx) \b      (\f(1,(x2 + 1))) 
=  EQ \f(1,x(x2 + 1))  + ln x  EQ \b(– \f(1,(x2 + 1)2)) \f(d ,dx) (x2 + 1) 
=  EQ \f(1,x(x2 + 1))  + ln x  EQ \b(– \f(1,(x2 + 1)2))  2x

=  EQ \f(x2 + 1 – 2x2 ln x,x(x2 + 1)2) 

on putting over a common denominator. So

 EQ \f(d,dx) \b(\f(ln x,x2 + 1))   =  EQ \f(x2 + 1 – 2x2 ln x,x(x2 + 1)2) 

iv)
In this case we simply need the function of a function rule


 EQ \f(d ,dx) (exp\b(x3 – 2x))  = exp EQ \b(x3 – 2x) \f(d ,dx) (x3 – 2x)  =  exp EQ \b(x3 – 2x) (3x2 – 2) 


= (3x2 – 2) exp EQ \b(x3 – 2x) 



So

  EQ \f(d ,dx) (exp\b(x3 – 2x))  = (3x2 – 2) exp EQ \b(x3 – 2x)  =  (3x2 – 2)ex3–2x


v)   Square roots always require care when it comes to differentiation. We could differentiate  
 EQ \f(x,\r(x2 – 1))  using the quotient rule, but since we are going to have to convert the root to a power anyway, we might as well use the product rule. We have

 EQ \f(d ,dx) \b( \f(x,\r(x2 – 1)))  =   EQ \f(d ,dx) \b( x(x2 – 1)–1/2)  
=  (x2 – 1)–1/2 + x  EQ \f(d ,dx) \b((x2 – 1)–1/2)    by the product rule

=  (x2 – 1)–1/2 + x  EQ \b(– \f(1,2)) (x2 – 1) –3/2  EQ \f(d ,dx) (x2 – 1)   by function of a function


=  (x2 – 1)–1/2 –  EQ \f(1,2)  x (x2 – 1)–3/2 2x 

= (x2 – 1)–1/2 – x2 (x2 – 1)–3/2 

=  EQ \f(1,(x2 – 1)1/2)  –  EQ \f(x2,(x2 – 1)3/2) 

We now put this over a common denominator, noticing that 

 (x2 – 1)3/2 = (x2 – 1)1/2 (x2 – 1) 


to give

 EQ \f(d ,dx) \b( \f(x,\r(x2 – 1)))  =   EQ \f(x2 – 1,(x2 – 1)3/2)  –  EQ \f(x2,(x2 – 1)3/2) 
=   EQ \f(– 1,(x2 – 1)3/2)  

So, finally

 EQ \f(d ,dx) \b( \f(x,\r(x2 – 1)))  =   EQ \f(– 1,(x2 – 1)3/2)  

vi)
By the function of a function rule

 EQ \f(d ,dx) (ln(cos x + 1))  =  EQ \f(1,cos x + 1) \f(d ,dx) (cos x + 1) 





=   EQ \f(1,cos x + 1) (– sin x) 




= –  EQ \f(sin x,cos x + 1) 
So


 EQ \f(d ,dx) (ln(cos x + 1))  = –  EQ \f(sin x,cos x + 1) 

vii)
 Again, by the function of a function rule

  EQ \f(d ,dx) \b(sin \b(\f(x + 1,x) ))  = cos  EQ \b(\f(x + 1,x) ) \f(d ,dx) \b(\f(x + 1,x) ) 
= cos  EQ \b(\f(x + 1,x) )  \b(\f(1,x) – \f(x + 1,x2) ) 

where we have chosen to use the product rather than the quotient rule


= cos  EQ \b(\f(x + 1,x) )  \b(– \f(1,x2) ) 

So 

  EQ \f(d ,dx) \b(sin \b(\f(x + 1,x) ))  
=  –  EQ \f(1,x2)   cos  EQ \b(\f(x + 1,x) )  

viii)
By the product rule 

 EQ \f(d ,dx) (sec x tan x)  = tan x  EQ \f(d ,dx) (sec x)  + sec x  EQ \f(d ,dx) ( tan x)   
=  tan x (sec x tan x) + sec x( sec2 x)

=   sec x (tan2 x + sec2 x)


Since 1 + tan2 x = sec2 x (UEM 185), we can express this as, for example,

 EQ \f(d ,dx) (sec x tan x)  = sec x (1 + 2tan2 x)


ix)
This is a rather straightforward function of a function rule job

 EQ \f(d ,dx) (e6x)  = e6x  EQ \f(d ,dx) (6x)  = 6e6x

So

 EQ \f(d ,dx) (e6x)  = 6e6x

x)
By the product rule

 EQ \f(d ,dx) (xex)  = ex + xex = (x + 1)ex


So


 EQ \f(d ,dx) (xex)  = (x + 1)ex

xi)
By the function of a function rule we have 

 EQ \f(d ,dx) (e–x2)  = e–x2  EQ \f(d ,dx) (– x2)  =  e–x2 (– 2x)


 So 

 EQ \f(d ,dx) (e–x2)  =  – 2 x e–x2 


xii)
We can either use the function of a function rule:

 EQ \f(d ,dx) ( ln5x )  =  EQ \f(1,5x) \f(d ,dx) (5x)  =   EQ \f(1,5x)  5 =  EQ \f(1,x) 

or use the log of a product property:

 EQ \f(d ,dx) ( ln5x )  =   EQ \f(d ,dx) (ln x + ln 5)  =  EQ \f(1,x)   + 0 =   EQ \f(1,x)   

Either way, we have

 EQ \f(d ,dx) ( ln5x )  =  EQ \f(1,x) 

rather than the " EQ \f(1,5x)  " we might incorrectly expect.


xiii)
By the product rule 

 EQ \f(d ,dx) (exlnx)  = 
 EQ \f(d ,dx) (ex)  lnx + ex  EQ \f(d ,dx) (lnx)  
= ex lnx + ex  EQ \f(1,x)   = ex  EQ \b(lnx +\f(1,x))  

So

 EQ \f(d ,dx) (exlnx)  = ex  EQ \b(lnx +\f(1,x))  

xiv)   Were you fooled by this one?  You might be tempted to use the function of a function rule (twice!). But, if you are on your toes then you will notice that lne2x = 2x, so

 EQ \f(d ,dx) (lne2x)  =  EQ \f(d ,dx) (2x)  = 2


and therefore

 EQ \f(d ,dx) (lne2x)  = 2

8.3.5
Implicit differentiation







8.3.5A.


Use implicit differentiation to differentiate the functions


i)
cos–1x
ii)
tan–1 x
iii)
(x
Solution


i)   If y = cos–1x, then cos y = x. If we now differentiate through with respect to x we have, using function of a function rule:

 EQ \f(d ,dx) (cos y)  = – sin y  EQ \f(dy,dx)  =  EQ \f(d ,dx)(x)  = 1


So

 EQ \f(dy,dx)  = –  EQ \f(1,sin y) 

But sin y =  EQ \r(1 – cos2y)  =  EQ \r(1 – x2)  and so

 EQ \f(dy,dx)  = –  EQ \f(1,\r(1 – x2) ) 

ii) More briefly this time, y = tan–1 x converts to x = tan y. We can now differentiate through with respect to x as we did in i), or we can simply evaluate  EQ \f(dx,dy)  and invert:

 EQ \f(dx,dy)  =  EQ \f(d ,dy) (tan y)  = sec2 y = 1 + tan2 y = 1 + x2 


So

 EQ \f(dy,dx)  =  EQ \f(1,1 + x2) 


iii)   Perhaps it is not so immediately obvious what to do with (x. What you must not do is treat it as a power and write

"  EQ \f(d ,dx) ((x)  = 
x (x–1 "



This is a common error with beginners. We can take a clue from i) and ii) where we essentially inverted the inverse function. In this case we have an exponential function, and the inverse of the exponential function is the log function, so let's try taking logs and see what happens. As it is easy to differentiate we use the natural log, of course. So, if y = (x then

ln y = ln ((x) = x ln ( 



So, differentiating through with respect to x we get

 EQ \f(d ,dx) (ln y)  =  EQ \f(1,y) \f(dy,dx)  =  EQ \f(d , dx) (x ln ()  = ln (  


(remember that ln ( is just a number). So

 EQ \f(dy,dx)  = y ln ( =  (x ln ( 


So finally 

 EQ \f(dy,dx)  = (x ln ( 

8.3.5B.


Evaluate  dy/dx  at the points indicated.


i)
x2 + y2  =  1      (0, 1)



ii)
x3 – 2x2y + y2  =  1      (1, 2)

Solution

i)
Most of this question is already done for us in Section 8.2.5 (UEM 238). We differentiate through with respect to x to obtain an implicit equation for  EQ \f(dy,dx)  . In this we use the function of a function rule:

 EQ \f(d ,dx) (x2 + y2)  =  EQ \f(d ,dx) (1)  = 0


So

 EQ \f(d ,dx) (x2 + y2)  = 2x +  EQ \f(d ,dx) (y2)  = 2x + 2y  EQ \f(dy,dx)  = 0


Solving this for  EQ \f(dy,dx)  gives

 EQ \f(dy,dx)  = –  EQ \f(x,y) 

So, at the point (0, 1) we have

 EQ \f(dy,dx)  = –  EQ \f(0,1)  = 0


The answer is therefore 

 EQ \f(dy,dx)  = 0   at (0, 1)


Note that this is obvious also from the graph of the function.


ii)
We have 

 EQ \f(d ,dx) (x3 – 2x2y + y2)  =  3x2 – 2  EQ \f(d ,dx) (x2y)  +  EQ \f(d ,dx) (y2) 
= 3x2 – 2 EQ \b(2xy + x2 \f(dy,dx) )  + 2y  EQ \f(dy,dx) 


on using the product and function of a function rules

= 3x2 – 4xy – 2(x2 – y)  EQ \f(dy,dx)  =  EQ \f(d ,dx) (1)  = 0


Take care wi
th signs and brackets in this sort of rearrangement.  We could now solve for  EQ \f(dy,dx)  in general terms and substitute for the values of x and y as we did in i). However, you may find it easier to substitute first to get, with x = 1 and y = 2:

3(1)2 – 4(1)(2) – 2((1)2 –2)  EQ \f(dy,dx)  = 3 – 8 – 2(–1)  EQ \f(dy,dx)  = – 5 +2  EQ \f(dy,dx)   = 0


So, finally

  EQ \f(dy,dx)   =  EQ \f(5,2)   at (1,2)

8.3.5C.
If  f(x)  =   EQ \f(x + 1,x – 3)   ,  evaluate  f´(0)

Solution

We could easily use either the quotient or product rules and evaluate the derivative directly, of course. But this is more an exercise in discrimination – determining the most effective and quickest approach. Try the direct approach by all means, but another way to go is to rewrite the function and use implicit differentiation


If  y = f(x)  =   EQ \f(x + 1,x – 3)   then (x – 3)y = x + 1. Also note that at x = 0, y = –  EQ \f(1,3) . Now differentiate through using implicit differentiation and the product rule to get:

 EQ \f(d ,dx) ((x – 3)y)  = y + (x – 3) EQ \f(dy,dx)   =  EQ \f(d ,dx) (x + 1)  = 1


At x = 0, with y = –  EQ \f(1,3) , this gives

–  EQ \f(1,3)   + (0 – 3)  EQ \f(dy,dx)  = 1


from which 

 EQ \f(dy,dx)  =  f´(0) = –  EQ \f(4,9) 
8.3.6
Parametric differentiation





8.3.6A.
If  x  =  e2t , y  =  et + 1, evaluate    EQ \f(dy,dx)   and   EQ \f(d2y,dx2)   as functions of  t  by two different methods and compare your results.

Solution

With  x  =  e2t,  y  =  et + 1 we have 
 EQ \f(dy,dt)   =  et  and   EQ \f(dx,dt)   =  2e2t, so:





 EQ \f(dy,dx)   =   EQ \f(dy/dt,dx/dt)   =   EQ \f(et ,2e2t)    =  EQ \f(1,2)   et – 2t =   EQ \f(1,2)   e– t 


So

 EQ \f(dy,dx)   =  EQ \f(1,2)   e– t 


Now (UEM 242)     EQ \f(d2y,dx2)     =   EQ \f(d,dx)  \b(\f(dy,dx))   =   EQ \f(d,dt) \b(\f(dy,dx)) \f(dt,dx) 


          =   EQ \f(d,dt)  \b(\f(dy,dx))  / EQ \f(dx,dt) 
So:-



   EQ \f(d2y,dx2)   =   EQ \f(d,dt)  \b( \f(1,2)  e– t ) / 2e2t  = –  EQ \f(1,4)   e– te– 2t =  –  EQ \f(1,4)   e– 3t

So, finally

   EQ \f(d2y,dx2)   = –  EQ \f(1,4)   e– 3t

Another method is to eliminate the parameter at the beginning and use implicit differentiation. To this end we have

y  =  et + 1 =  eq \r(e2t)  + 1 = x1/2 + 1


So

 EQ \f(dy,dx)   =   eq \f(1,2)   x( ½  =  EQ \f(1,2)   e( t   as above


Further 

 EQ \f(d2y,dx2)    =  (   eq \f(1,4)   x( 3/2 = –  EQ \f(1,4)   e– 3t

as above.

8.3.6B.

Obtain   EQ \f(dy,dx)   and   EQ \f(d2y,dx2)   for each of the following parametric forms


i) x = 3cos t, y = 3sin t

ii) x = t2 + 3,  y = 2t + 1

iii) x = et sint,  y = et 


iv)
x = 2cosh t, y = 2 sinh t

Solution


i)      With  x  =  3 cos t,   y  =  3 sin t we have   

 EQ \f(dy,dt)   =  3 cos t and   EQ \f(dx,dt)   =  – 3 sin t 


so:





 EQ \f(dy,dx)   =   EQ \f(dy/dt,dx/dt)   =  EQ \f(3 cos t,– 3 sin t)  = – EQ \f(cos t,sin t)  = – cot t


So

 EQ \f(dy,dx)   = – cot t


Then, as in A
   EQ \f(d2y,dx2)      =   EQ \f(d,dt)  \b(\f(dy,dx))  / EQ \f(dx,dt) 


=  –  EQ \f(d,dt)  (cot t) / (– 3 sin t) =   EQ \f(1,3) (– cosec2 t)  cosec t


So, finally

   EQ \f(d2y,dx2)   =  –  EQ \f(1,3)  cosec3 t


ii) If x = t2 + 3,  y = 2t + 1, then 

 EQ \f(dy,dt)   =  2 and   EQ \f(dx,dt)   =  2t 


so:





 EQ \f(dy,dx)   =   EQ \f(dy/dt,dx/dt)   =  EQ \f(2,2t)   =  EQ \f(1,t) 

So

 EQ \f(dy,dx)   =   EQ \f(1,t) 

Then

   EQ \f(d2y,dx2)      =   EQ \f(d,dt)  \b(\f(dy,dx))  / EQ \f(dx,dt) 


=   EQ \f(d,dt)  \b(\f(1,t)) / (2t) =  EQ \b(– \f(1,t2)) / (2t) = –  EQ \f(1,2t3) 

So

   EQ \f(d2y,dx2)   =  –  EQ \f(1,2t3) 

iii) If x = et sint,  y = et then

 EQ \f(dy,dt)   =   et   and   EQ \f(dx,dt)   =  et (sint + cos t)


so:





 EQ \f(dy,dx)   =   EQ \f(dy/dt,dx/dt)   =  EQ \f( et ,et (sint + cos t) )   =  EQ \f(1,sin t + cos t) 

So

 EQ \f(dy,dx)   =   EQ \f(1,sin t + cos t) 

Then

   EQ \f(d2y,dx2)      =   EQ \f(d,dt)  \b(\f(dy,dx))  / EQ \f(dx,dt) 

=   EQ \f(d,dt)  \b(\f(1,sin t + cos t)) / (et (sint + cos t)) 
= –  EQ \b( \f(cos t – sin t,(sin t + cos t)2))  / (et (sint + cos t))


(where we have used the function of a function rule to differentiate   EQ \f(1,sin t + cos t) )

=  (  EQ \f(e–t(cos t – sin t),(sin t + cos t)3)  

So

   EQ \f(d2y,dx2)   =   EQ \f(e–t(sin t – cos t),(sin t + cos t)3)  


iv)      With  x = 2cosh t, y = 2 sinh t we have

 EQ \f(dy,dt)   =  2 cosh t and   EQ \f(dx,dt)   =  2 sinh t 


so:





 EQ \f(dy,dx)   =   EQ \f(dy/dt,dx/dt)   =  EQ \f(2cosh t,2 sinh t)  =  EQ \f(cosh t,sinh t)  =  coth t


So

 EQ \f(dy,dx)   =  coth t


Then, 

   EQ \f(d2y,dx2)      =   EQ \f(d,dt)  \b(\f(dy,dx))  / EQ \f(dx,dt) 


=   EQ \f(d,dt)  (coth t) / (2 sinh t) =   EQ \f(1,2) (– cosech2 t)  cosech t


So, finally

   EQ \f(d2y,dx2)   =  –  EQ \f(1,2)  cosech3 t

8.3.7
Higher derivatives






8.3.7A.


Evaluate the second derivatives of each of the functions


i)
x2 + 2x + 1
ii)
ex2

iii)
ex sin x


iv)
 EQ \f(x – 1,(x + 1)(x + 2)) 
Solution

i)
If y = x2 + 2x + 1 then

 EQ \f(dy,dx)   = 2x + 2

   EQ \f(d2y,dx2)   = 2


ii)
If y = ex2 then 


 EQ \f(dy,dx)   =  ex2  EQ \f(d ,dx) (x2 )  = 2x ex2

  

using function of a function, and then 

 EQ \f(
d2y,dx2)   = 2 ex2 + 2x ex2 (2x) = 2 (1+ 2x2) ex2  

iii)
If y = ex sin x then 


 EQ \f(dy,dx)   =  ex  EQ \f(d ,dx) (sin x)  +  EQ \f(d ,dx) ( ex )  sin x

=  ex cos x + ex sin x =  ex (cos x + sin x)

using the product rule. Then 

 EQ \f(d2y,dx2)   =  EQ \f(d ,dx) (ex (cos x + sin x)) 
= ex (cos x + sin x) + ex (– sin x + cos x)


again using the product rule

= 2ex cos x 

iv)   In the case of 
 EQ \f(x – 1,(x + 1)(x + 2))   you will soon get in a mess if you try to differentiate it as it is - time for a bit of cunning! We break it into partial fractions (UEM 62) - often a good ploy when you have to actually do something to an algebraic fraction, integrate it or differentiate it for example. As an exercise you can check that

y =  EQ \f(x – 1,(x + 1)(x + 2))  =  EQ \f(3,x + 2)  –  EQ \f(2,x + 1) 

Now we only need to differentiate something like  EQ \f(1, x + a)  . So, for example


 EQ \f(d ,dx) \b(\f(3,x + 2))  =  EQ \f(d ,dx) \b(3(x + 2)–1)  = – 3(x + 2)–2 = –  EQ \f(3,(x + 2)2)  

and similarly

 EQ \f(d ,dx) \b(\f(2,x + 1))  =  EQ \f(d ,dx) \b(2(x + 1)–1)  = – 2(x + 1)–2 = –  EQ \f(2,(x + 1)2)  

So 

 EQ \f(dy,dx)  =  –  EQ \f(3,(x + 2)2)  +  EQ \f(2,(x + 1)2)  


Now to find the second derivative the differentiation is actually just as straightforward

 EQ \f(d2y,dx2)   =  EQ \f(d ,dx)  \b(– \f(3,(x + 2)2) + \f(2,(x + 1)2)) 
=  EQ \f(d ,dx)  \b(– \f(3,(x + 2)2))  +  EQ \f(d ,dx) \b(\f(2,(x + 1)2)) 
=  EQ \f(d ,dx)  \b(– 3(x + 2)–2)  +  EQ \f(d ,dx) \b(2(x + 1)–2) 
= 6(x + 2)–3 – 4(x + 1)–3
=  EQ \f(6,(x + 2)3)  –  EQ \f(4,(x + 1)3) 
8.3.7B.


Evaluate the 20th derivative of each of the following functions


i)
x17 + 3x15 + 2x5 + 3x2 – x + 1
ii)
ex–1

iii)
e3x



iv)
 EQ \f(1,x – 1) 

v)
 EQ \f(x,(x – 1)(x + 2)) 
Solutions

i)
Don't start differentiating right away - you will have a long way to go to do twenty differentiations, and this suggests a bit of cunning is needed! Think  about what happens when you differentiate a polynomial - its degree gets reduced by at least one each time you differentiate.  Thus, if y = x17 + 3x15 + 2x5 + 3x2 – x + 1 then 

 EQ \f(dy,dx)  =  EQ \f(d ,dx) (x17 + 3x15 + 2x5 + 3x2 – x + 1)  
= 17x16 + 45x14 + 10x4 + 6x – 1 

 EQ \f(d2y,dx2)   =  EQ \f(d ,dx) (17x16 + 45x14 + 10x4 + 6x – 1) 
17 ( 16x15 + 45 ( 14x13 + 40x3 + 6 


and so on. Eventually, after differentiating 17 times we are going to be left with simply a constant, and on the 18th differentiation this will give zero. Thereafter all differentiations, including the 20th, will also give zero and so

 EQ \f(d20y,dx20)  = 0


ii)
For y = ex–1 just remember what happens when you differentiate ex or any multiple of ex such as  ex–1 =  e–1  ex - it just stays the same! So

 EQ \f(d20 ,dx20) (ex–1)  = ex–1 

iii)
For y = e3x we just have to remember that by the function of a function rule, 

 EQ \f(dy,dx)  =  EQ \f(d ,dx) (e3x)  = 3e3x 


and each time we differentiate another 3 will come down, so





 EQ \f(d20 ,dx20) (e3x)  = 320e3x

iv)
In the case of y = 
 EQ \f(1,x – 1)    it pays to do a couple of differentiations to see what's going on. We have

 EQ \f(dy,dx)  =  EQ \f(d ,dx) \b(\f(1,x – 1))  =  EQ \f(d ,dx) \b((x – 1)–1)  = – 1(x – 1)–2 = –  EQ \f(1,(x – 1)2)  
 EQ \f(d2y,dx2)   =  EQ \f(d ,dx) \b(–\f(1,(x – 1)2) )  = –  EQ \f(d ,dx) \b((x – 1)–2)  = – (– 2) (x – 1)–3 =  EQ \f(2,(x – 1)3)  
 EQ \f(d3y,dx3)   =  EQ \f(d ,dx) \b( \f(2,(x – 1)3) )  = 2  EQ \f(d ,dx) \b((x – 1)–3 )  = 2(– 3) (x – 1)–4  = –  EQ \f(2 ( 3,(x – 1)4)  

and so on. You may now be able to spot the patterns. The signs alternate, + – + ... . The numerator develops like a factorial, 1!, 2!, 3!,   etc. The denominators are increasing powers of (x – 1). We now have only to link all these to the order of the derivative on the left hand side. When the order is odd the sign is negative. If the order is n, the factorial is n!, and the power in the denominator is n + 1. Putting all this together we therefore have

 EQ \f(dny,dxn)   = (– 1)n  EQ \f(n!,(x – 1) n+ 1)  

and in particular

 EQ \f(d20y,dx20)   = (– 1)20  EQ \f(20!,(x – 1) 21)  

or

 EQ \f(d20 ,dx20) \b(\f(1,x – 1))  =  EQ \f(20!,(x – 1) 21)  

v)   With y = 
 EQ \f(x,(x – 1)(x + 2))  we use partial fractions again. You can check that

y =  EQ \f(1,3(x – 1))  +  EQ \f(2,3(x + 2)) 

and so

 EQ \f(d20 ,dx20) \b(\f( x,(x – 1)(x + 2)))   =  EQ \f(d20 ,dx20) \b(\f(1,3(x – 1)) + \f(2,3(x + 2))) 
=  EQ \f(1,3) \f(d20 ,dx20) \b(\f(1,(x – 1)))  +  EQ \f(2,3) \f(d20 ,dx20) \b(\f(1,(x + 2)))  
=  EQ \f(1,3)  \f(20!,(x – 1) 21)   +  EQ \f(2,3)  \f(20!,(x + 2) 21)  

on using the result of iv). So

 EQ \f(d20 ,dx20) \b(\f( x,(x – 1)(x + 2)))  =  EQ \f(1,3)  \f(20!,(x – 1) 21)   +  EQ \f(2,3)  \f(20!,(x + 2) 21)  

– 
 –


