
MSP430 microcontroller basics:
Solutions to odd-numbered examples

John H. Davies

June 25, 2008

CHAPTER 1

Embedded electronic systems and
microcontrollers

Example 1.1 I counted: remote controls (4), digital TV box, the TV itself, videocassette
recorder, DVD player, cordless telephone and its base, which includes an answering ma-
chine. That’s 10, which I suspect is a modest total – no MP3 players or games consoles!
The base unit for the cordless telephone may contain two embedded systems, one for the
telephone and another for the answering machine. Similarly, the television may have sep-
arate systems for controlling reception and teletext (a system for broadcasting information
between the visible frames of a television signal).

Example 1.3 The data memory has a 9-bit address bus so there are 29 = 512= 0x200
possible locations, with addresses from 0x000–0x1FF. Similarly, the program memory has
a 13-bit bus and can therefore address up to 213 = 8K = 8096= 0x2000 locations.

1

CHAPTER 2

The Texas Instruments MSP430

Example 2.1 Unfortunately you won’t be able to answer this accurately until you have
reached the end of the book because it requires knowledge of all the modules. Here’s my
suggestion, which comes to a total of 40 or 42 pins – a lot more than the 14 that are actually
provided!

• Two pins for power,VCC andVSS. A further two pins could be added if the analog and
digital supplies were separate.

• Two pins for the crystal, XIN and XOUT.

• Two pins for the clock outputs, ACLK and SMCLK.

• One pin for the reset or non-maskable interrupt,RST/NMI.

• Ten pins for the input/output ports, P1.0–P1.7 and P2.6–P2.7.

• Five pins for Timer_A: the input clock TACLK and an input and output for each of
channel 0 and channel 1.

• Eleven pins for the ADC: two for each of the five input channels, such as A0±, plus
one for the reference VREF.

• Three pins for communications, because there is only one peripheral (USI) so it
cannot drive SPI and I²C simultaneously. This means that SCLK, SDO/SCL and
SDI/SDA are sufficient.

2

The Texas Instruments MSP430 3

• Four pins for debugging because you could not use the four-wire and two-wire (Spy-
Bi-Wire) interfaces simultaneously, nor would the TEST pin be needed if the pins had
only one function. Therefore TCK, TMS, TDI/TCLK and TDI would be sufficient
and two of these could be used for Spy-Bi-Wire.

Example 2.3 Reading the input register, such as P1IN, always shows the state of the pins.
This can obviously be different from P1OUT for a pin that is configured as an input. They
can also differ if an output pin is overloaded and is unable to provide the voltage desired.

If a single register is used, such as P1DATA, reading and writing do not work in the same
way. Writing to P1DATA corresponds to writing to P1OUT and reading from P1DATA is
like reading P1IN for a pin that is configured as an input. That is straightforward but there
are two options for reading from P1DATA for a pin configured as an output. It may return
the value on the pin itself (P1IN) or the value in the output buffer (P1OUT). These should
be the same unless the pin is overloaded, in which case they may differ.

The shared register for input and output leads to the curious situation that the assignment
P1DATA = P1DATA is not a null operation: It may change the value in the output buffer
because it is equivalent toP1OUT = P1IN. There are clear advantages to having separate
registers for input and output.

Example 2.5 I’ll start with the three suggested conditions.

(a) The currentIAM in active mode at 1 MHz is given in a table but only forVCC = 2.2V
and 3.0 V. These show that the current appears to be proportional toVCC so we should
use the lowest permissible voltage of 1.8 V, in which case the current is presumably
close to 0.18 mA.

(b) Staying at the minimum supply voltage of 1.8 V, the maximum specified frequency is
fMCLK = 6MHz. Unfortunately there are no data for this frequency and voltage. The
current is 1.0 mA at 2.2 V and will presumably be less at 1.8 V, so let’s go for 0.9 mA.
This is 5 times higher than the current at 1 MHz but gives six times the speed and is
therefore more economical.

(c) The maximum speed of 16 MHz needsVCC to be raised to 3.3 V. The current is about
4.2 mA and dividing by 16 gives 0.27 mA for comparison with 0.18 mA at 1 MHz.
This is less economical.

www.newnespress.com

4 Chapter 2

This shows that the most economical condition seems to be the minimum supply voltage
with the maximum clock frequency permitted at that voltage. Of course this will work only
if there is time to complete the operations; otherwise we will have to raiseVCC to allow a
faster MCLK.

Can this be made more precise? The plots show thatIAM µ fMCLK fairly well and thatIAM µ
VCC rather less well – the current increases more than in direct proportion. Putting these
together we can writeIAM ≈CVCC fMCLK . The constant has the dimensions of a capacitance,
hence the choice of the symbolC, and I estimatedC ≈ 1

12 nF. The charge that flows for each
cycle of MCLK – each operation, in other words – is given byQ = IAM / fMCLK ≈ CVCC.
This shows that the main strategy for saving energy is to run at as low a supply voltage as
possible. The value offMCLK has no direct effect but determines the minimum value ofVCC.

The relationIAM ≈CVCC fMCLK is a standard one for CMOS digital systems because most of
the current is used to charge the gates of the transistors and will be familiar to anybody who
has taken a course on digital VLSI design. It does not account for other parts of the system,
such as the DCO and memory, nor for leakage through the transistors. This is why it seems
better to use 6 MHz than 1 MHz atVCC = 1.8V. A full calculation should also take account
of the current while the MSP430 is in a low-power mode between these computational tasks.
This is around 1 µA for low power mode 3, when only a low-frequency oscillator for ACLK
is running.

www.newnespress.com

CHAPTER 3

Development

There aren’t any examples in this chapter.

5

CHAPTER 4

A simple tour of the MSP430

Example 4.1 The voltage across the resistor isVR = VCC−VLED = 3.0−1.8 = 1.2V. The
current through the resistor is specified asILED = 4mA so the resistance should beR =
VR/ILED = 1.2/0.004= 300W. This should be rounded up to the nearest conventional value
of 330W so the current is slightly lower than specified.

On the board itself I measured 1.2 V acrossR6 = 330W and 1.75 V across the LED, which
givesI = 3.6mA.

Example 4.3 Again, I hope that appendix A will solve any problems. You may get a com-
plaint thatThe stack plug-in failed to set a breakpoint on "main". The stack window will not
be able to display stack contents. You can safely ignore it because we do not use the stack.

Example 4.5 The simplest modification so that the LED lights when the button is up rather
than down is to changeif ((P2IN & B1) == 0) to if ((P2IN & B1) != 0).
Seebutledback.c. Alternatively you could swap the lines to turn the LED on and off.

Example 4.7 This can be done with nestedif-else statements. Alternatively, both
buttons can be tested in the same statement with a logical AND&& between them. See
butledand.c.

Example 4.9 This also needs the structure with twowhile loops. Seecount1.c.

Example 4.11 Seedice1.s43,dice2.s43 anddice3.s43 for different approaches
to an unbiassed solution. It is vital to count cycles in the simulator because some instruc-
tions are automatically replaced by more efficient emulated instructions but others are not.

6

A simple tour of the MSP430 7

For example,mov.w #1,R5 can be emulated using the constant generator butmov.w
#6,R5 cannot. The second instruction therefore takes longer to execute. I explain this in
section 5.3.

Example 4.13 It is chastening to see your code optimized out of existence!

Example 4.15 Seeflashled3.c. This has only a single loop in the subroutine, which
limits it to fairly short delays. I decided that 0.5 s was long enough to wait! Longer delays
could be obtained by putting the loop for a 0.1 s delay inside another, whose number of
iterations is given by the passed parameter. Seeflashled31.c.

Example 4.17 Seedicepat1.s43.

Example 4.19 Seetimrled4.c.

Example 4.21 See the Excel filesimulate PRBS.xls, which contains simulations of
several lengths.

www.newnespress.com

CHAPTER 5

Architecture of the MSP430 processor

Example 5.1 Two instructions are required for an increment because the value of the carry
bit must be fixed before usingdadd. Do not forget that this is really decimal addwith
carry! You can either clear the carry bit (clrc) and add 1 decimally (dadd #1,dst), or
set the carry bit (setc) and add 0 (dadd #0,dst or dadc dst).

Decrementing is more tricky because there is no decimal subtraction instruction, nor signed
BCD values. We can decrement a single digit by adding 9 and discarding the carry. For
example, 7+ 9 = 16→ 6. Similarly, adding 99 works for a two-digit number: 27+ 99 =
126→ 26. This can be applied directly to a byte, which holds two BCD digits, giving
dadd.b #99,dst. As usual you must clear the carry flag first. The carry flag will be set
after this operation because it must overflow. Similarly,dadd.w #9999,dst decrements
a word.

Example 5.3 There is no way of doing this with a single instruction. The definition of the
twos complement is that the value is inverted and incremented, so it can be implemented
using the two instructionsinv followed byinc.

Another obvious route is to subtract the given value from zero. A snag is that the subtraction
instruction performsdst -= src. You must first cleardst, then subtractsrc from it.
This is useful ifsrc should not be modified.

Example 5.5 No solution required.

Example 5.7 Seeshiftreg1.c for a straightforward program;shiftreg2.c uses a
union as suggested.

8

CHAPTER 6

Functions, interrupts and low-power modes

Example 6.1 No solution required.

Example 6.3 The value on top of the stack will be used as the return address. Unfortunately
this is the little loop counter instead!

Example 6.5 No solution required.

Example 6.7 No solution required. Another way of triggering interrupts is to selectSim-
ulator > Interrupt Setup. . . from the menu and click theNew. . . button. This generates
periodic interrupts, which is a little more faithful for a timer. You can even add a stochastic
element with theVariance andProbability fields.

Example 6.9 No solution required. I had trouble simulating this in C because the forced
interrupts seemed not to work, although there was no difficulty in assembly language.

Example 6.11 No solution required. I had trouble with the simulator again and was unable
to trigger any interrupts. There were no problems with the emulator.

Example 6.13 Seemorsetim1.c.

9

CHAPTER 7

Digital input, output and displays

Example 7.1 The configuration of the ports is given in table 7.1 on the facing page. We
are also told that ACLK should be derived from VLO. This requires XTS = 0 (default) in
BCSCTL1 and LFXT1Sx = 10 in BCSCTL3 (not the default, which is 00 for a 32 KHz
crystal on LFXT1).

Example 7.3 Wecould leave the pins as inputs and activate the pull resistors with

P1REN |= BIT6|BIT7; // activate internal pulls on P1.6 and P1.7

The resistors will be pullups or pulldowns according to the values in P1OUT but it doesn’t
matter which. This solution works on the MSP430F2xx family and some other recent de-
vices. Earlier devices don’t have pull resistors and the pins should be switched to output
instead. Again the value in P1OUT doesn’t matter, assuming that nothing is connected to
the pins.

P1DIR |= BIT6|BIT7; // configure P1.6 and P1.7 as outputs

Example 7.5 Seequiz1.c andquiz2.c.

Example 7.7 Seekeypad3.c. Again this has been tested only with the simulator, not
hardware.

Example 7.9 Seecntint1.s43.

10

Digital input, output and displays 11

Table 7.1: Configuration of ports P1 and P2 for a F2013.

pin function PnDIR PnSEL PnOUT PnREN SD16AE

P1.0 input A0+ to SD16_A x x x 0 1
P1.1 input A0− to SD16_A x x x 0 1
P1.2 input CCI1A to Timer_A 0 1 x 0 0
P1.3 VREF of SD16_A x 1 x 0 0
P1.4 digital output, initially low 1 0 0 0 0
P1.5 output TA0 from Timer_A 1 1 x 0 0
P1.6 not used 0 0 x 0 0
P1.7 not used 0 0 x 0 0
P2.6 digital input with external pullup 0 0 1 0 —
P2.7 digital input with external pullup 0 0 1 0 —

Example 7.11 See figure 7.1 on the next page. This shows a similar input to figure 7.8. The
essential difference is that the output voltage falls immediately to zero when the contacts of
the switch close.

To eliminate the effects of bounce, we must ensure that the voltage never rises above the
upward thresholdVIT+ until the contacts finally close. The critical timeT is therefore the
duration for which the contact is closed during a bounce. The time-constant of the circuit
can then be found as before. For example, takeT = 5ms again. Then we needVCC[1−
exp(−T/t)] < VIT+. For safety we should use theminimum value ofVIT+, which is 1.35 V
for VCC = 3V. This leads tot > 8msandR = 84kW with C = 0.1µF. In practice we would
round this up to 100 kW for safety.

Example 7.13 I couldn’t come up with anything significantly simpler than listing 7.2. At
first I thought that it would be sufficient to signal a transition when the shift register con-
tained 00000111b, assuming that a run of 5 zeroes is the criterion for a valid press. The
problem is that the remaining 3 ones might be a short pulse of noise, rather than the end of
a long train of ones.

Example 7.15 This needs one common-cathode and one common-anode display. The com-
mon anode is connected toVCC and the common cathode toVSS. The corresponding segment
pins are connected together and to a pin of the MSP430 through the usual resistor to limit
the current. An LED in the common-cathode display is lit by driving the pin of the MSP430

www.newnespress.com

12 Chapter 7

Vin

Vswitch

Vout

t

t

t

T

VIT+

t1 t2 t3 t4

VCC

0

VCC

0

VCC

0

Figure 7.1: Voltages across the switch, input to the Schmitt trigger and output of the Schmitt
trigger for a bounce using the circuit withoutR2.

high. Driving the pin low illuminates an LED in the common-anode display instead. Nei-
ther LED lights if the pin is an input; the LEDs are connected in forward-biassed pairs from
VCC to VSS but the voltage across each is too low for a significant current to flow, as we saw
earlier. Effectively we are using the pin as a three-state output.

I’m not sure that this is good engineering because it depends critically on the current–
voltage relation of the LEDs – test it carefully! Another defect is that the pins are effectively
floating when they are configured as inputs, which brings the problems described in section
7.1.2.

Example 7.17 It is the inverse (complement) of the waveform for S0: low, high, high, low
in each frame.

Example 7.19 Seetestlcd3.c.

Example 7.21 Seesclock4.c.

Example 7.23 Seesclock3.c.

www.newnespress.com

Digital input, output and displays 13

Example 7.25 Seetestcp1.c andtestcp2.c. I found that the voltage needed to be
greater than 3.2 V for a clear, sharp display, viewed normally. The optimum viewing angle
moved away from normal as the voltage was reduced. My batteries gave 3.1 V so the display
was slightly indistinct without the charge pump.

www.newnespress.com

CHAPTER 8

Timers

Example 8.1 Some of the mistakes are shown inwdtest0.c.

Example 8.3 Seesclock6.c.

Example 8.5 Seertclock4.c.

Example 8.7 It may be easier to single-step in the disassembly window rather than through
the C code. The problem is again that TAIV can be read only once.

Example 8.9 Seepress3.c.

Example 8.11 Seepress4.c. This suffers from some of the problems described in the
paragraph of the main text before the example.

Example 8.13 Seereact4.c. This time I have put the actions in the main loop as in
react2.c. Again it is a bit clumsy because the main loop must distinguish the source of
the interrupt. This would be easy if the flags were still available but they are either cleared
automatically when the interrupt is serviced or must be cleared by software to prevent the
interrupt recurring immediately. I have therefore checked the state of the appropriate button
instead. The start button S2 can be checked using P1IN.1 as usual but I have tested the
reaction-time button S1 by using the CCI bit of TACCR0, which shows the current state of
the input.

14

Timers 15

The program could have been based on interrupt service routines instead. The ISR for
TAIFG would be even more complicated than before because the interrupt could arise while
waiting for the start button, the random delay or the reaction-time button.

Example 8.15 I found that the frequency went down by about 20 KHz from 2 MHz, roughly
−1%. My finger wasn’t very hot so the change in temperature was probably about 5°C.
Thus the temperature coefficient of the oscillator is about−0.2%/°C, which is consistent
with the data sheet.

You could test the sensitivity toVCC by powering the board from the FET and varying the
supply voltage in the debugger. I didn’t try this.

Example 8.17 Seeclkcmp3.c. You must keep SMCLK running or the timer won’t be
able to perform the measurements! I used LPM0 but it might be possible to use LPM1. To
be honest, I have trouble working out what happens in LPM1 and LPM2.

Example 8.19 Seecontall2.c.

Example 8.21 I found that the apparent musical note altered although the oscilloscope
showed that the average frequency remained at 440 Hz. This isn’t surprising if you look
at the power spectra. The plot for a 1 KHz clock looks more like that for a square wave
of around 500 Hz although the highest peak is correctly at 440 Hz. The ear does some
complicated signal processing!

Example 8.23 The obvious change is that the PWM should be changed from negative to
positive, which means that output mode 7 (Reset/Set) should be selected instead of mode 3.

The less obvious change is that the LEDs should be turnedon before PWM is started so that
the first cycle is correct. This needsTACCTL1 = OUTMOD_0 | OUT and similarly for
channel 2.

Example 8.25 This is explained in the main text.

Example 8.27 Seeezpwm2.c, where I have added a test so that the LED is not turned on
if D = 0.

I do not think that there are any problems forD = 1: The LED remains on continuously as
it should because the compare event for CCIFG1 does not occur at all.

www.newnespress.com

16 Chapter 8

Example 8.29 Seebutpwm1.c. This polls the buttons in every cycle of PWM using the
CCIFG0 interrupt and adjusts the duty cycle if either is pressed. There is a more sophisti-
cated program inbutpwm2.c, which turns the CCIFG0 interrupts off if neither button is
down and no change is needed. These interrupts are restarted by interrupts from the ports
when a button is pressed.

Example 8.31 Seebutstmc2.c.

www.newnespress.com

CHAPTER 9

Mixed-signal systems: Analog input and
output

Example 9.1 I saw a small error with a factor of 8 and a large error with a factor of 4.
It is hard to check both the discharge and charge measurements simultaneously because a
breakpoint allows lots of time for the capacitor to charge or discharge.

Example 9.3 The problem is that the algorithm always roundsdown to the digital value
below the input. For example, suppose that the input is raised slightly from 0.40VFS to
0.43VFS. This is 0.43×16= 6.9LSB, which should be rounded to the nearest integer of 7.
However, the final comparison in the illustration is with7

16VFS = 0.4375VFS soVin < 7
16VFS

and the bit is 0.

Example 9.5 Seead10led3.c. There is no crystal so I used the VLO for ACLK. I put
everything in the ISR and used a polling loop again instead of interrupts. I have assumed
that nothing else uses the ADC10, which is a bit lazy. The ADC10 is turned off between
conversions, which may save a little current.

Example 9.7 This threshold givesVmid = 1.35V so the 1.5 V reference would be adequate.
On the other hand, it is tempting to use 2.5 V so that the whole operating range up to 3.6 V
can be measured. The snag is that the 2.5 V reference needs a little ‘headroom’ in the supply
voltageVCC and loses accuracy when this falls below 2.8 V. Of course there is no hope of it
working whenVCC < 2.5V! Therefore it is better to use the 1.5 V reference after all. The
corresponding value in ADC10MEM is given byNmid = nint(1024Vmid/Vref) = (1024×

17

18 Chapter 9

1350/1500) = (1024× 2700/3000) = 922 for 1.35 V. Seead10bat1.c. The compiler
didn’t like the expression for the threshold voltage so I had to scale it to 1024×27/30. This
can easily be changed with a resolution of 0.1 V.

Example 9.9 There are several possibilities to remove the dependence onVCC.

• If the circuit cannot be changed, you could take a reading ofVCC using channel 5 and
divide the external voltage by this.

• Assuming that you can modify the circuit, takeVref off a potential divider fromVCC.

• Alternatively, continue to use the internal reference but drive it off-chip and use it to
supply the potential divider.

I discuss this issue in section 9.11.

Example 9.11 Seesd16bat2.c.

Example 9.13 Here are the usual three steps.

1. Work out the voltage on the non-inverting input,V+. This is set by the potential
divider soV+ = VCC×R3/(R3 + R4) = (5/11)VCC. We assume that no current flows
into the non-inverting input because an ideal op-amp has infinite input resistance.

2. An ideal op-amp has infinite gain and does whatever is necessary with negative feed-
back to bring its inputs to the same potential, soV− = V+ = (5/11)VCC.

3. We now knowV− and can apply nodal analysis at the inverting input, again assuming
that no current flows into the op-amp. We also assume that the op-amp has zero output
resistance, which means that the load has no effect on the output voltageVout. Here
the load is just the feedback circuit.

The last step is, as usual, the only one to require any work. Nodal analysis gives

Vin −V−
R1

+
Vout−V−

R2
+0 = 0. (9.1)

www.newnespress.com

Mixed-signal systems: Analog input and output 19

I’ve added a 0 as a reminder that no current flows into the op-amp. Rearranging this gives

Vout = −R2

R1

(
Vin −

R1+ R2

R2
V−

)

= −10(Vin − 11
10V−)

= −10(Vin − 1
2VCC). (9.2)

For correct operation, the output predicted by this equation must lie between ground and
VCC, assuming that the op-amp has a true rail-to-rail output stage. This determines the
range of inputs. ClearlyVin = 1

2VCC = 1.5V givesVout = 0. The other limit isVout = VCC,
which needsVin = 0.4VCC = 1.2V. Thus the input must lie between 1.2 and 1.5 V for correct
operation. There would be no point in specifying rail-to-rail inputs.

www.newnespress.com

CHAPTER 10

Communication

Example 10.1 Seeusispiloop5.c for mode 0 . Thisis easier than mode 3 because
there is a falling edge on SCLK to update the output after the last rising edge, at which
point we can read the input from the shift register. I wrote 0xFFFF to the shift register (after
reading the received value!) to get a 1 in the bit that feeds the output latch. This will be
updated correctly on the final falling edge of SCLK. This will work cleanly only if there is
time to perform these actions in a half-cycle of SCLK, so MCLK must be much faster than
SCLK.

It is more complicated to get this behavior in mode 3 because there are no more clock edges
to come. Instead you need to write 0xFFFF to the shift register (after reading the received
value of course), then wait for about1

2 cycle of SCLK. You then set the USIGE bit, which
makes the output latch transparent and transfers the 1 from the shift register onto SDO.
USIGE should then be cleared again to ‘lock’ the latch, or the next transaction won’t work
correctly. Seeusispiloop6.c. I have also adjusted theSS output to go high at the end
of all this. The delay is estimated by subtracting the time required for the other instructions
and is only approximate. If the divider for SCLK from (S)MCLK were smaller, the other
instructions alone would give sufficient delay and the loop would not be needed. Even 64
hardly needs a loop and 32 would clearly be fine.

The manipulation of USIGE is similar to the procedure for generating start and stop condi-
tions on an I²C bus and is described in section 10.11.2.

Example 10.3 Seeusi2cmastsm3.c, whose structure is similar to listing 10.9. There
are a couple of awkward points (as always with the USI).

20

Communication 21

• The main function sets the USISTTIFG flag for a start condition to request and inter-
rupt and start the state machine for a new transaction. It is easy to forget that USIST-
TIFG will be raised again when the actual start condition is put on the bus. This must
not be allowed to generate a further interrupt or the program will become trapped in
an infinite loop. I have therefore cleared USISTTIFG as late as possible, after both
the fictitious start condition from the main function and the real start condition on the
bus.

• I planned to request an interrupt by setting USISTTIFG from software. However, this
didn’t work: I had to set USIIFG as well or nothing happened. I don’t know why.
There’s nothing in the errata, although the USI3 bug looks vaguely related. This is
probably not how USISTTIFG is intended to be used but most interrupt flags in the
MSP430 work equally well when set by hardware or software.

See alsousi2cmastsm4.c for a combined transaction, based onusi2cmastsm2.c.
A further start condition is produced in a combined transaction and USISTTIFG must be
cleared to avoid an undesired interrupt.

Example 10.5 Seeusi2cmastsm2.c. There is an oscilloscope trace of the transaction
in usi2comb.pdf.

Example 10.7 Start with the divisionfBRCLK/ fbaud= 1000000/9600= 104.2, which rounds
to 104. Then 104= 16×6+8 so UCBRx = 6 and UCBRFx = 8. This agrees with the user’s
guide.

Example 10.9 These are the events that cause the crowd of five interrupts.

1. Sampling of first stop bit by receiver.

2. Setup of start bit by transmitter.

3. Capture of second start bit by receiver.

4. Sampling of second start bit by receiver.

5. Setup of first data bit by transmitter.

The last two are repeated while one byte is being received and another transmitted.

www.newnespress.com

