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Appendix E

E.1 FITTING EQUATIONS TO DATA

Engineers, technologists, and scientists frequently collect paired
data in order to understand the behavior of the system. Numerical
methods of analysis have been employed to solve a wide range of
steady and transient state problems. The fundamentals are essential
in the basic operations of curve fitting, approximation, interpo-
lation, numerical solutions of simultaneous linear and non-linear
equations, numerical differentiation, and integration. These require-
ments are greater when new processes are designed.

Various types of software packages are now readily available
for scientists and engineers. They must fit a function or functions
to measure data that fluctuate, which result from random error of
measurement. A Fortran computer program (PROG1) was devel-
oped which determines the coefficients that provide the best fit for
the following equations:

Y = a+bX (E-1)

Y = a+bX2 (E-2)

Y = a+b/X (E-3)

Y = a+bX0�5 (E-4)

Y = aXb (E-5)

Y = aebX (E-6)

Y = a+b/X (E-7)

Y = a+beX (E-8)

The non-linear Eqs. (E-5), (E-6), and (E-8) can be transformed by
linearizing as follows:

Y = aXb ln Y = ln a+b ln X (E-9)

Y = aebX ln Y = ln a+bX (E-10)

Y = a+beX ln Y = ln a+ �ln b� X (E-11)

E.2 LINEAR REGRESSION ANALYSIS

Regression analysis uses statistical and mathematical methods to
analyze experimental data and to fit mathematical models to these
data. The least squares provide the best method for objectively
determining the best straight line through a series of points. The
method assumes that all deviations from the line are the result of
error in the measurement of the dependent variable. The method
of least squares yields the parameters which minimize the sum of
squares of the residuals (e.g., the deviation of each measurement
of the dependent variable from its calculated value). If Ŷ is the
calculated value and Y is the original value of the dependent vari-
able, then the residual sum of the squares can be minimized by the
following expression.

SRS =
n∑

i=1

ri
2 =

n∑

i=1

�i
2 = minimum (E-12)

where n = number of observations of X–Y data.

Ŷi = a+bXi (E-13)

ri = a+bXi −Yi (E-14)

and

SRS =
n∑

i=1

ri
2 =

n∑

i=1

�a+bXi −Yi�
2 (E-15)

The values of a and b are found by minimizing Eq. (E-15). This
involves taking the partial derivative of the equation with respect
to each variable a and b, and setting the result to zero.

�
∑

ri
2

�a
= 0 and

�
∑

ri
2

�b
= 0 (E-16)

Substituting Eq. (E-15) into Eq. (E-16) gives

�
∑

�a+bXi −Yi�
2

�a
= 0 (E-17)

and

�
∑

�a+bXi −Yi�
2

�b
= 0 (E-18)

This is equivalent to

2
∑

�a+bXi −Yi� �
∑

�a+bXi −Yi�

�a
= 0 (E-19)

and

2Xi

∑
�a+bXi −Yi� �

∑
�a+bXi −Yi�

�b
= 0 (E-20)

Since b, X, and Y are not functions of a, and the partial derivative
of a with respect to itself is unity, Eq. (E-19) reduces to

∑
a+∑bXi =∑Yi (E-21)

Similarly, a, X, and Y are not functions of b. Therefore, Eq. (E-20)
becomes

∑
aXi +

∑
bXi

2 =∑XiYi (E-22)

where a and b are constants. Equations (E-17) and (E-18) are
expressed as:

an+b
n∑

i=1

Xi =
n∑

i=1

Yi (E-23)

and

a
n∑

i=1

Xi +b
n∑

i=1

Xi
2 =

n∑

i=1

XiYi (E-24)

Equations (E-23) and (E-24) apply only when fitting a straight line
to a set of X–Y data points. Both equations are linear in X, Y ,
and n and the unknowns a and b. Using Cramer’s rule for the
simultaneous equations, we have

a =

∣
∣
∣
∣

∑
Yi

∑
Xi∑

XiYi

∑
Xi

2

∣
∣
∣
∣

∣
∣
∣
∣

n
∑

Xi∑
Xi

∑
Xi

2

∣
∣
∣
∣

(E-25)
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and

b =

∣
∣
∣
∣

n
∑

Yi∑
Xi

∑
XiYi

∣
∣
∣
∣

∣
∣
∣
∣

n
∑

Xi∑
Xi

∑
Xi

2

∣
∣
∣
∣

(E-26)

Solving Eqs. (E-25) and (E-26) gives

a =
∑

Xi
2∑Yi−

∑
Xi

∑
XiYi

n
∑

Xi
2 −∑Xi

∑
Xi

(E-27)

and

b = n
∑

XiYi −
∑

Xi

∑
Yi

n
∑

Xi
2 −∑Xi

∑
Xi

(E-28)

respectively, where all the sums are taken over all experimental
observations. The developed computer program PROG1 computes
the constants a and b for Eqs. (E-1)–(E-8). The program evaluates
the correlation coefficient, which gives a measure of the accuracy
of fit. Alternatively, a table with column heading as Xi, Yi, Xi

2,
and XiYi can be constructed using the Microsoft Excel spreadsheet;
the constants a and b can be evaluated from Eqs. (E-27) and
(E-28) respectively. The Excel spreadsheet also employs a trendline
through the data after being plotted into a worksheet. The following
are the steps being employed to fit a straight line to a set of data
in the Excel spreadsheet.

1. Open a new worksheet and enter the X-data (the independent
variable) in the leftmost column.

2. Enter the Y -data (the dependent variable) in the next column.

3. Plot the data as a line graph (i.e., an X–Y chart) with arithmetic
coordinates. Do not interconnect the individual data points.

4. Activate the graph for editing. Then click on one of the plotted
data points, thus selecting the data set as the active editing object
(the data points will appear highlighted when this step is carried
out correctly).

5. Choose Trendline from the Insert menu. They specify the type
of curve, and request any pertinent options when the Trend-
line dialog box appears. These are, displaying the intercept,
equation of the curve and its associated correlation coefficient(
r2
)

squared. Extrapolating the curve fit forward, that is beyond
the rightmost data point or backward beyond the leftmost data
point, is another option to explore. (Generally the equation of
the curve and its associated r2 value are requested for display
on the graph.)

6. Press the OK button. The curve fitting will then be carried out
and the results are displayed automatically.

Commercial curve fitting packages are now available in the
market and details can be retrieved from the world wide web (www)
using the Google search engine by typing linear regression. Typical
websites are:

• www.ebicom.net/∼dhyams
• www.analyse-it.com
• www.wessa.net.

Table E-1 shows the computer results of Example E-1.

Example E-1
The first-order rate constant k for the rotation about the C-N

bond in n�n-dimethylnicotinamide measured at different tempera-
tures by nuclear magnetic resonance are

T(� C) 10�0 15�7 21�5 27�5 33�2 38�5 45�7
k(s−1) 2�08 4�57 8�24 15�8 28�4 46�1 93�5

(Source: B.G. Cox, Modern Liquid Phase Kinetics, Oxford
Chemistry Primers, ZENECA, Oxford University Press, 1994.)

Determine the activation energy E and the pre-exponential
factor ko for the rotation.

Solution
The Arrhenius equation is expressed as:

k = ko e−E/RT

which can be linearized in the form of model Eq. (E-1) as

ln k = ln ko − E

RT

or used in the form of Eq. (E-6) as:

Y = aebX (E-6)

The Excel spreadsheet Prog1a.xls is used to determine the activa-
tion energy E and the pre-exponential factor ko as:

E = 78781�8 J/mol� ko = 7�7×1014 s−1

Figure E-1 shows the snap shot of the spreadsheet.
The Fortran computer program PROG1 also determines the

activation energy E and the pre-exponential factor ko from the
linearized data or alternatively from the non-linear equation Y =
aebx. The best regression is determined from the various model
equations in program PROG1. The regression coefficients from the
linearized equation Y = A+BX are as follows.

A = 0�3425E +02

B = −0�9468E +04

The activation energy E is obtained from the slope of 1/T vs ln k

Slope �
−E

R
= −0�9468×104

where

R = 8�314 J/mol K
E = 78716�9 J/mol�

The pre-exponential factor, ko = exp�A� = exp�34�25� = 7�49 ×
104 s−1.
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Figure E-1 The Excel spreadsheet snapshot of Example E-1.

Table E-1 Curve Fitting for Two Variables

X −1/X Y

283.0 −0�00353 2�08
288.7 −0�00346 4�57
294.5 −0�003396 8�24
300.5 −0�003328 15�8
306.2 −0�003266 26�4
311.6 −0�00321 46�1
318.7 −0�003138 93�5

The computer results give the constants A and B from the
model Eq. (E-6) as:

A = 0�7206E +15

B = −0�9457E +04

Slope �
−E

R
= −0�9457×104

where

R = 8�314 J/mol K
E = 78625 J/mol�

The pre-exponential factor, ko = A = 7�206×104 s−1.
The Excel spreadsheet Example E-1.xls shows another

example using the Lineweaver–Burk equation to determine the
constants km and Vmax.

E.3 POLYNOMIAL REGRESSION

Some engineering data are often poorly represented by a linear
regression. Some form of non-linear regression can be developed,
if the dependence of Y on X is known, although the total conver-
gence of this iterative regression procedure cannot be guaranteed.
However, if the form of dependence is unknown, then Y can be
treated as a general function of X by trigonometric terms (Fourier
analysis) or polynomial function. The least squares procedure can
be readily extended to fit the data to an nth-degree polynomial:

Y = C0 +C1X +C2X
2 +· · ·+CnX

n (E-29)

where C0� C1� C2� 	 	 	 �Cn are constants.
For this case, the sum of the squares of the residuals is mini-

mized.

S =
N∑

j=1

[
Yj −C0 −C1Xj −C2Xj

2 −· · ·−CnXj
n
]2

(E-30)

At the minimum, all the partial derivatives with respect to the
chosen constants are zero, that is

�S

�C0
�

�S

�C1
� · · · �

�S

�Cn

= 0 (E-31)

This gives a system of �n+1� linear equations in �n+1� unknowns,
C0� C1� C2� 	 	 	 �Cn
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�S

�C0
= 0 =

N∑

j=1

2
(
Yj −C0 −C1Xj

−C2Xj
2 −· · ·−CnXj

n
)
�−1�

�S

�C1
= 0 =

N∑

j=1

2
(
Yj −C0 −C1Xj

−C2Xj
2 −· · ·−CnXj

n
) (−Xj

)

�S

�C2
= 0 =

N∑

j=1

2
(
Yj −C0 −C1Xj

−C2Xj
2 −· · ·−CnXj

n
) (−Xj

2
)

���

�S

�Cn

= 0 =
N∑

j=1

2
(
Yj −C0 −C1Xj

−C2Xj
2 −· · ·−CnXj

n
) (−Xj

n
)

(E-32)

The above equations are set to equal zero, and can be rearranged
in the following set of normal equations.

C0N +C1

∑
Xj +C2

∑
Xj

2 +· · ·+Cn

∑
Xj

n =∑
Yj

C0

∑
Xj +C1

∑
Xj

2 +C2

∑
Xj

3 +· · ·+Cn

∑
Xj

n+1

=∑
XjYj

C0

∑
Xj

2 +C1

∑
Xj

3 +C2

∑
Xj

4 +· · ·+Cn

∑
Xj

n+2

=∑
Xj

2Yj

���

C0

∑
Xj

n +C1

∑
Xj

n+1 +C2

∑
Xj

n+2 +· · ·+Cn

∑
Xj

2n

=∑
Xj

nYj (E-33)

Equation (E-33) in matrix form becomes

UC = V

U =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

N
∑

Xj

∑
Xj

2 · · · ∑Xj
n

∑
Xj

∑
Xj

2 ∑
Xj

3 · · ·∑Xj
n+1

∑
Xj

2 ∑
Xj

3 ∑
Xj

4 · · ·∑Xj
n+2

���
���

���
���

���∑
Xj

n ∑Xj
n+1 ∑Xj

n+2 · · · ∑Xj
2n

⎤

⎥
⎥
⎥
⎥
⎥
⎦

C =

⎡

⎢
⎢
⎢
⎢
⎣

C0
C1
C2
���

Cn

⎤

⎥
⎥
⎥
⎥
⎦

V =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

∑
Yj∑

XjYj∑
Xj

2Yj

���∑
Xj

nYj

⎤

⎥
⎥
⎥
⎥
⎥
⎦

Linear equations generated by polynomial regression can be
ill-conditioned when the coefficients have very small and very
large numbers. This results in smooth curves that fit poorly. Ill-
conditioning often happens if the degree of polynomial is large and
if the Y values cover a wide range. The error of the polynomial
regression by a standard error of the estimate is shown below:


2 =
∑

SSE
N −n−1

(E-34)

where

n = the degree of polynomial
N = the number of data points.

The coefficient of determination can be expressed as:

r2 = 1− SSE
SST

= 1−

N∑

j=1

(
Yj − Ŷj

)2

N∑

j=1

(
Yj −Y j

)2
(E-35)

The correlation coefficient is given by

r =
(

1− SSE
SST

)0�5

(E-36)

The numerator of Eq. (E-34) should continually decrease as the
degree of the polynomial is raised. Alternatively, the denominator
of Eq. (E-34) causes 
2 to increase once there is departure from
the optimum degree.

Example E-2
The following data are obtained from y �x� = x4 +3x3 +2x2 +

x + 5. Show that a fourth degree polynomial provides the best
least squares approximation to the given data. Determine this
polynomial.

Fortran program PROG2 calculates (i) the coefficients for
each degree of the polynomial, (ii) the variance, (iii) error sum of
squares, (iv) total sum of squares, (v) coefficient of determination,
and (vi) the correlation coefficient. Alternatively, the Microsoft
Excel spreadsheet can be employed using the Trendline from the
Insert menu. The program shows that the fourth degree gives
the lowest value of variance and therefore shows the best fit. The

computer results are shown in Table E-2. The Excel spreadsheet
Prog2a.xls was used to determine the polynomial regression of
Example E-2. Figure E-2 shows the Excel spreadsheet snap shot
of Example E-2.

Table E-2 Polynomial Regression Analysis for
an Equation to an Nth Degree

X 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0�9
Y 5.123 5.306 5.569 5.938 6.437 7.098 7.949 9.025 10�363
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Figure E-2 The Excel spreadsheet snapshot of Example E-2.

E.4 MULTIPLE REGRESSION ANALYSIS

Inadequate results are sometimes obtained with a single indepen-
dent variable. This shows that one independent variable does not
provide enough information to predict the corresponding value of
the dependent variable. We can approach this problem, if we use
additional independent variables, and develop a multiple regression
analysis to achieve a meaningful relationship. Here, we can employ
a linear regression model in cases where the dependent variable is
affected by two or more controlled variables.

The linear multiple regression equation is expressed as:

Y = C0 +C1X1 +C2X2 +· · ·+CKXK (E-37)

where

Y = the dependent variable
X1, X2� · · · �XK = the independent variable
C0, C1, C2� · · · �CK = the unknown regression coefficients
K = the number of independent variables.

The unknown coefficients are estimated based on n observation for
the dependent variable Y , and for each of the independent variables
Xi’s where i = 1� 2� 3� 	 	 	 �K.

These observations are of the form:

Yj = C0 +C1X1j +C2X2j +· · ·+CKCKj +�j (E-38)

For j = 1� 2� 	 	 	 �N

where

Yj = the jth observation of the dependent variable
X1j� 	 	 	 �XKj = the jth observation of the X1�X2� 	 	 	 �XK

independent variables.

We can use a least squares technique to calculate estimates of
Ĉ0� Ĉ1� 	 	 	 � ĈK by minimizing the following equation:

S =
N∑

j=1

[
Yj −

(
Ĉ0 + Ĉ1X1j +· · ·+ ĈKXKj

)]2 =
N∑

j=1

�j
2

(E-39)

Taking the partial derivatives of S with respect to

Ĉ0� Ĉ1� 	 	 	 � ĈK , that is
�S

�Ĉ0

�
�S

�Ĉ1

� 	 	 	 �
�S

�ĈK

and setting them

equal to zero, we obtain the following set of equations:

NĈ0 +(∑X1j

)
Ĉ1 +···+(∑XKj

)
ĈK =∑Yj

(∑
X1j

)
Ĉ0 +(∑X1j

2
)
Ĉ1 +···+(∑X1j XKj

)
ĈK =∑X1jYj

(∑
X2j

)
Ĉ0 +(∑X1j X2j

)
Ĉ1 +···+(∑X2j XKj

)
ĈK =∑X2jYj

���
(∑

XKj

)
Ĉ0 +(∑X1j XKj

)
Ĉ1 +···+(∑XKj

2
)
ĈK =∑XKjYj

(E-40)
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Equation (E-40) can be expressed in matrix form as:

UĈ = V

where

U =

⎡

⎢
⎢
⎢
⎣

N
∑

X1j · · · ∑
XKj∑

X1j

∑
X1j

2 · · ·∑X1jXKj

���∑
XKj

∑
X1jXKj

∑
XKj

2

⎤

⎥
⎥
⎥
⎦

(E-41)

Ĉ =

⎡

⎢
⎢
⎢
⎣

Ĉ0

Ĉ1
���

ĈK

⎤

⎥
⎥
⎥
⎦

V =

⎡

⎢
⎢
⎢
⎣

∑
Yj∑

X1j Yj

���∑
XKj Yj

⎤

⎥
⎥
⎥
⎦

(E-42)

U is a symmetric matrix.
We can obtain estimates for the coefficients Ĉ0� Ĉ1� 	 	 	 � ĈK

by successive elimination or by solving for the inverse of U . That is,

Ĉ = U−1 V (E-43)

where

U−1 = the inverse of U .

After solving for Ĉ0� Ĉ1� 	 	 	 � ĈK , the estimates of the depen-
dent variable observations Ŷj can be obtained as follows:

Ŷj = Ĉ0 + Ĉ1X1j +· · ·+ ĈK XKj (E-44)

The power equations have often been derived to calculate the
parameters of experimental data. Such an equation can be expressed
in the form:

Y = C0 · X1
C1 · X2

C2 · · · · ·XK
CK (E-45)

We can calculate the coefficients of the independent variables,
if Eq. (E-45) is linearized by taking its natural logarithm to give

ln Y = ln C0 +C1 ln X1 +C2 ln X2 +· · ·+CK ln XK (E-46)

TABLE E-3 Analysis of Variance Table for Linear
Multiple Regression

Source of
Variance

Degree of
Freedom Sum of Squares Mean Squares

Total N−1 SST =∑(
Yj − Y

)2
MST = SST/�N −1�

Regression K SSR =∑(
Ŷj −Y

)2
MSR = SSR/K

Error N − K −1 SSE =∑(
Yj − Ŷj

)2
MSE = SSE/�N −K −1�

The coefficients C0 � C1� C2� 	 	 	 �CK can then be obtained
by Gaussian elimination. Table E-3 shows the variance table for
linear multiple regression. The coefficient of determination is

r2 = 1− SSE
SST

(E-47)

and the correlation coefficient is

r =
(

1− SSE
SST

)0�5

(E-48)

The test statistic is the F -ratio, which is defined by

F = MSR
MSE

(E-49)

A computer program PROG3 has been developed to determine
the coefficients and correlation coefficient of a multiple regression
equation.

E.5 SIMULTANEOUS EQUATIONS USING
THE MATRIX METHODS

Matrix solution of sets of linear equations are solved by Excel as
follows.

First, write a set of simultaneous equations in matrix format

Ax = b (E-51)

where A is the coefficient matrix, x is the vector of unknowns, and
b is the result vector. To solve this matrix equation, multiply both
sides from the left by the inverse of A:

A−1 A x = A−1 b (E-52)

Example E-3
In a fluid flow experiment, the volumetric rate of fluid through

a pipe is dependent on the pipe diameter and slope by the equation

Q = C0 DC1 SC2 (E-50)

where

Q = flow rate, ft3/s
D = pipe diameter, ft
S = slope, ft/ft.

Determine the flow rate of fluid for a pipe with a diam-
eter of 3.25 ft and slope of 0.025 ft/ft with the following data:

Table E-4 Linear Multiple Regression Analysis
for an Equation

Diameter, ft Slope, ft/ft Flow rate, ft3/s
D S Q

1.0 0�001 1�5
2.5 0�005 9�0
3.0 0�010 25�0
4.0 0�010 5�0
1.5 0�050 30�0
3.5 0�050 100�0

Computer program PROG3 is developed to calculate the values
of the coefficients C0, C1, and C2 and the correlation coefficient.
Table E-4 shows the results of the program.
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By definition, a matrix times its inverse gives the identity
matrix, and the identity matrix times any vector gives the vector
back. The equation above reduces to the following solution:

x = A−1 b (E-53)

The following example uses the Fortran program PROG4 and
Excel spreadsheet Prog4a.xls.

Example E-4
The final product from a chemical factory is made by blending

four liquids (�, , �, �) together. Each of these liquids contains
four components A, B, C, and D. The product leaving the factory
has to have a closely specified composition. Determine the relative
quantities of �, , �, and � required to meet the blend specifications
in the following data:

Computer program PROG4 uses the Gaussian elimination
method to determine the quantities of each �, , �, and � required
to meet the blending specifications. Table E-5 shows the computer
results.

TABLE E-5

Component � � � �

composition of
specification

(W/W)

A 51�30 43�20 56�40 47�40 48.80
B 11�30 11�50 15�50 8�50 11.56
C 29�40 31�50 22�50 30�40 29.43
D 8�00 10�30 5�60 13�70 10.21

(Source: B.Sc. Final year 1978, Aston University, Birming-
ham, UK.)

Answers:

� = 0.1172
 = 0.3789
� = 0.2117
� = 0.3054

Alternatively, the Excel spreadsheet Prog4a.xls is used to solve
the above example problem. The procedure is as follows.

1. Start with a new worksheet, and name it Matrix Method.
2. In cell A1, enter solving sets of equations; Matrix inversion.
3. In cell B3, enter Ax = b.

Enter the coefficient matrix A and the results vector b.
4. In cell A5, enter input matrix A.
5. In cells A6:D9, enter the constants of matrix A:

Cell Constant Cell Constant Cell Constant Cell Constant

A6 51�3 B6 43.2 C6 56�4 D6 47�4
A7 11�3 B7 11.5 C7 15�5 D7 8�5
A8 29�4 B8 31.5 C8 22�5 D8 30�4
A9 8 B9 10.3 C9 5�6 D9 13�7

6. In cell F5, enter result vector b
7. In cells F6:F9, enter the constants of the result vector.

8. In cell A12, enter Inverse matrix (1/A)
9. Select cells A13:D16, then type

= MINVERSE (A6:D9)

and press Ctrl + Shift + Enter to insert the formula into the
whole section.

10. In cell F12, enter solution vector x = �1/A�b.
11. Select cells F13:F16, then type

+ MMULT (A13:D16, F6:F9)

and press Ctrl + Shift + Enter to insert the formula into the
whole selection.

12. Turn off the gridelines, and outline the worksheet cells as
shown in Matrix Method.

The worksheet should now look like Matrix Method, with the
solution values 0.11722, 0.378939, 0.211747, and 0.305356 for �,
, �, and � in cells F13:F16. This is shown in Figure E-3.

E.6 SOLVING SIMULTANEOUS NON-LINEAR
EQUATIONS IN EXCEL USING SOLVER

Solver can be used to solve a system of simultaneous equations,
which can be either linear or non-linear. Suppose the equations are
represented as

f1 �x1� x2� 	 	 	 � xn� = 0 (E-54)

f2 �x1� x2� 	 	 	 � xn� = 0 (E-55)

f3 �x1� x2� 	 	 	 � xn� = 0 (E-56)

���

fn �x1� x2� 	 	 	 � xn� = 0 (E-57)

Thus, we have a system of n equations in n unknowns. We can find
the values of x1� x2� x3� 	 	 	 � xn that cause each of the equations
to equal zero, if the function

y = f1
2 +f2

2 +f3
2 + 	 	 	 +fn

2 (E-58)

is equal to zero; that is, to find the values of x1� x2� x3� 	 	 	 � xn

that cause Eq. (E-58) to equal zero. Since all the terms on the right
side of Eq. (E-58) are squares, they will all be greater than or equal
to zero. Hence, the only way that y can be equal to zero is that
each of the individual f ’s should be equal to zero. Therefore, the
values of x1� x2� x3� 	 	 	 � xn that cause y to equal zero will be the
solutions to the given system of equations. The general approach
used with Solver is to define a target function consisting of the
squares of the individual equations, as indicated by Eq. (E-58), and
to then determine the values of x1� x2� x3� 	 	 	 � xn that cause the
target function to equal zero. To solve a system of simultaneous
equations with Solver, proceed as follows.

1. Enter an initial guess for each independent variable
�x1� x2� x3� 	 	 	 � xn� in a separate cell on the worksheet.

2. Enter the equations for f1� f2� f3� 	 	 	 � fn and y in separate
cells, expressed as Excel formulas. Within these formulas,
express the unknown quantities x1� x2� x3� 	 	 	 � xn as the
addresses of the cells containing the initial guess.

3. Select Solver from the Tools menu.
4. When the Solver Parameters dialog box appears, enter the

following information.



Elsevier US Job Code:CAPA Chapter:0capaappE 22-12-2006 5:37p.m. Page:942 Trimsize:8.5in×11in

Fonts used:Times & Universal 55 family Margins:Top:3p6 Gutter:4p6 Font Size:9/10pt Text Width:41p6 Depth:65 Lines

942 APPENDIX E

Figure E-3 The Excel spreadsheet snapshot of Example E-4.

(a) The address of the cell containing the formula for y in the
Set Target Cell location.

(b) Select value of y in the Equal to line. Then enter 0
within the associated data area (i.e., determine the values
of x1� x2� x3� 	 	 	 � xn that will drive the target function
to zero).

(c) Enter the range of cell addresses containing the initial
values of x1� x2� x3� 	 	 	 � xn in the area labeled By
Changing Cells.

(d) If you wish to restrict the range of the independent variables,
click on the Add button under the heading Subject to the
Constraints. Then provide the following information within
the Add Constraint dialog box for each of the independent
variables.

(i) The cell address containing the initial value of the inde-
pendent variable in the Cell Reference location.

(ii) The type of constraint (i.e., ≤ or ≥) from the pull-down
menu.

(iii) The limiting value in the constraint data area.
(iv) Select OK to return to the Solver Parameters dialog

box or select Add to add another constraint.
Note that you can always change a constraint or delete a
constraint after it has been added.

(e) When all the required information has been entered
correctly, select Solve. This will initiate the actual solution
procedure.

A new dialog box labeled Solver Results will then appear,
telling you whether or not Solver has been able to solve the problem.
If a solution has been obtained, the desired values of the indepen-
dent variables will appear in the cells that originally contained the

initial values. The cell containing the target function will show a
value that is zero or nearly zero.

E.7 GAUSS–SEIDEL ITERATIVE METHOD

Alternatively, Fortran computer program PROG5 employs the
Gauss–Seidel method for solving the four material balance equa-
tions. The four material balance Eqs. (E-65)–(E-68) are rearranged
to solve for the unknown on the diagonal position of each
Eq. (E-74).

�1000� �1� = 1000CA1 + �0�1� �CA1� �1000� (E-65)

1000CA1 +100 CA3 = 1100 CA2 + �0�2� �CA2� �1500�
(E-66)

1100CA2 +100 CA4 = 1200 CA3 + �0�4� �CA3� �100�
(E-67)

1000CA3 = 1100 CA4 + �0�3� �CA4� �500� (E-68)

1100CA1 = 1000
1000CA1 −1400CA2 +100CA3 = 0

1100CA2 −1240CA3 +100CA4 = 0
1100CA3 −1250CA4 = 0

(E-74)

Table E-7 shows the computer results of PROG5.
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Example E-5
A chemical reaction takes place in a series of four continuous

flow stirred tank reactors arranged as shown. The chemical reaction
is a first order irreversible reaction of the type

A
k−→ B

The conditions of temperature in each reactor are such that the
values of ki and Vi are given in Table E-6. Figure E-4 shows four
continuous stirred tanks with recycles streams.

Table E-6

Reactor Volume, Vi L Rate constant, ki h−1

1 1000 0.1
2 1500 0.2
3 100 0.4
4 500 0.3

(Source: A. Constantinides, Applied Numerical Methods With
Personal Computers, McGraw-Hill Book Co., 1987)

The following assumptions are:

1. The system is at steady state.
2. The reactions are in the liquid phase.
3. There is no change in volume or density of the liquid.
4. The rate of disappearance of component A in each reactor is

given by

�−rA� = kCA (E-59)

Set up the material balance equations for each of the four reactors,
and use the Gauss–Seidel or Solver to determine the exit concen-
tration from each reactor.

Solution
Set up the material balance equations for each of the four reactions,
and use the Gaus–Seidel method to determine the exit concentra-
tions from each reactor.

The general unsteady state material balance for each reactor is

Input by flow = Output by flow + disappearance

+ accumulation by reaction

Mass balance for reactor 1:

uA0 CA0 = uA0 CA1 + �−rA� V1 + V1
dCA1

dt
(E-60)

Because the system is at steady state, the accumulation is zero, the
above equation becomes

uA0 CA0 = uA0 CA1 +k1CA1 V1 (E-61)

Mass balance for reactor 2:

uA0 CA1 +uA3 CA3 = �uA0 +uA3� CA2 +k2CA2 V2 (E-62)

Mass balance for reactor 3:

�uA0 +uA3�CA2 +uA4 CA4 = �uA0 +uA3 +uA4� CA3 +k3 V3 CA3

(E-63)

Mass balance for reactor 4:

�uA0 +uA4�CA3 = �uA0 +uA4� CA4 +k4V4 CA4 (E-64)

where

uA0 = 1000 L/h � CA0 = 1 mol/L
uA3 = 100 L/h
uA4 = 100 L/h.

�1000� �1� = 1000CA1 + �0�1� �CA1� �1000� (E-65)

1000CA1 +100 CA3 = 1100 CA2 + �0�2� �CA2� �1500�
(E-66)

1100CA2 +100 CA4 = 1200 CA3 + �0�4� �CA3� �100�
(E-67)

1000CA3 = 1100 CA4 + �0�3� �CA4� �500� (E-68)

Rearranging the above equations:

f �CA1� CA2� CA3� CA4� = 1100CA1 −1000 (E-69)

g �CA1� CA2� CA3� CA4� = 1000CA1 −1400CA2 +100CA3
(E-70)

h�CA1� CA2� CA3� CA4� = 1100 CA2 −1240 CA3 +100 CA4
(E-71)

j �CA1� CA2� CA3� CA4� = 1100CA3 −1250 CA4 (E-72)

Thus, we have a system of n equations in four unknowns. We
can find the values of CA1� CA2� CA3� CA4 that cause each of the
equations to equal zero, if the function

y = f 2 +g2 +h2 + j2 (E-73)

is equal to zero; that is, to find the values of CA1� CA2� CA3� CA4
that cause Eq. (E-73) to equal zero. Since all the terms on the right
side of Eq.(E-73) are squares, they will all be greater than or equal
to zero. Hence, the only way that y can be equal to zero is that each
of the individual f� g�h� j should be equal to zero. Therefore, the
values of CA1� CA2� CA3� CA4 that cause y to equal zero will be the
solutions to the given system of equations. The general approach
used with Solver is to define a target function consisting of the
squares of the individual equations, as indicated by Eq. (E-73), and
to then determine the values of CA1� CA2� CA3� CA4 that cause the
target function to equal zero. Figures E-5–E-8 of Excel snapshots
show the procedures of determining the final concentrations, after
initial guesses.

CA1 = CA2 = CA3 = CA4 = 0�5
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TABLE E-7 SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS BY GAUSS-SEIDEL METHOD

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

NUMBER OF LINEAR EQUATIONS: 4
MAXIMUM ITERATIONS 15
CONVERGING TOLERANCE: 0.100000E-03

THE COEFFICIENT MATRIX A(1,1)...A(N+1,N+1) IS:
--------------------------------------------------------------------------------------------------------------------------------------------------

1100.0000 0.0000 0.0000 0.0000 1000.0000
1100.0000 −1400.0000 100.0000 0.0000 0.0000

0.0000 1100.0000 −1240.0000 100.0000 0.0000
0.0000 0.0000 1100.0000 −1250.0000 0.0000

--------------------------------------------------------------------------------------------------------------------------------------------------

THE STARTING VECTOR X(1)....X(N) IS:

5.000000E-01
5.000000E-01
5.000000E-01
5.000000E-01

PROCEDURE CONVERGED AFTER 5 ITERATIONS

SOLUTION VECTOR X(1).....X(N) IS:

9.090909E-01
6.968780E-01
6.654189E-01
5.855687E-01

--------------------------------------------------------------------------------------------------------------------------------------------------

CAO

uAO

uAO

CA1
CA1

CA2

CA2

CA3 CA3

CA4 CA4

V1

V2

V3

V4

k1

k2

k3

k4

uA3

uA4

uAO + uA3

uAO + uA3 + uA4

uAO + uA4

Figure E-4 Chemical reaction with recycles in four continuous stirred tanks.
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Figure E-5 The Excel spreadsheet snapshot of Example E-5.

Figure E-6 The Excel spreadsheet snapshot of Example E-5 (continued).
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Figure E-7 The Excel spreadsheet snapshot of Example E-5 (continued).

Figure E-8 The Excel spreadsheet snapshot of Example E-5 (continued).
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NOMENCLATURE
F = F-ratio
MSE = Error mean squares
MSR = Regression mean squares
MST = Total mean squares
r = Coefficient of determination
SSE = Error sum of squares
SSR = Regression sum of squares
SST = Total sum of squares
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