Appendix F

F.1 MICROSOFT EXCEL SOLVER FOR NON-LINEAR EQUATIONS

The *Solver* is an optimization package that finds a maximum, minimum, or specified value of a target cell by varying the values in one or several changing cells. It uses an iterative process, beginning with trial values of the coefficients. The value of each coefficient is changed by a suitable increment, the new value of the function is then calculated, and the change in the value of the function is used to calculate improved values for each of the coefficients. The process is repeated until the desired results are obtained. The *Solver* employs the gradient methods or the simplex method to find the optimum set of coefficients.

Constraints can be applied to the *Solver* using the Add button under the heading "Subject to the Constraints". The *Solver* is an Excel Add-in, a separate software package. To save memory, it may not automatically be opened whenever Excel is started. To install the *Solver*, choose Add-Ins from the Tools menu. Then select *Solver* Add-Ins from the resulting Add-Ins dialog box. Once the *Solver* feature has been installed, it will remain installed unless it is removed by reversing the above procedure.

To use the *Solver* to perform multiple non-linear least squares curve fitting, the procedure is as follows:

- 1. Start with a worksheet containing the data (independent variable *X* and the dependent variable *Y*_{obsd}) to be fitted.
- Add a column containing Y_{calc} values, calculated by means of an appropriate formula, and involving the X-values and one or more coefficients to be varied.
- **3.** Add a column to calculate the square of the residual $(Y_{obsd} Y_{calc})$ for each data point.
- 4. Calculate the sum of squares of the residuals.
- **5.** Use the *Solver* to minimize the sum of the squares of residuals (the target cell) by changing the coefficients of the function (the changing cells).

Since the *Solver* operates by a search routine, it will find a solution most rapidly and efficiently if the initial estimates that are provided are close to the final values. Conversely, it may not be able to find a solution if the initial estimates are far from the final values. To ensure that the *Solver* has found a global minimum rather than a local minimum, a solution is obtained using different sets of initial estimates.

The least-squares regression coefficients that are returned may be slightly different depending on the starting values being provided. The Excel spreadsheet prog6a.xls (Figures F-1a-f) uses the *Solver* to determine the outlet pressure P_2 of isothermal compressible fluid flow of Example 4-9 in the Chapter 4 of the book.

F.2 SOLVING EQUATIONS USING GOAL SEEK IN EXCEL

Microsoft Excel provides a built-in way to perform non-linear equations using the Goal Seek command in the Tools menu. Goal-Seek varies the value of a selected cell (the changing cell) to make the value of another cell (the target cell) reach a desired value. This feature permits rapid solutions of algebraic equations using iterative (i.e. trial and error) root-finding techniques based on a series of successive refinements derived from an initial guess. For an adiabatic compressible fluid using the Excel spreadsheet (Example 4-11.xls) in Chapter 4 of the book, the implicit adiabatic equation in cell C53 is set to zero (Figures F-2a-f). The equation is expressed by

$$\frac{2}{Ma_1^2(\gamma+1)} \left[\left(\frac{\{\gamma+1\} Ma_1^2}{2+\{\gamma-1\} Ma_1^2} \right)^{\frac{(\gamma+1)}{2}} - 1 \right] + 2\ln\sqrt{\frac{2+(\gamma-1) Ma_1^2}{(\gamma+1) Ma_1^2}} + K = 0$$
(4-173)

The objective is to use Goal Seek to find the value of cell B44 that makes the function (in C53) equal to zero. The accuracy of the result depends on the magnitude of the Maximum Change parameter, which can be adjusted by choosing the Calculation tab in the Options command of the Tools menu. The default value is 0.001, and adjusting the Maximum Change parameter is critical when using Goal Seek. This allows Excel to stop iterating when the change in the result is less than the Maximum Change parameter. Therefore, the Maximum Change parameter needs to be adjusted to match the value of the function. For most calculations, the Maximum Change is set to 1E-12 or 1E-15.

The steps in using Goal Seek are as follows:

- 1. Select Goal Seek from the Tools menu as shown in Figure F-2a.
- **2.** Enter \$C\$53 in the *Set cell* box.
- **3.** Put the cursor in the *To value* box and enter the desired value, zero.
- **4.** Put the cursor in the *By Changing cell* box and enter \$B\$44 by selecting the cell or by typing.
- **5.** Then click on *OK* box.

After a few iteration cycles the *Status* dialog box Figure (F-2e) is displayed.

If a solution is obtained, the value of the root will appear in the cell originally containing the initial guess. The value in the cell containing the formula will show a value that is close to zero (or zero). This last value will appear within the Goal Seek status dialog box.

Cell B 4 gives the root of the function cell (B44), which causes the target value to equal zero. The final value of the function depends to some extent on the starting value of Ma_1 . The likelihood of obtaining a converged solution will be enhanced, if the initial guess is as close as possible to the desired root.

For problems requiring the variation of two or more parameters, that is, varying the values of several cells to make the value of another cell reach a desired value involves the use of the *Solver*.

The Excel spreadsheet Prog6a.xls uses the Goal Seek routine to determine the friction factor of Colebrook–White implicit equation as defined by

$$F(f_{\rm D}) = \frac{1}{f_{\rm D}^{1/2}} + 0.8686 \ln \left\{ \frac{\varepsilon}{3.7D} + \frac{2.51}{Re\sqrt{f_{\rm D}}} \right\}$$
(F-1)

Fonts used: Times & Universal 55 family

Page:950

950 APPENDIX F

(a)

図 P	licrosoft Excel - Exam	ple 4-9										_ 8 ×
:@)	Eile Edit View In	sert F <u>o</u> rmat	<u>T</u> ools <u>D</u> ata	Window	Help				Ty	pe a question	n for help 🚽 👻	_ 8 ×
En	RANK	1 X B	in) - Σ -		00% - @	Arial	+ 10 +	BIU	통통 클 핵 \$	% ∰≣	- 3-	A - 1
1 00-	din tên cai se, bin			Deelu with Ch	anana End				,			
: 📖				Reply with <u>C</u> I	anges c <u>i</u> u	A il a	11					
	AI	7× Example	4-9. Pressur	e arop for c	ompressible	Tiula flow using I	sotnermal condition	ON BY A.K. COR	er			
1	A Fuemale 4.0. Drees	B Are dren for	L C	Lo fluid flor		th ormal conditi			J		K	<u> </u>
2	Example 4-9. Pless	ie arop for	compressio	ie nala no	w using iso	mermai condiu	on by A.N. Coke	31				
3	The vanor (C3, C4 a	nd (C5) from a	debutanizer	C1007 is cr	noled via an	air cooller conde	nser E1031					
4	to the accumulator v	essel V1008	The overhead	das line is	84.7 m and	the hoil up rate i	s 17 kg/s					
5	The top of the unit or	perates at 14.	2 bara. Calcu	late the pre	ssure drop a	along the 8" pipe						
6	to the air cooler cond	denser. Data 1	rom piping is	ometrics, d	ata sheets a	and fluid			3-K Constants for	Loss Coeff	icients for V	alves a
7	characteristics are:									к (<u>-</u>
8									K	R +K,	.+K	
9	Operating temperatu	re,°C=		86	°C				Fittings			<u> </u>
10	Fluid density, kg/m ³	=		35.2	kg/m ³			Elbows	Threaded,standard		r/D=1	
11	Ratio of specific heat	ts, (Cp/Cv) =		1.11				900	Threaded,long radi	us	r/D=1.5	
12	Kinematic viscosity,	cSt=		0.2	cSt				Flanged, welded, b	Jends	r/D=1	
13	Compressibility facto	or, Z=		0.958							r/D=2	
14	Pipe Length, m			84.7	m						r/D=4	
15	Operating pressure,	P1=		14.2	bara						r/D=6	
16	Vapor rate=			17	kg/s				Mitered		1 weld, 90o	
17				1738	m³/h						2 weld, 45o	
18	Pipe internal diamete	er, 8-inch, Scl	nedule 40=	202.7	mm						3 weld, 30o	
19	Pipe nominal diamet	er, 8-inch, Sc	hedule 40=	203.2	mm			Elbows	Threaded, standar	ł	r/D=1	
20								450	Long radius		r/D=1.5	
21	Fittings:	Number							Mitered, 1 weld		450	
22	90o Elbows	6							Mitered, 2 weld		22.50	
23	Ball valve	2						Elbows	Threaded,		15. 4	
24	lee (straight Thru)	3						400	Close return bend		r/D=1	
25	Solution:							1800	Flanged		WD=1	
20	Duenemie vierenitu		0.00000704	leadan a				Tees	All Through bronch		MD=1.5	
27	Dyanamic viscosity,	h-	0.00000704	kg/m.s				Tees	Inrough-branch			
20			0.007.04	LF					Threaded		r/D=1	
30	Average molecular w	eight of C3_C	A and C5 is:						IIIIeaueu		r/D=1.5	
31	r werdige moreediar w	light of oo, c			Percent of y	anor			Flanged		r/D=1	
32	Molecular weight of (, 3H8 =	. 44	ka/kmal	Π 18	3			Stuh-in-hranch			
H 4	Example 4-9	Sheet2 / She	et3 /									
Dra	aw 🔹 😓 AutoShapes 🕶	\setminus \setminus \Box	0 4 4		3-2-	<u>A</u> • ≡ ≡ Ξ						
Rea	dy											
:A:	5tart 721 @ 191 0	0030	0 1 0				BAppend	Examp	話感が離	() EN 14	838 G 1	2:45 PM

Figure F-1a Non-linear equation estimation using *Solver* from the tools menu of Microsoft Excel of Example 4.9.

: 100		303	- B (144 E	teply with \subseteq	hanges E <u>n</u> d Re	view 🗣					
	A32 -	<i>f</i> ∡ Molecula	r weight of C3	H8 =							
	A	В	C	D	E	F	G	Н		J	K
32	Molecular weight of C	BH8 =	44	kg/kmol	0.18					Stub-in-branch	
33	Molecular weight of C	4H10 =	58	kg/kmol	0.80					Run through threaded	r/D=1
34	Molecular weight of C	5H12=	72	kg/kmol	0.02					Flanged	r/D=1
35										Stub-in-branch	
36	Average molecular we	eight=	55.76	kg/kmol					Valves	Angle valve-450	Full line size β=
37										Angle valve-90o	Full line size β=
38	Solution									Globe valve	Standard, beta
39							2			Plug valve	Branch flow
40	Absolute temperature	, K=	359.15	К	Pipe Area	U.U323	m*			Plug valve	Straight through
41	M 1 M 1				0.1.2	11.05	,			Plug valve	Three-way
42	Mach Number	44.00	,		Gas velocity	14.95	m/s				(flow through)
43	Gas velocity, v=	14.98	m/s							Gate valve	Standard, p=1
44	0	220.02								Ball valve	Standard, p=1
45	Sonic velocity, vs=	238.63	m/s							Diaphragm	Dam-type
46		0.000								Swing check**	Vmin=35p **
47	Mach number, wvs=	0.063							1.0	LITT Check"	
48	Type of fluid flow								* See equa	ition ** Units of p are lbm/ft*	[Darby, Chem. Er
49	flow is subsonic										
50	-										
51	Reynold Number:										
52		45404075									
53	K6=	15181975									
54	Existing Easter 6										
20	Friction Factor, I										
50	Dina raughnaca a=	0.046	mm								
58	A D	0.040							-		
50	8-	6.191E.05									
60	SUM=	16.847545									
61	000	10.047.040									
61	Chon's Eristian faster	f	0.0025								
02	Cherrs Friction factor,	, iu-	0.0033								
4 4	→ H\Example 4-9	Sheet2 / Shee	et3 / 🚺 📕								

Figure F-1b—(continued).

(c)

APPENDIX F 951

N	1icrosoft Excel - Examp	ole 4-9									_ 8 ×
:00	Eile Edit View Ins	sert F <u>o</u> rmat	<u>T</u> ools <u>D</u> ata	<u>W</u> indow	v <u>H</u> elp					Type a questi	on for help 🔄 🚽 🗗 🗙
		1 X B-	<u>G</u> oal Seek		100% 🔹 🞯	Arial		10 • B		三三三三 \$ % 律	- & - <u>A</u> - "
: 25		353	Sol <u>v</u> er		Changes En	Review					
	A63 👻	∱ Darcv Fr	Options								
	A	B	×		E	F	G	Н		J	K 🗖
63	Darcy Friction factor,	fn =	0.014								-
64	`										
65	Loss coefficient due t	to pipe									
66											
67	K=f*L/D=	5.85				3-K Constants	for Loss C	oefficients f	for Valves an	d Fittings	
68						_					
69	Loss coefficient for va	alves and fitti	ngs using the :	3-K Met	:hod:	Fittings	Number	Km	nKm	K1	nK1
70						90oELL	5	800	4000	0.071	0.366
11	Total loss coefficient	KIOTAL=	8.4316			Ball valve	2	300	600	0.017	0.034
72	Outlet pressure D2	Lloing Colug	r Mothod			Tee (st. Thru)	3	800	2400	U.14	0.42
73	Outlet pressure, P2	Using Solve	rivietuoa			TUTAL					
75	G/01-	1 6656733									
76	(G/C1)*2=	2 7744676									
77	(0/01) 2-	2.7744070									
78											
79	P2=	13.7	bar								
80	1										
81											
82	F(P2)=	0.1637286									
83											
84	Pressure drop, DELF	,									
00		0.5	hor								
87	DELF-	0.0	Dai								
88	Since the process is	isothermal (i.e. constant t	empera	ture. T2 = T1)						
89				ompora	1010,12 11						
90	T2	359.15	К								
91											
92	Density of the vapor :	at the exit is:									
93											
94	L 1 02 To ► N Example 4-9 /	Sheet2 / She	et3 /							1	E E
Dra	w • 🕞 🛛 AutoShanes •				al (3) <i></i> -	A - = = ₹	• n al				
Rea	dy							1			
18	5tart 🛛 😭 🚿 🖾 🖸	0.80	010		New F	o	Append	BExan	np		3 (12:47 PM
_			- 11 - 100						•		

Figure F-1c—(continued).

: •	F B B B B B	1 X B-1	19 × Σ ×	<u>A</u> ↓ (100 , 100	% • 0	Arial	~	10 • B	IU	三三三三〇 \$ % (年)	- 🗞 - <u>A</u>
E ta	11 12 23 15 20	330	B (1) (1)	Reply with Char	nges E <u>n</u> d	Review					
	B82 -	fx =SQRT(0	015^2-D15*B7	6*C71/D10)-I	B79						
	A	В	C	D	E	F	G	Н	1	J	K
63	Darcy Friction factor,	f _D =	0.014								
64											
65	Loss coefficient due	to pipe									
66											
67	K=f*L/D=	5.85				3-K Constants	for Loss Co	pefficients t	for Valves an	d Fittings	
68		1				E.1.1	NI 1	17	17	144	1.44
69	Loss coefficient for vi	aives and fittir	ngs using the	3-K Method:		Fittings	Number	KM	nKm 1000	K1	nK1
70	T	LCCT 11 -	0.4040			9U0ELL	5	800	4000	0.0/1	0.355
71	i otal loss coefficient	KIUIAL=	8.4316			Ball valve	2	300	500	0.14	0.034
72	Outlat proceura - P2	Lleing Solvo	r Mothod			Tee (st. find)	3	000	2400	0.14	0.42
74	Outlet pressure, 1 Z	Comy Solve	Method			Total					
75	G/C1=	1.6656733				Solver Parameter	rs			×	
76	(G/C1)*2=	2 7744676					line in a				
77	() -					Set Target Cell:	1355382	<u></u>	_	Solve	
78						Equal To: C	Max C M	in 🖲 Val	lue of: 0	Close	
79	P2=	13.7	bar			By Changing Cells					
80						\$B\$79			<u>=0</u>	Guess	
81						Subject to the Cor	nstraints:				
82	F(P2)=	0.1637286]								
04	Dressure drep DELD									Add	
04	Flessule ulop, DELF									Change	
88	DELP=	0.5	har							<u>R</u> eset All	
87		0.0	54.			<u> </u>			_	<u>Delete</u> Help	
88	Since the process is	isothermal (i.e. constant t	emperature,	T2 = T1)						
89											
90	T2	359.15	К								
91											
92	Density of the vapor	at the exit is:									
93	. –										
14 4	► H\Example 4-9	Sheet2 / Shee	st3 / 🔳								
			~ ~ 4 3		b	A					

Figure F-1d—(continued).

Margins:Top:3p6 Gutter:4p6

952 APPENDIX F

(-)	
(e)	

1	1icrosoft Excel - Examp	ple 4-9									_ 8]
:聖	Eile Edit View In	sert F <u>o</u> rmat	<u>T</u> ools <u>D</u> ata	Window	Help					Type a quest	tion for help 👘 👻 🗖 🗄
1		1 8 6-	Ξ) - Σ -	2↓ (100, 10	00% 🔹 🕜	Arial	÷	10 +	BIU	= = = = = \$ % [=	- <u>A</u> -
: :::	a ita ita cal ico Xa	BAR		teply with Ch	anges End	Review					
	A63 -	t € Darcy Fr	iction factor. f)=		Ŧ					
	A	B	C	D	E	F	G	Н	1	J	K -
63	Darcy Friction factor	, f ₀ =	0.014								
64		-									
65	Loss coefficient due	to pipe									
66											
67	K=f*L/D=	5.85				3-K Constants	for Loss Co	pefficients	; for Valves an	d Fittings	
68						F 200		17		1.44	1.0
69	Loss coefficient for v	alves and fitti	ngs using the	3-K Metho	d:	Fittings	Number	Km	nKm	K1	nK1
70	Tetellers and first	LCTOTAL-	0.4046			9UoELL Dellustus	5	800	4000	0.071	0.355
71	l otal loss coefficient	KIUIAL=	8.4316			Ball valve	2	300	600	0.017	0.034
72	Outlet pressure D2	Lloing Solvo	r Mothod			Total	3	000	2400	0.14	0.42
73	Outlet plessule, F2	Using Solve	Internou			TULAI					
75	G/01-	1 6666733									
76	(G/C1)/2=	2 7744676									
77	(0/01)2	2.1144010				Column Documber					
78						Solver Results	_	_	_		
79	P2=	13.86373	bar			Solver found a s	solution. All o	onstraints a	and optimality		
80						conditions are s	atished.			Reports	
81										Answer 🛌	
82	F(P2)=	-1E-06				Keep Solve	er Solution			Limits	
83						C Restore O	riginal Values			<u>×</u>	
84	Pressure drop, DELH	J									
85		0.000	la e u			OK	Cano	:el	Save Scenario	<u>H</u> elp	
00	DELP-	0.336	Dar								
88	Since the process is	isothermal (ie constant t	emneratur	• T2 = T1)						
89	onee the process is		ne. constant i	emperature	5, 12 TT)						
90	T2	359.15	К								
91											
92	Density of the vapor	at the exit is:									
93	_										
94	1 ^5 TO L N N Example 4-9 /	Sheet2 / She	et3 / 4							I	
	· · · · · Later			a	As a	A = - →		1			
; D <u>r</u>	aw ▼ 1⊰ A <u>u</u> toShapes ▼				SN • 2 •	A • = = \$					
Rea	dy										
1	Start 🛛 🚮 😹 🕼	0 🕑 🐝 🖲	0 1 G		New Fo	Excel-P	Append.	🖲 Еха	imp	1954 # Q ■ 1	🖉 🐇 🗭 🛛 12:48 PM
-			_								

Figure F-1e—(continued).

	1 1 2 5 1	333	B (1 1	Reply with g	hanges End P	Review					
	A94 👻	f _x	_ •								
	A	В	C	D	E	F	G	Н		J	K
94	10 ⁵ P ₂										
95 P	$P_2 = \frac{1}{(R/M_{\odot})T_2}$										
96	(/ W/ 4										
97											
98 1	,	25.89	kg/m°								
99					-						
	low velocity at pipe e	xit is:			Exit Mach n	umber					
						0.0400			1		
102 V	·	20.33	m/s		Ma ₂	0.9492					
103											
104											
105											
108											
107											
100					-						-
110											
111											
112											
113											
114											
115											
116											
17											
18											
119											
20											
21											
22											
23											
124											
251	N N Francis A O /	the lot	10 / 14								

Figure F-1f—(continued).

APPENDIX F 953

1		_3(£1,1)V ⊂		- A (1)a +	nn% . @	P : Timer	New Roman	- 12 -	B Z	п = =		s 0/. #=	1 00 . As	- A
				* Z * <u>UU</u>		F : 11103	NOW KOMON	• 12 •	D 1	⊻ ≕ =		¢ 70 ≟ , =-		· 🖴
3 🕍		201001		r	hanges E <u>n</u> o	1 Review 두	C	4.0.1						
	AI 🔻	7x Exan	npie 4-11. Uniti	cal Flow of Co	mpressible	fiuld calcula	LIONS BY A.F	K. Coker	1	1/		6.4	N	0
1	Example 4-1	Critical Ela	wofcompro	esible fluid e	alculation	e by AK (oker		9	n.	L	191	IN	0
2	Example 4 1	. onatal int	n or compre	sibic naid c	dictitution.	3 NJ 21.11. C	JORCI							
3	This is based	upon Kumar's	[68] method (Chem Eng (Det 2002	p62) using	thermodyn	amic						
4	principles to o	letermine the st	atus of flow (i	e. whether cl	oking flow	exists or no	ot). This me	thod						
5	removes the u	ise of plots as g	enerated in C	rane Manual	[3]. For an	adiabatic c	ompressible	e fluid						
6	flow:						1							
7		E.	(y+l)	1 —		-								
8	2	$\left(\frac{\gamma+1}{N}\right)$	$\frac{[a_1^2]}{-1}$	$+2 \ln \frac{2}{2}$	⊦(γ−1)Ma	$a_1^2 + K = 0$	(4-1	73)						
9	$Ma_1^2(\gamma +$	$\overline{1}\left \left(\frac{2+(\gamma-1)}{2+(\gamma-1)}\right)\right $	Ma_1^2	1 ° ° m 1 ($(\gamma + 1) Ma_1^2$	- 117 - 0	(- 1	(3)						
10		L												
11		E a ar	271/2											
12	$r = \left(\frac{P_2}{P_2}\right)$	L = <u>[0.5(γ</u> +	FI)Ma ₁]	- (4 - 1	74)									
13	(P_,)	 ⊈_[1±0.5(γ.	-1 Ma ² $\frac{y(y+1)}{2(y-1)}$											
14		[110.5(7	1) Ivia1]		-									
15		77 (1 .)												
16	Y_=	<u>K(I+r)</u>		(4-175)										
17		V2(K+2ln[1/	'r])											
18														
19		126D ² Y	$-P_2$	(4 - 17)	5)									
20			KV.	(1.17	·)									
21	37.0.0													
22	INOtations													
23	n_	Tuto a fuir a s												
24	V -	Registeres an	aameter, mm											
25	T-	Length of pine		11										
14 4	Exampl	e 4-11 / Kumar's	data / Solver-	method /										
1 per	au - D L Autos			ം ഒ ം	A. A.	A . =		3						

Figure F-2a Solving implicit adiabatic compressible fluid flow equation of Example 4-11 using Goal Seek.

En	rë 🖩 Rid		18 H	-Σ-	≜.] }∭ 100	0% • @	Times	New Roman	- 12	- B I	U 🗐 🗐		\$ %	E - 🖏	- A
1	10 10 20 10	5 101163	× 13 0	ພາສີໄໜ	Reply with Cha	naes End I	Review							_	_
	A27 -	<i>f</i> ∗ F	A =				۷								
	A	В	C	D	E	F	G	Н	1	J	K	L	М	N	0
27	$P_A =$	Ambient p	ressure, k	Pa abs											
28	Po=	Stagnation	upstream	pressure,	kPa abs										
29	$P_1 =$	Pressure a	t inlet tip 🤇	of the pipe,	kPa abs										
30	$P_2 =$	Pressure a	it outlet tip	of the pip	e, kPa abs										
31	Ma _l =	Mach num	nber at inle	t tip of the	pipe										
32	Ma ₂ =	Mach num	iber at out	let tip of th	e pipe										
33	γ	Ratio of st	pecific hea	t at consta	nt pressure	to specific	heat at cor	nstant volur	ne						
34		at upstream	m conditio	ns, dimens	ionless	-									
35 1	r =	overall crit	tical pressu	ure ratio, d	imensionles	s (P ₂ /P _o) _{er}									
36	Vo=	Upstream	specific v	olume, m ³ /	kg										
37	W=	Mass flow	rate, kg/h	1	Ū										
38															
39	D	52.5	mm												
40	P _A	200	kPaabs												
41	P ₁	6600	kPaabs												
42	K	45													
43	γ	1.55													
44	Ma _l	0.12621													
45	Vo	0.01724	m ³ /kg												
46	L	100	m												
47	~														ļ
48	Calculations														
49	Haing Goel S	l cols or Stiles	or (from 41	 To To ala re	hrr	ting To A	172 - 0.6	o	201						
14 4	→ → \Exampl	e 4 - 11 / Kur	nar's data 🏑	Colver-met	hod /	ഷ്യ മറ്റ. 4-	175 - 0 (1	.e. cel CD:	, —o),						
Draw		hanes • 🔪	<u>\</u>	AT A P		han dan	A . = =	= ≓ ■	3						

Figure F-2b—(continued).

Page:954

954 APPENDIX F

	licrosoft Excel -	Example 4-	11												_ 8
:빤	Eile Edit ⊻ie	w <u>I</u> nsert	Format Ic	ools <u>D</u> ata <u>W</u> indo	ow <u>H</u> el	lp	_						Type a ques	tion for help	
		3 112 1	12 ·	<u>G</u> oal Seek	100%	~ •	Times N	lew Roman	- 12 -	BI	Ū∣≣		\$%	- 🔛 🕶 🖄	- <u>A</u> -
: 🗀	11120	> 🔄 🖾	5 3	Solver	⊆han	ges E <u>n</u> d Ri	eview 🖕								
	44 👻	fx		Options											
	A	В	C	×		F	G	Н	1	J	K	L	M	N	0
41	P ₁	6600	kPaabs												
42	K	45													
43	γ	1.55													
44	Mal	0.1													
45	Vo	0.01724	m³/kg												
46	L	100	m												
47	a														
48	Calculations														
49	TT	-1 C -1	/C 41-	- T1			72 - 0.6	11 (75)	2_0)						
50	ond shoreing 1	vfe in cell	ы (шонны ълл	e roois menu) i	оу зеш	шу 154. ч-т	75 – C (I.)) =0),						
51	and changing i	Maj il cei	D44												
52	Ea / 173-0		28.766												
54	шq. ч -175 - 0		-20.700												
55	Calculate the c	verall critic:	al pressure	ratio. r											
56															
57		r =	0.03369												
58															
59	Calculate the c	ritical Exp	ansion Fac	tor, Y _{or} (dimensio	onless)										
60															
61		Y _{er} =	0.67019												
62															
63	Test for choki	ng flow:													
64															
65	P ₂ =	222.346	kPabs	Cohiev mathed											
14 4	• • • \Example	: 4-11 / Kur		Suiver-method /	പക			> m							<u> </u>
; D <u>r</u> a	w • k⊰ A <u>u</u> toSh	iapes 🔹 🔨	• 10			·······		- 5 - U	F						
Real	⊐y 	-			- In		. 1~		limb.	- 11		interior d) -11 10 C A	
H	Start 🛛 🖪 🥭	SH 🖸 🕑	300			Appendix	-N SE	cel-Pogr	[변철] Appendi	ix-F	Microsoft		: 📲 ()) EN 1	4 64 66 (9)	1:01 Pf

Figure F-2c—(continued).

1	licrosoft Excel -	Example 4-	11													_ 8 ×
:1	Eile Edit Vie	w <u>I</u> nsert	Format <u>T</u> o	ols <u>D</u> ata	Window	Help								Type a que:	stion for help	- 8 ×
:		3 (🕄 🐰	1. 1. 19	 Σ - 	2↓ ∭u [100% 👻 🕼	Arial		÷ 10 ·	B	ΙU			\$ %	= 🔛 + 🖄	- <u>A</u> -
1	10 10 20 10	> b 3	50	1 1 1 1 1	Reply with (hanges En	d Review									
	B44 👻	fx														
	A	В	С	D	E	F	G	Н		J		K	L	М	N	0
43	γ	1.55													ļ .	
44	Ma _l	0.25														
45	Vo	0.01724	m ³ /kg													
46	L	100	m													
47																
48	Calculations															
49																
50	Using Goal Se	ek or Solv	er (from th	e Tools m	enu) by	setting Eq. 4	4-173 = 0 (i.e.	cell C	53 =0),							
51	and changing]	Ma _l in cell	B44													
52																
53	Eq. 4-173=0		35.4857													
54							Goal Seek			×						
55	Calculate the o	overall critic:	al pressure	ratio, r			S <u>e</u> t cell:	4	C\$53	2						
56			0.12042				To value:	6		-						
57		1 -	0.15245				By changing ce	I: 4	B\$44	3.						
59	Colculate the r	ritical Evo	angion Fact	tor V., (di	mensionle				_							
60		ласа слр		.or, r.cr.(di			- L	OK	Cancel							
61		Y =	0.72079													
62		- cr	0.112017													
63	Test for choki	ng flow														
64																
65	Po=	874 034	kPabs													
66	- 4		1													
67	P_{1} , $P_{2} =$	-674.03	1/Da													
14 4	• • Example	4-11 / Kur	mar's data /	Solver-mel	hod /				•		1		1			<u> </u>
Dra	w 🕶 📐 A <u>u</u> toSh	napes 🕶 🔪	100		2 8 🚳	3-2	- <u>A</u> - = ==	₫ 🛛								
Point	:															
: B	itart 🛛 🚮 🙈	6	300	D N G			ndix-N	el-Pogr.	. MAppend	ix-F	BER	mple 4	- 1154		14 @ & G	5:03 PM

Figure F-2d—(continued).

(e)

APPENDIX F 955

	1icrosoft Excel -	Example 4-	11												_ 8	×
: @	<u>Eile E</u> dit <u>V</u> ie	w <u>I</u> nsert	Format <u>T</u> o	ols <u>D</u> ata	Window He	elp							Type a ques	tion for help	8	×
		3 12L X	B-10	• Σ - A	↓ []]] 100	% • @	Arial		+ 10	BI	u 📰 🗏	•a•	\$ % 1	- 🖄	- <u>A</u> -	7
11	। 🗄 🖄 🖾 🕫	33	504		aply with ⊆har	nges End	Review									
	M43 👻	fx						2								
	A	В	C	D	E	F	G	Н	1	J	K	L	M	N	0	
43	γ	1.55														_
44	Ma _l	0.1262														
45	Vo	0.01724	m ³ /kg													
46	L	100	m													
47																
48	Calculations															
49																
50	Using Goal Se	ek or Solv	rer (from th	e Tools me	nu) by sett	ing Eq. 4	-173 = 0 (i.e. cell C51	3 =0),							
51	and changing .	Ma ₁ in cell	B44													
52																
53	Eq. 4-173=0		-0.0009													
54						Goal Se	ek Status			X	1					
55	Calculate the o	verall critic	al pressure	ratio, r		Goal Ser	eking with Cel	I C53	Ĩ	OK	L					
56			0.04004			found a	solution.			Canad	<u> </u>					
57		r =	0.04804			Target v	value: 0		_	Cancer	<u> </u>					
58	O al a ul a a altar a	uitinal Euro		an V Zilini		Current	value: -0.	000932918		Step	<u> </u>					
59	Calculate the t	паса ехр	ansion raci	tor, r _{or} (airr	ensioniess,	-				Pause	L					
60		v _	0.6705				1	1	-							
61		1 cr-	0.0795													
62	Test for chairi	ng florr														
64	Test for choki	цу цоw.														
65	Po=	317.073	k Pahe													
66	- 2	511.015														
67	PA-Pa=	-117.07	kPa													
14 4	Example	4-11 / Ku	mar's data 🏑	Solver-meth	od /				1	ľ′					Þ	Г
i D <u>r</u> a	aw 🔹 🖹 A <u>u</u> toSh	apes 🔹 🔨	100	A 61	8 🗟 🕹	> - 🦽 -	<u>A</u> - =	≡ ≓ ∎	.							
Rea	dy															
	Start 🛛 🚮 🥭	S 0 4	\$ 0 6	0 1 Q		Appen	dix-N	Excel-Pogr	Append	dix-F	κample 4	115¢	🚅 () EN 1	4 67 48 69	5:08 PM	Ē

Figure F-2e—(continued).

: L1		3 🛍 🐰	B- "	9 - Σ -	₹↓ IIII	.00% 🔹 🌀	Arial		- 10 -	BI	n 📄 🗐		\$ %	E 🔃 🕶 🖄	- <u>A</u>
: 5	***	> > 3	50	5 @ W	Reply with Q	hanges En	d Review								
_	M67 -	fx		_ •											
	A	В	C	D	E	F	G	Н	1	J	K	L	M	N	0
67	$P_A - P_2 =$	-117.07	kPa											1	
68															
69	Choking flow	exists													
70	0														
71	FALSE														
72															
73	Calculate the p	ressure dro	ac												
74															
75	$\triangle \mathbf{P} = \mathbf{P}_1 - \mathbf{P}_2$	6282.927	kPa												
76															
70	Colculate the r	witical maga	o flow												
79		nuca mas	5 110 11												
80	Critical Mass	Flow rate =	21320	l kø/h											
81															
82															
83															
84					_	_									
85 oc					-										
87															
88															
89															
90															
91															
92															
94															
95															
96															
0.77	 N Example 	4-11 Kur	mar's data	/ Solver-me	thod /				•						

Figure F-2f—(continued).

22-12-2006

956 APPENDIX F

where

- ε = Relative pipe roughness, in.
- D = Pipe size, in.
- $f_{\rm D} = {\rm Darcy}$ friction factor
- Re = number.

Re-arranging the friction factor equation in the form

$$F(f_{\rm D}) = \frac{1}{f_{\rm D}^{-1/2}} + 0.8686 \ln\left\{\frac{\varepsilon}{3.7D} + \frac{2.51}{Re \cdot f_{\rm D}^{-1/2}}\right\}$$
(F-2)

The worksheet (Solution-1) in Excel spreadsheet program (Prog6a.xls) calculates the friction factor for given relative pipe roughness, pipe size, and Reynolds number. The Excel spreadsheet program Prog6a.xls and the Fortran program PROG6 show how the friction factor is determined. Table F-1 shows the computer results of a 2 in. (internal diameter = 2.067 in.) stainless steel pipe size Sch 40, with pipe roughness of 0.0018 in. and Reynolds number of 184,000 (highly turbulent flow). The calculated friction factor f = 0.02063 with an initial guess of 0.015.

The worksheet (Solution-2) in Excel spreadsheet Prog6a.xls calculates the friction factor for flow of a suspension of fibrous particles to the Reynolds number given by an empirical equation of the form [5]:

$$\frac{1}{\sqrt{f}} = \left(\frac{1}{k}\right) \ln\left(Re\sqrt{f}\right) + \left(14.0 - \frac{5.6}{k}\right) \tag{F-3}$$

where

f =friction factor

Re = Reynolds number

k =constant determined by the concentration of the suspension.

Re-arranging Eq. (F-3) gives

$$F(f) = \frac{1}{f^{1/2}} - \frac{1}{k} \ln\left(Re \cdot f^{1/2}\right) - 14.0 + \frac{5.6}{k}$$
(F-4)

Page:956

TABLE F-1 Newton–Raphson Method for a Non-Linear Equation

Initial Guess o	f the root $x = 0.0150$	
Iteration	X	F(<i>x</i>)
1	0.19423E-01	0.22078E+00
2	0.20577E-01	0.93463E-02
3	0.20630E-01	0.17983E-04
Tolerance met	in three iterations	
Final root x	= 0.20630E-01	
F(x) = 0.1793	83E-04	

FURTHER READING

- Coker, A.K., Fortran Programs For Chemical Process Design, Analysis and Simulation, Gulf Publishing Co., Houston, TX, 1995.
- 2. Gottfield, B.S., Spreadsheet Tools for Engineers Excel 5.0 Version, The McGraw-Hill Co. Inc., 1996.
- Billo, E.J., Excel for Chemists A Comprehensive Guide, Wiley-VCH, Inc., 1997.
- 4. Gottfried, B.S., *Spreadsheet Tools for Engineers Excel 2000 Version*, McGraw-Hill's Best – Basic Engineering Series and Tools, 2000.
- Lee and Duffy, "Relationships Between Velocity Profiles and Drag Reduction in Turbulent Fiber Suspension Flow", *AIChE J.*, 1976, pp. 750–753.

Font Size:9/10pt

Text Width:41p6