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Appendix H

NUMERICAL TECHNIQUES

T his appendix shows the various numerical
techniques that can be employed in solving
design problems, which could pose difficulty

if an analytical method is used. The numerical methods
can readily be incorporated into computer programs to
obtain results of design problems.

H.1 SIMPSON’S RULE FOR AREA UNDER THE CURVE

Simpson’s rule is a numerical integration technique that is widely
used in calculating the area under the curve. It is simple and has a
greater degree of accuracy than the trapezoidal rule. The Simpson’s
1/3 rule is based on quadratic polynomial interpolation.

Figure H-1 shows a section of a curve and three coordinates
erected to it at equally spaced intervals along the x-axis. Simpson’s
rule states that the area P′PQQ′ is given approximately by the
formula

Area = h

3
�y1 +4y2 +y3� (H-1)

If we reduce the step size h, the result becomes more accurate. The
interval over which the integral is to be taken is divided into larger
number of equal sub intervals as shown in Figure H-2.

We will divide the total area into four sections, namely P′PRR′,
R′RSS′, S′STT′, and T′TQQ′.

We shall write down the expression for each area and sum
them up to obtain the total area P′PQQ′.

Area of P′PRR′ = h

3
�y1 +4y2 +y3� (H-2)

Area of R′RSS′ = h

3
�y3 +4y4 +y5� (H-3)

Area of S′STT′ = h

3
�y5 +4y6 +y7� (H-4)

Area of T′TQQ′ = h

3
�y7 +4y8 +y9� (H-5)

The total area is the sum of the areas P′PRR′, R′RSS′, S′STT′, and
T′TQQ′.
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Total area = 1
3

h �y1 +4y2 +y3 +y3 +4y4 +y5 +y5 +4y6

+y7 +y7 +4y8 +y9�

= 1
3

h �y1 +4�y2 +y4 +y6 +y8�+2�y3 +y5 +y7�

+y9� (H-6)

The Simpson’s 1/3 rule for a quadratic integrated over two �x
intervals that are of uniform width or panel is

Area = I =
b∫

a

f�x� dx

= h

3
�y1 +4y2 +2y3 +4y4 +2y5 +· · ·

+2yn−1 +4yn +yn+1�+E (H-7)

= width× average height

SIMPSON’S 3/8 RULE

Simpson’s 3/8 rule is derived by integrating a third-order polyno-
mial interpolation formula. For a domain (a, b) divided into three
intervals, it is expressed as

Area = I =
b∫

a

f�x� dx = 3h

8
�y1 +3y2 +3y3 +2y4 +3y5+

+3y6 +· · ·+2yn−2 +3yn−1 +3yn +yn+1�+E

= width×height (H-8)
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964 NUMERICAL TECHNIQUES

Example H-1
A tracer experiment was carried out in a nozzle type reactor of

volume V = 5�13 L with liquid rate at 2.9 L/min. Table H-1 shows
data for the exit age distribution E��� against the dimensionless
residence time �. Determine the area under the distribution curve.

TABLE H-1

� E(�) � E(�)

0�000 0�000 1�243 0�403
0�113 0�308 1�356 0�355
0�226 0�995 1�469 0�313
0�339 0�876 1�582 0�275
0�452 0�786 1�695 0�237
0�565 0�720 1�808 0�213
0�678 0�663 1�921 0�171
0�791 0�606 2�034 0�142
0�904 0�545 2�147 0�123
1�017 0�497 2�260 0�109
1�130 0�450 2�373 0�095

(Source: A.K. Coker, Ph.D., Study of Fast Reactions in
Nozzle Type Reactors, Aston Univ., Birmingham, UK,
1985.)

A computer program PROG7 has been developed to determine the
area under the distribution curve from the residence time distribu-
tion function E�t� and expressed as follows:

∫ �

0
E�t� dt = 1 (H-9)

The average time spent by material flowing at a rate q through a
volume V

equals t = V

q
(H-10)

We can also express Eq. (H-9) in the form of dimensionless
time where

� = tq

V
(H-11)

and this becomes

∫ �

0
E��� d� = 1 (H-12)

Using the Excel spreadsheet program prog7a.xls or Fortran
program PROG7, the area under the residence time distribution
of the tracer response can be calculated. Table H-1 shows the
computer results of the program, and Figure H-3 shows a resi-
dence time distribution from a tracer experiment studying the
mixing characteristics of a nozzle type reactor that behaves non-
ideally [1].
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Figure H-3 Residence time distribution to a tracer response.

A computer program PROG7 has been developed to determine the
area under the curve. Simpson’s rule is also easy to use in Microsoft
Excel spreadsheet. We can carry this out by entering the x-values
in one column, the y-values in the next column. We then follow
this procedure by an additional column containing the y-values
multiplied by their appropriate constants (i.e., multiplied by 4 or
2, except the initial and final values). We sum the last column to
obtain the value of the integral and multiply this by �x/3.

H.2 NON-LINEAR EQUATIONS

The Newton–Raphson’s iterative method is a process for the deter-
mination of a real root of an equation f�x� = 0, given just one
point close to the desired root (Figure H-4). If we let x0 represent
the known approximate value of the root of f�x� = 0, and h be
the difference between the true value 	 and the approximate value,
we have

	 = x0 +h

From Taylor series,

f�x� = f�x0�+hf ′�x0�+ h

2!f
′′�x0�+· · ·+ h

n!f
n�x0�

(H-13)

about x0, gives

f�	� = f�x0 +h� = f�x0�+hf ′�x0�+ h

2!f
′′�
� (H-14)

where

 = x0 + �h� 0 < � < 1, lies between 	 and x0. Ignoring the

remainder term and writing f�	� = 0, we have

f�x0�+hf ′�x0� ≈ 0 (H-15)

so that

h ≈ − f�x0�

f ′�x0�
(H-16)
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Figure H-4 Newton–Raphson’s method.

Therefore, the next root that gives a better estimate than x0 is

x1 = x0 − f�x0�

f ′�x0�
(H-17)

Better approximations may be obtained by repetition (iteration) of
the process. We may write this as

xn+1 = xn − f�xn�

f ′�xn�
(H-18)

Each iteration provides the point at which the tangent at the original
point cuts the x-axis as shown in Figure H-4. The equation of the
tangent at the point �xn� f�xn�� is

y −f�xn� = f ′�xn��x−xn� (H-19)

Therefore the point �xn+1� 0� corresponds to

−f�xn� = f ′�xn��xn+1 −xn� (H-20)

which gives

xn+1 = xn − f�xn�

f ′�xn�
(H-21)

A developed computer program PROG6.FOR is used to solve non-
linear (e.g., Colebroke–White) equation using Newton–Raphson’s
method of iteration in Chapter 9.

SOLUTION OF NON-LINEAR EQUATIONS

Consider a set of N non-linear equations of the form

F�x� y� � � � � = 0

G�x� y� � � � � = 0 (H-22)

where x� y� � � � are the roots of the N equations. These equations
can be solved explicitly for the roots. If we consider some points

�x1� y1� near the root of definition for the functions F, G, we can
expand both functions by an N -dimensional Taylor series about the
point �x1� y1� as

F�x� y� � � � � = 0 = F�x1� y1� � � �+ F

x

∣∣
0
�x−x1�

+ F

y

∣∣
0
�y −y1�+· · ·

G�x� y� � � � � = 0 = G�x1� y1� � � �+ G

x

∣∣
0
�x−x1�

+ G

y

∣∣
0
�y −y1�+· · · (H-23)

Truncating the series after the first-order derivative and rewriting
in matrix form will yield

⎡
⎢⎢⎣

F
x

�0 F
y

�0 � � �
G
x

�0 G
y

�0 � � �

���

⎤
⎥⎥⎦

⎡
⎢⎣

x−x1
y −y1

���

⎤
⎥⎦=

⎡
⎢⎣

F −F0
G−G0

���

⎤
⎥⎦ (H-24)

We can solve for the roots x� y� � � � which give F = G = � � � = 0
as

⎡
⎢⎣

x
y
���

⎤
⎥⎦=

⎡
⎢⎣

x1
y1
���

⎤
⎥⎦−

⎡
⎢⎢⎣

F
x

�0 F
y

�0 � � �
G
x

�0 G
y

�0 � � �

���

⎤
⎥⎥⎦

−1⎡
⎢⎣

F0
G0
���

⎤
⎥⎦ (H-25)

for N = 1
Equation (H-25) becomes

x = x1 − F0
F
x

�0
(H-26)

This is Newton–Raphson’s method for finding the roots of an
equation.

When N = 2

x = x1 − F0
G
x

∣∣
0
−G0

F
x

∣∣
0

F
x

∣∣
0
· G

y

∣∣
0
− F

y

∣∣
0
· G

x

∣∣
0

y = y1 − −F0
G
y

∣∣
0
+G0

F
y

∣∣
0

F
x

∣∣
0
· G

y

∣∣
0
− F

y

∣∣
0
· G

x

∣∣
0

(H-27)

Equation (H-27) is a two-dimensional generalization of Newton’s
method. This technique is often employed to solve large sets of
non-linear algebraic equations. Care must be taken in choosing
initial guess �x1� y1� quite close to the final roots, as the algorithm
may diverge. A developed computer program PROG8 is used to
solve non-linear equations as illustrated by the following example.

The computer program PROG8 can be used to solve any
number of non-linear equations. The partial derivatives of the func-
tions are estimated by the difference quotients when a variable is
perturbed by an amount equal to a small value ��� used in the
program to perturb the X-values. Table H-2 shows the computer
results of Example H-2.

H.3 SOLUTION OF SIMULTANEOUS, FIRST-ORDER,
ORDINARY DIFFERENTIAL EQUATIONS

Analytical solutions to complex kinetic reactions in reactor systems
are time-consuming and intractable. The designer must resort to
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Example H-2
A pair of reactions A+B

k1−→ 2C and A+C
k2−→ D are conducted

in a four-stage continuous flow stirred tank reactors (CFSTR)
with CAO = 0�9 mol/m3, CBO = 0�3 mol/m3, and CCO = CDO =
0 mol/m3. The residence time in each stage is 10 min. Determine
the exit concentrations of A and B in the four CFSTRs. The rate
expressions are

�−rA� = k1 CA CB +k2 CA CC and �−rB� = k1 CA CB mol/m3 min

where

k1 = 0�3 m3/mol min
k2 = 0�15 m3/mol min�

Solution
Figure H-5 shows a battery of CFSTR with CAO = 0�9 mol/m3

and CBO = 0�3 mol/m3 in the first tank and where, V1 = V2 =
V3 = V4 = VR, u = volumetric flow rate, and the residence time,
t̄ = VR/u = 10 min.
General mass balance

Input by flow = output by flow+disappearance by reaction

+ accumulation

Assuming that the operation is at steady state and, therefore, accu-
mulation = 0
Mass balance on first CFSTR
The material balance on species A is:

uCA0 = uCA1 + �k1 CA1 CB1 +k2 CA1 CC� VR (H-28)

The stoichiometry between species A, B, and C is

CC = 3�CB0 −CB�− �CA0 −CC�

= 0�9−3CB −0�9+CA

CC = CA −3CB (H-29)

Substituting Eq. (H-29) into Eq. (H-28) gives

CA0 = CA1 +CA1 t̄ �k1 CB1 +k2�CA1 −3CB1��

or

0�9 = CA1 +3CA1 CB1 +1�5 CA1�CA1 −3CB1� (H-30)

L

CAO CBO

1
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CA2

CA2

CE1

CE2
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CE3 CA4 CA4
CE4 CE4

3

u

2

Figure H-5 A battery of CFSTR.

Material balance on species B is

uCB0 = uCB1 +k1 CA1 CB1 VR (H-31)

or

0�3 = CB1 +3CA1CB1 (H-32)

Second CFSTR Material balance on species A is

uCA1 = uCA2 + �k1 CA2CB2 +k2 CA2�CA2 −3CB2��VR

(H-33)

or

CA1 = CA2 +10�0�3 CA2 CB2 +0�15 CA2�CA2 −3CB2��

(H-34)

Material balance on species B is

uCB1 = uCB2 +k1 CA2 CB2 VR (H-35)

or

CB1 = CB2 +3CA2CB2 (H-36)

Rearranging Eq (H-35) and (H-36) yields

CA2 +3CA2CB2 +1�5CA2�CA2 −3CB2� = CA1

CB2 +3CA2CB2 = CB1 (H-37)

Third CFSTR
The material balances on species A and B are

CA3 +3CA3CB3 +1�5CA3�CA3 −3CB3� = CA2

CB3 +3CA3CB3 = CB2 (H-38)

(continued)
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Example H-2 —(continued)

Fourth CFSTR
The material balances on species A and B are

CA4 +3CA4CB4 +1�5CA4�CA4 −3CB4� = CA3

CB4 +3CA4CB4 = CB3 (H-39)

These are eight non-linear equations involving the material balances
of species A and B in the four stirred tank reactors. Rearranging
these equations yields the following:

1�5CA1
2 −1�5CA1CB1 +CA1 −0�9 = 0

3CA1CB1 +CB1 −0�3 = 0
1�5CA2

2 −1�5CA2CB2 +CA2 −CA1 = 0
3CA2CB2 +CB2 −CB1 = 0

1�5CA3
2 −1�5CA3CB3 +CA3 −CA2 = 0

3CA3CB3 +CB3 −CB2 = 0
1�5CA4

2 −1�5CA4CB4 +CA4 −CA3 = 0
3CA4CB4 +CB4 −CB3 = 0

(H-40)

A computer program PROG8 was developed using the Newton–
Raphson’s method to determine the outlet concentration of species
A and B from the four stirred tank reactors. The eight equations
(Eqs H-40) are supplied as functions in the subroutine of PROG8 as

F�1� = 1�5∗X�1�∗X�1�−1�5∗X�1�∗X�2�+X�1�−0�9

F�2� = 3�0∗X�1�∗X�2�+X�2�−0�3

F�3� = 1�5 ∗ X�3� ∗ X�3�−1�5∗X�3�∗X�4�+X�3�−X�1�

F�4� = 3�0∗X�3�∗X�4�+X�4�−X�2�

F�5� = 1�5∗X�5�∗X�5�−1�5∗X�5�∗X�6�+X�5�−X�3�

F�6� = 3�0∗X�5�∗X�6�+X�6�−X�4�

F�7� = 1�5∗X�7�∗X�7�−1�5∗X�7�∗X�8�+X�7�−X�5�

F�8� = 3�0∗X�7�∗X�8�+X�8�−X�6� (H-41)

where

CA1 = X�1��CB1 = X�2��CA2 = X�3��CB2 = X�4�
CA3 = X�5��CB3 = X�6��CA4 = X�7��CB4 = X�8�.

The exit concentrations of species A and B from the computer
results and the initial guesses of

CA1 = 0�1�CB1 = 0�1�CA2 = 0�1�CB2 = 0�1�CA3 = 0�1�CB3 =
0�1�CA4 = 0�1�CB4 = 0�1, are as follows.

CA1 = X�1� = 0�54599 CB1 = X�2� = 0�11372
CA2 = X�3� = 0�3703 CB2 = X�4� = 0�05386
CA3 = X�5� = 0�2718 CB3 = X�6� = 0�02958
CA4 = X�7� = 0�21107 CB4 = X�8� = 0�01792�

TABLE H-2 Newton Method For Solving Non-linear
Equations

Initial roots

X(1)= 0.1000
X(2)= 0.1000
X(3)= 0.1000
X(4)= 0.1000
X(5)= 0.1000
X(6)= 0.1000
X(7)= 0.1000
X(8)= 0.1000

Final roots

X(1)= 0.54599
X(2)= 0.11372
X(3)= 0.37030
X(4)= 0.05386
X(5)= 0.27180
X(6)= 0.02958
X(7)= 0.21107
X(8)= 0.01792

numerical techniques with the aid of a computer for his or her
solutions. The reactions taking place in batch and piston flow reac-
tions involve a set of simultaneous, first-order, ordinary differential
equations. Several numerical methods have been used for solving
sets of equations, and the most popular method is the Runge–Kutta
fourth order. The Runge–Kutta is a powerful integration technique
that can be easily implemented on a personal computer. The only
drawback is its instability if the step size is too large. In a set of
equations, the Runge–Kutta algorithm uses the same step size for

each member of the set of equations. This causes practical prob-
lems if the set is stiff where some members of these equations
have characteristic times much smaller than other members of the
equations. An example is the free-radical kinetics reaction, which
has rates that may differ by three orders of magnitude.

In general, a system of nth first-order equations will be of
the form

dyi

dx
= fi�x� yo� y1� y2� � � � � yn−1�� i = 0� 1� 2� 3� � � � � n

(H-42)

with n initial conditions yi�X0� = Ai� i = 0� 1� 2� � � � � n
Consider the system of two equations:

dy

dx
= f�x� y� z�y�x0� = y0 (H-43)

dz

dx
= g�x� y� z�z�x0� = z0 (H-44)

We may advance the solution of y and z to new values at x1 =
x0 +h using any of the one-step or Runge–Kutta methods.

In general, our solutions will be advanced using expressions
of the form

y�x1� = y�x0�+K (H-45)

z�x1� = z�x0�+L (H-46)

where the nature of K or L depends on the method being applied.
For the Runge–Kutta fourth order

K = K1 +2K2 +2K3 +K4

6
(H-47)
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and

L = L1 +2L2 +2L3 +L4

6
(H-48)

where

K1 = hf�x0� y0� z0� (H-49)

L1 = hg�x0� y0� z0� (H-50)

K2 = hf

(
x0 + 1

2
h�y0 + 1

2
K1�+ z0 + 1

2
L1

)
(H-51)

L2 = hg

(
x0 + 1

2
h�y0 + 1

2
K1� z0 + 1

2
L1

)
(H-52)

K3 = hf

(
x0 + 1

2
h�y0 + 1

2
K2� z0 + 1

2
L2

)
(H-53)

L3 = hg

(
x0 + 1

2
h�y0 + 1

2
K2� z0 + 1

2
L2

)
(H-54)

K4 = hf �x0 +h�y0 +K3� z0 +L3� (H-55)

L4 = hg�x0 +h�y0 +K3� z0 +L3� (H-56)

H.4 EXTENSION OF RUNGE–KUTTA METHODS

RUNGE–KUTTA–GILL METHOD

The Runge–Kutta–Gill method is the most widely used single-
step method for solving ordinary differential equations. For the
differential equation

dy

dx
= f�x� y�� y�xn� = yn (H-57)

yn+1 =yn + 1
6

[
k1 +2

(
1− 1√

2

)
k2 +2

(
1+ 1√

2

)
k3 +k4

]

+O�h5� (H-58)

where

k1 = hf�xi� yi�

k2 = hf

(
xi +

h

2
� yi +

1
2

k1

)

k3 = hf

(
xi +

h

2
� yi +

[−1
2

+ 1√
2

]
k1 +

[
1− 1√

2

]
k2

)

k4 = hf

(
xi +h�yi −

1√
2

k2 +
[

1+ 1√
2

]
k3

)
(H-59)

THE RUNGE–KUTTA–MERSON METHOd

The Runge–Kutta–Merson method outlines a process for deciding
the step size for better predetermined accuracy. For this method,
five functions are evaluated at every step. The algorithm is

k1 = hf�xi� yi�

k2 = hf
(

xi +
h

3
� yi +

k1

3

)

k3 = hf
(

xi +
h

3
� y1 + k1

6
+ k2

6

)

k4 = hf
(

xi +
h

2
� yi +

k1

8
+ 3k3

8

)

k5 = hf
(

xi +h�yi +
k1

2
− 3k3

2
+2k4

)

yn+1 = yn + 1
6

�k1 +4k4 +k5�+O�h5� (H-60)

We can estimate the local error from a weighted sum of the indi-
vidual estimate.

E = 1
30

�2k1 −9k3 +8k4 −k5� (H-61)

The following Example H-3 illustrates the use of Runge–Kutta
fourth order with the Excel spreadsheet.

H.5 PARTIAL DIFFERENTIAL EQUATION

If two or more independent variables are involved in a differen-
tial equation, we can express the differential equation as partial
differential equation (PDE).

We shall consider the second-order equation (PDE) of the
form

A
�2u

�x2
+B

�2u

�x�y
+C

�2u

�y2
+D

(
x� y�u�

�u

�x
�

�u

�y

)
= 0 (H-65)

where the coefficients A, B, C, and D are functions of x, y, and
u; x and y are the independent variables and u is the dependent
variable. We can classify Eq. (H-65) with respect to the sign of the
discriminant � = �B2 − 4AC�. The equation is elliptical if � < 0,
hyperbolic if � > 0, and parabolic type if � = 0.

ELLIPTICAL EQUATION

�2u

�x2
+ �2u

�y2
= −u (H-66)

and the Laplace equation

�2u

�x2
+ �2u

�y2
= 0 (H-67)

The coefficients A = C = 1�B = 0 and B2 −4AC = −4 are exam-
ples of elliptical equation.

HYPERBOLIC EQUATION

The wave equation

�2u

�t2
= Tg

w

�2u

�x2
(H-68)

is a hyperbolic type where the coefficients A = 1, B = 0, C = −1
and B2 −4AC = 4

PARABOLIC EQUATION

The heat conduction equation

�u

�t
= k

c�

�2u

�x2
(H-69)

is a parabolic type where the coefficients A = 0, B = 0, C = 1 and
B2 −4AC = 0.
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A method for solving the above partial differential equations is
to replace the derivatives by difference quotients; that is, converting
the equation to a difference equation. We can then write the differ-

ence equation that corresponds to each point at the intersections
(nodes) of a grid work that subdivides the region of interest at
which the function values are known. Solving these equations

Example H-3
Consider the dynamic response of component A in a CFSTR under-
going a first-order reaction represented by

�−rA� = kCA

(
mol

dm3 min

)

The rate constant decay is

k = ko −at2 �min−1�

The first-order differential equation from the mass balance is:

dCA

dt
= u

VR
CA0 −

(
u

VR
+ko −at2

)
CA (H-62)

Spreadsheet programming: The Excel program (Prog8a.xls) is used
to create numerical solutions using the fourth-order Runge–Kutta
by rearranging the above equation to yield

�CA = CA −CA0 =
[

uCA0

VR
−
(

u

VR
+ko −at2

)
CA

]
�t

(H-63)

The transient response concentration CA is

CA = CA0 +
[

uCA0

VR
−
(

u

VR
+ko −at2

)
CA

]
�t (H-64)

Figure H-6 shows the spreadsheet snap shot of the numerical
Runge–Kutta method. Further details are given by Coker, A.K.
(Hydroc. Proc., Dec 2004, pp. 77–85).

Figure H-6 Simul ation of CFSTR reaction with the Excel program.
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Δx
yi + 2

yi + 1
    

yi  • •

•

•

    •

yi – 1

yi – 2

xi – 2 xi – 1 xi + 1 xi + 2xi

   

Δy

Figure H-7

simultaneously gives values for the function at each node that
approximates the true values.

Let h = �x equal spacing of grid work in the x – direction as
shown in the Figure H-7.

From Taylor series,

f�xn +h� =f�xn�+f ′�xn�h+ f ′′�xn�h
2

2
+ f ′′′�xn�h

3

6

+ f ′′′′�xn�h
4

24
+ � � � for xn < 
1 < xn +h

(H-70)

and

f�xn +h� =f�xn�−f ′�xn�h+ f ′′�xn�h
2

2
− f ′′′�xn�h

3

6

+ f ′′′′�xn�h
4

24
+ � � � for xn −h < 
2 < xn

(H-71)

It follows that

f�xn +h�+f�xn −h� = 2f�xn�+f ′′�xn�h
2 + f ′′′′�
�

12
h2

(H-72)

or

f ′′�xn�+ f ′′′′�
�h2

12
= f�xn +h�−2f�xn�+f�xn −h�

h2
for

xn −h < 
 < xn +h (H-73)

Using the subscript notation, we have

f ′′�xn�+O�h2� = fn+1 −2fn +fn+1

h2
(H-74)

where the subscripts of f indicate the x-values at which it is
evaluated. The order relation O�h2� shows that error approaches
proportionality to h2 as h → 0.

Similarly, the first derivative is approximated to

f�xn +h�−f�xn −h� = 2f ′�xn�h+O�h2� (H-75)

or

f ′�xn� = f�xn +h�−f�xn −h�

2h
(H-76)

= fn+1 −fn−1

2h
(H-77)

The first derivative could also be approximated by the forward or
backward difference, but would have an error of O�h�. The central
difference approximation gives the more accurate approximation.

When f is a function of both x and y, we can obtain

the second partial derivative with respect to x,
�2u

�x2
, by holding y

constant and evaluating the function at three points where x equals

xn, xn +h, and xn −h. Correspondingly, the partial derivative
�2u

�y2

is determined by holding x constant.
Consider the Laplace equation on a region in the xy plane. We

subdivide the region with equispaced lines parallel to the x- and
y-axes. Consider the region near �xi� yi�.

�2u = �2u

�x2
+ �2u

�y2
= 0 (H-78)

We can replace the derivatives by difference quotients which
approximate the derivatives at point �xi� yi�. Then we have

�2u�xi� yi� = u�xi+1� yi�−2u�xi� yi�+u�xi−1� yi�

�x2

+ u�xi� yi+1�−2u�xi� yi�+u�xi� yi−1�

�2y
= 0

(H-79)

or

�2ui�j = ui+1�j −2ui�j +ui−1�j

��x�2
+ ui�j+1 −2ui�j +ui�j−1

��y�2
= 0

(H-80)

If we let �x = �y = h, the PDE becomes

�2ui�j = 1
h2

(
ui+1�j +ui−1�j +ui�j+1 +ui�j−1 −4ui�j

)= 0

(H-81)

This is known as the standard five-point formula, as five points are
involved in the relationship of Eq. (H-81) which points to the right,
left, above, and below the central point �xi� yi�. We can write Eq.
(H-81) as

ui�j = 1
4

(
ui+1�j +ui−1�j +ui�j+1 +ui�j−1

)
(H-82)
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Instead of Eq. (H-82), we may also use the formula

ui�j = 1
4

(
ui−1�j−1 +ui+1�j−1 +ui+1�j+1 +ui−1�j+1

)
(H-83)

Therefore, the general procedure is to approximate the PDE by a
finite difference transformation and then to obtain the solution at
the mesh points, using the finite difference approximations. Other
numerical methods of solution are the implicit Crank–Nicolson
method or the alternating direction implicit scheme (ADI) by
Peaceman and Rachford. Details of these methods are illustrated in
Numerical analysis texts.

H.6 THE EXPLICIT METHOD

The explicit method divides space and time into discrete uniform
subintervals and replaces both time and space derivatives by finite
difference approximations, permitting one to easily compute values
of the function at a time �t after the initial time. These values
are then used to compute a second set of values and the process
is repeated. An approach to solving parabolic partial differential
equations by a numerical method is to replace the partial deriva-
tives by finite-difference approximations. An example is the one-
dimensional heat flow equation.

�2u

�x2
= c�

k

�u

�t
(H-84)

We can use the relations

�2u

�x2

∣∣∣∣∣x = xi

t = tj

= ui+1
j −2ui

j +ui−1
j

��x�2
+O��x�2 (H-85)

and

�u

�t

∣∣∣∣∣x = xi

t = tj

= ui
j+1 −ui

j

�t
+O��t� (H-86)

The subscripts are used to denote the position and superscripts
for time.

Substituting Eqs (H-85) and (H-86) into Eq. (H-84) and
solving for ui

j+1 gives the equation for the forward-difference
method:

ui
j+1 = k�t

c���x�2

(
ui+1

j −ui−1
j
)+

(
1− 2k�t

c���x�2

)
ui

j (H-87)

Solving for ui
j+1 in terms of the temperatures at time tj in Eq.

(H-87) for a parabolic partial-differential equation involves subdi-
viding the length into uniform subintervals and applying the finite-
difference approximation to Eq. (H-84) at each point where u is
not known. Eq. (H-87) then gives the values of u at each inte-
rior point at t = t1 since the values at t = t0 are given by the
initial conditions. It can be used to get values at t2 using the
values at t1 as initial conditions, so the solution can be stepped
forward in time. At the end points, the boundary conditions will
determine u.

The relative size of the time and distance steps, �t and �x,
affects Eq. (H-87). If the ratio of �t/��x�2 is chosen so that
k�t/c���x�2 = 1

2 , the equation is simplified in that the last term
vanishes and we have

ui
j+1 = 1

2
�ui+1

j +ui−1
j� (H-88)

If the value k�t/c���x�2 is chosen as less than one-half, there
will be improved accuracy (limited by the errors dependent on the
size of �x). If the value is chosen greater than one-half, which
would reduce the number of calculations required to advance the
solution through a given interval of time, the phenomenon of
instability sets in. An example is used to illustrate the explicit
method.

H.7 INITIAL VALUE METHODS

Another method for solving boundary value problems is to treat
them like initial value problems. Since a second-order equation
can be reduced to two first-order equations, two initial condi-
tions are required. One condition will be known at a boundary:
simply assume a value for the other dependent variable at that same
boundary, integrate to the other side, and check if the required
boundary condition is satisfied. If not, change the initial value
and repeat the integration. The result of this method depends
upon the skill with which the iterations are employed in the
program.

FINITE DIFFERENCE METHOD IN EXCEL

The Microsoft Excel spreadsheet can be used to program the finite
difference method and use the “Calculation” feature to handle the
circular reference. First, turn off the iteration, prepare the spread-
sheet, and then turn the calculation back on. Whether this converges
depends upon the initial guess.

Consider a reaction and diffusion in a flat layer with a first-
order reaction represented by

d
dx

(
D

dc

dx

)
= kc� with boundary conditions

dc

dx
�0� = 0� c�R� = co

(H-89)

where

D = diffusivity
c = concentration
x = position (distance).

The idea in the finite difference method is that the differential
equation, valid for all x positions, is replaced by a set of equations
representing the equation only at the grid points. Using the finite
difference method as derived above, the equation at the grid point is

D
ci+1 −2ci + ci−1

�x2
= kci� where ci = c�xi� (H-90)

Re-arranging Eq. (H-90) to the following form gives

ci = ci+1 + ci−1

�2+k�x2/D�
(H-91)
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Identify the cells (B1, C1, and D1) in the spreadsheet with the
value of concentration at a node i as shown below.

A1 B1 C1 D

k�x2/D ci−1 ci ci+1

Put the value of k�x2/D in cell A1. The equation for cell C1
is represented by Eq. (H-92) as

= �D1+B1�/�2+$A$1� (H-92)

Next, copy this equation over a series of cells that correspond to
the number of grid points. For the first and last cell (grid point) use
a different equation appropriate to the boundary condition. Then
turn on the iteration feature to get the solution.

The next step is to resolve the problem using more grid
point and a smaller �x. This entails that the spreadsheet must
be programmed, which gives an indication of whether the answer
changes much as the mesh is refined. This ensures that the problem
is accurately solved.

H.8 FINITE DIFFERENCE METHOD FOR ELLIPTIC
EQUATIONS

Consider the heat condition equation with a heat generation term as:

k

(
�2T

�x2
+ �2T

�y2

)
= Q (H-93)

The finite difference form of Eq. (H-93) is solved on a worksheet
by replacing the derivatives with central differences centered on
grid point (i, j).

Ti+1�j −2Ti�j +Ti−1�j

�x2
+ Ti�j+1 −2Ti�j +Ti�j−1

�y2
= Q

k
(H-94)

where Ti�j is the temperature at the ith location in the x-direction
and the jth location in the y-direction. Assuming that the grid
spacing �x = �y, Eq. (H-94) is rearranged as

Ti�j = Ti+1�j +Ti−1�j +Ti�j+1 +Ti�j−1

4
−�x2 Q

k
(H-95)

The spreadsheet is then arranged as shown below:

A4 – �x2Q/k C4 – Ti�j−1

B5 – Ti−1�j C5 – Ti�j D5 – Ti+1�j

C6 – Ti�j+1

When the value of �x2Q/k is placed in cell A4, the equation for
cell C5 is:

= �D5+B5+C6+C4�/4−$A$4 (H-96)

In the worksheet, the boundaries of the problem are set with
the fixed or derivative values of the boundary conditions, and the
interior points are set with Eq. (H-96). Then copy this for every
internal grid point, set the boundary equations, and turn on the
iteration feature to obtain the solution. This is further carried out
again with a finer mesh to assess the accuracy. If the heat of
generation term depends upon temperature, it is easy to include
that complication just by inserting the formula in place of $A$4.

Example H-4
A large flat steel plate is 2 cm thick. If the initial temperatures (	 C)
within the plate are given, as a function of the distance from one
face, by the equations

u = 100x for 0 ≤ x ≤ 1
u = 100�2−x� for 1 ≤ x ≤ 2

find the temperatures as a function of x and t if both faces are
maintained at 0	 C [3].
Data:

k = 0�13 cal/s cm 	 C

c = 0�11 cal/g 	 C

� = 7�8 g/cm3

Solution
since the plate is large, the lateral flow of heat relative to the flow
perpendicular to the faces can be neglected, and therefore Eq. (H-
84) is used for heat flow in one direction. In order to use Eq. (H-88)
as an approximation to the physical problem, we subdivide the total
thickness into an integral number of spaces.
If we use �x = 0�25, this gives eight subdivisions. From Eq. (H-88),
�t is fixed by the relation

k�t

c���x�2
= 1

2

�t = �0�11��7�8��0�25�2

�2��0�13�
= 0�206 s

The boundary conditions are

u�0� t� = 0 u�2� t� = 0

The initial conditions are

u�x� 0� = 100x for 0 ≤ x ≤ 1
u�x� 0� = 100�2−x� for 1 ≤ x ≤ 2

The computer program PROG9 uses the simple algorithm of Eq.
(H-88), which indicates that at each interior point the temperature
at any point at the end of a time step is just the arithmetic average
of the temperatures at the adjacent points at the beginning of that
time step. The end temperatures are given by the boundary condi-
tions. Because the temperatures are symmetrical on either side of
the center line, we calculate only for x ≤ 1�0. The temperature at
x = 1�25 is the same as at x = 0�75. Table H-3 gives the results of
the program.

(continued)
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Example H-4—(continued)

TABLE H-3 Potential Values in One Dimension by Explicit
Method

FOR X = 0.0 TO X=10.0 WITH DELTA X OF 1.000
AT T= 0.000

20.000
FOR X= 0.0 TO X=10.0 WITH DELTA X OF 1.000
AT T= 0.000

20.000
FOR X= 0.0 TO X=10.0 WITH DELTA X OF 1.000
AT T= 0.000

20.000
FOR X= 0.0 TO X=10.0 WITH DELTA X OF 1.000
AT T= 0.000

20.000
FOR X= 0.0 TO X=10.0 WITH DELTA X OF 1.000
AT T= 0.000

20.000
FOR X= 0.0 TO X=10.0 WITH DELTA X OF 1.000
AT T= 0.000

20.000
FOR X= 0.0 TO X=10.0 WITH DELTA X OF 1.000
AT T= 0.000

20.000
FOR X= 0.0 TO X=10.0 WITH DELTA X OF 1.000
AT T= 0.000

20.000
FOR X= 0.0 TO X=10.0 WITH DELTA X OF 1.000
AT T= 0.000

20.000
FOR X= 0.0 TO X=10.0 WITH DELTA X OF 1.000
AT T= 0.000

20.000
FOR X= 0.0 TO X=10.0 WITH DELTA X OF 1.000
AT T= 0.000

20.000

VALUES AT T= 0.288
0.000 15.000 20.000 20.000 20.000 20.000
20.000 20.000 20.000 40.000 100.000

VALUES AT T= 0.576
0.000 15.000 20.000 20.000 20.000 20.000
20.000 20.000 20.000 40.000 100.000

VALUES AT T= 0.863
0.000 10.938 17.500 19.688 20.000 20.000
20.000 21.250 30.000 56.250 100.000

VALUES AT T= 1.151
0.000 10.938 17.500 19.688 20.000 20.000
20.000 21.250 30.000 56.250 100.000

VALUES AT T= 1.439
0.000 9.023 15.469 18.691 19.766 20.059
20.938 25.234 38.125 63.906 100.000

VALUES AT T= 1.727
0.000 9.023 15.469 18.691 19.766 20.059
20.938 25.234 38.125 63.906 100.000

VALUES AT T= 2.015
0.000 7.855 13.965 17.635 19.375 20.443
22.793 29.476 44.141 68.579 100.000

VALUES AT T= 2.303
0.000 7.855 13.965 17.635 19.375 20.443
22.793 29.476 44.141 68.579 100.000

VALUES AT T= 2.590
0.000 7.048 12.820 16.717 19.083 21.153
24.997 33.351 48.741 71.808 100.000

(continued)

(continued)

TABLE H-3—(continued)

VALUES AT T= 2.878
0.000 7.048 12.820 16.717 19.083 21.153
24.997 33.351 48.741 71.808 100.000

VALUES AT T= 3.166
0.000 6.452 11.942 16.007 18.987 22.081
27.239 36.751 52.380 74.210 100.000

VALUES AT T= 3.454
0.000 6.452 11.942 16.007 18.987 22.081
27.239 36.751 52.380 74.210 100.000

VALUES AT T= 3.742
0.000 6.002 11.280 15.518 19.091 23.134
29.383 39.705 55.335 76.083 100.000

VALUES AT T= 4.030
0.000 6.002 11.280 15.518 19.091 23.134
29.383 39.705 55.335 76.083 100.000

VALUES AT T= 4.317
0.000 5.666 10.803 15.233 19.364 24.245
31.380 42.270 57.784 77.591 100.000

VALUES AT T= 4.605
0.000 5.666 10.803 15.233 19.364 24.245
31.380 42.270 57.784 77.591 100.000

VALUES AT T= 4.893
0.000 5.423 10.486 15.124 19.767 25.372
33.218 44.507 59.845 78.835 100.000

VALUES AT T= 5.181
0.000 5.423 10.486 15.124 19.767 25.372
33.218 44.507 59.845 78.835 100.000

VALUES AT T= 5.469
0.000 5.262 10.304 15.159 20.268 26.488
34.902 46.469 61.604 79.879 100.000

VALUES AT T= 5.757
0.000 5.262 10.304 15.159 20.268 26.488
34.902 46.469 61.604 79.879 100.000

VALUES AT T= 6.044
0.000 5.168 10.236 15.312 20.838 27.577
36.445 48.200 63.120 80.767 100.000

VALUES AT T= 6.332
0.000 5.168 10.236 15.312 20.838 27.577
36.445 48.200 63.120 80.767 100.000

VALUES AT T= 6.620
0.000 5.131 10.261 15.557 21.454 28.632
37.858 49.738 64.440 81.532 100.000

VALUES AT T= 6.908
0.000 5.131 10.261 15.557 21.454 28.632
37.858 49.738 64.440 81.532 100.000

VALUES AT T= 7.196
0.000 5.141 10.361 15.873 22.100 29.646
39.158 51.111 65.599 82.197 100.000

VALUES AT T= 7.484
0.000 5.141 10.361 15.873 22.100 29.646
39.158 51.111 65.599 82.197 100.000

VALUES AT T= 7.771
0.000 5.189 10.520 16.242 22.762 30.618
40.355 52.346 66.624 82.781 100.000

VALUES AT T= 8.059
0.000 5.189 10.520 16.242 22.762 30.618
40.355 52.346 66.624 82.781 100.000

VALUES AT T= 8.347
0.000 5.267 10.725 16.649 23.430 31.548
41.461 53.462 67.538 83.297 100.000

VALUES AT T= 8.635
0.000 5.267 10.725 16.649 23.430 31.548
41.461 53.462 67.538 83.297 100.000

(continued)
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Example H-4—(continued)

TABLE H-3—(continued)

VALUES AT T= 8.923
0.000 5.368 10.965 17.083 24.097 32.435
42.486 54.476 68.358 83.756 100.000

VALUES AT T= 9.211
0.000 5.368 10.965 17.083 24.097 32.435
42.486 54.476 68.358 83.756 100.000

VALUES AT T= 9.498
0.000 5.486 11.231 17.534 24.757 33.281
43.438 55.401 69.097 84.168 100.000

VALUES AT T= 9.786
0.000 5.486 11.231 17.534 24.757 33.281
43.438 55.401 69.097 84.168 100.000

VALUES AT T= 10.074
0.000 5.618 11.514 17.995 25.405 34.088
44.326 56.250 69.769 84.539 100.000

VALUES AT T= 10.362
0.000 5.618 11.514 17.995 25.405 34.088
44.326 56.250 69.769 84.539 100.000

VALUES AT T= 10.650
0.000 5.759 11.809 18.459 26.037 34.856
45.155 57.031 70.381 84.876 100.000

VALUES AT T= 10.938
0.000 5.759 11.809 18.459 26.037 34.856
45.155 57.031 70.381 84.876 100.000

VALUES AT T= 11.225
0.000 5.906 12.110 18.922 26.653 35.587
45.931 57.754 70.942 85.184 100.000

VALUES AT T= 11.513
0.000 5.906 12.110 18.922 26.653 35.587
45.931 57.754 70.942 85.184 100.000

VALUES AT T= 11.801
0.000 6.056 12.414 19.380 27.250 36.283
46.659 58.424 71.458 85.465 100.000

VALUES AT T= 12.089
0.000 6.056 12.414 19.380 27.250 36.283
46.659 58.424 71.458 85.465 100.000

VALUES AT T= 12.377
0.000 6.207 12.717 19.830 27.827 36.946
47.343 59.048 71.935 85.724 100.000

VALUES AT T= 12.665
0.000 6.207 12.717 19.830 27.827 36.946
47.343 59.048 71.935 85.724 100.000

VALUES AT T= 12.952
0.000 6.358 13.017 20.269 28.383 37.577
47.987 59.629 72.378 85.963 100.000

VALUES AT T= 13.240
0.000 6.358 13.017 20.269 28.383 37.577
47.987 59.629 72.378 85.963 100.000

VALUES AT T= 13.528
0.000 6.508 13.312 20.697 28.918 38.178
48.594 60.174 72.789 86.185 100.000

VALUES AT T= 13.816
0.000 6.508 13.312 20.697 28.918 38.178
48.594 60.174 72.789 86.185 100.000

VALUES AT T= 14.104
0.000 6.655 13.601 21.112 29.432 38.749
49.167 60.684 73.173 86.391 100.000

(continued)

TABLE H-3—(continued)

VALUES AT T= 14.392
0.000 6.655 13.601 21.112 29.432 38.749
49.167 60.684 73.173 86.391 100.000

VALUES AT T= 14.967
0.000 6.800 13.882 21.513 29.925 39.293
49.709 61.163 73.531 86.583 100.000

VALUES AT T= 15.255
0.000 6.940 14.154 21.900 30.398 39.811
50.221 61.613 73.867 86.763 100.000

VALUES AT T= 15.543
0.000 6.940 14.154 21.900 30.398 39.811
50.221 61.613 73.867 86.763 100.000

VALUES AT T= 15.831
0.000 7.076 14.418 22.272 30.850 40.303
50.705 62.038 74.183 86.931 100.000

VALUES AT T= 16.118
0.000 7.076 14.418 22.272 30.850 40.303
50.705 62.038 74.183 86.931 100.000

VALUES AT T= 16.406
0.000 7.208 14.672 22.630 31.283 40.772
51.164 62.438 74.480 87.089 100.000

VALUES AT T= 16.694
0.000 7.208 14.672 22.630 31.283 40.772
51.164 62.438 74.480 87.089 100.000

VALUES AT T= 16.982
0.000 7.335 14.917 22.974 31.696 41.218
51.599 62.817 74.760 87.238 100.000

VALUES AT T= 17.270
0.000 7.335 14.917 22.974 31.696 41.218
51.599 62.817 74.760 87.238 100.000

VALUES AT T= 17.558
0.000 7.457 15.152 23.303 32.091 41.643
52.012 63.175 75.023 87.378 100.000

VALUES AT T= 17.845
0.000 7.457 15.152 23.303 32.091 41.643
52.012 63.175 75.023 87.378 100.000

VALUES AT T= 18.133
0.000 7.575 15.378 23.618 32.468 42.047
52.403 63.513 75.273 87.510 100.000

VALUES AT T= 18.421
0.000 7.575 15.378 23.618 32.468 42.047
52.403 63.513 75.273 87.510 100.000

VALUES AT T= 18.709
0.000 7.688 15.594 23.920 32.828 42.431
52.775 63.834 75.508 87.635 100.000

VALUES AT T= 18.997
0.000 7.688 15.594 23.920 32.828 42.431
52.775 63.834 75.508 87.635 100.000

VALUES AT T= 19.285
0.000 7.796 15.801 24.208 33.171 42.797
53.128 64.138 75.731 87.752 100.000

VALUES AT T= 19.572
0.000 7.796 15.801 24.208 33.171 42.797
53.128 64.138 75.731 87.752 100.000

VALUES AT T= 19.860
0.000 7.900 16.000 24.483 33.499 43.145
53.463 64.426 75.942 87.864 100.000

VALUES AT T= 20.148
0.000 7.900 16.000 24.483 33.499 43.145
53.463 64.426 75.942 87.864 100.000
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