Appendix J EQUILIBRIUM K-VALUES

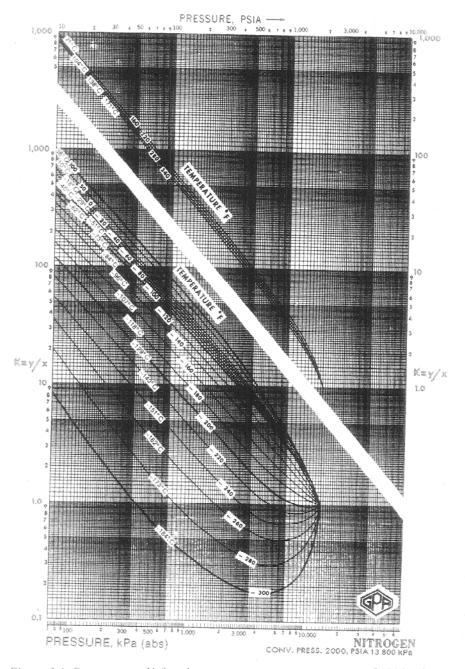


Figure J-1. Pressure .vs. K for nitrogen at convergence pressure of 2000 psia (13,800 kPa). Used by permission, Gas Processors Suppliers Association Data Book, 12th Ed., V. 1 and 2, (2004), Tulsa, Okla.

Figure J-1. Pressure .vs. K for nitrogen at convergence pressure of 2000 psia (13,800 kPa). Used by permission, Gas Processors Suppliers Association Data Book, 12th Ed., V. 1 and 2, (2004), Tulsa, Okla.

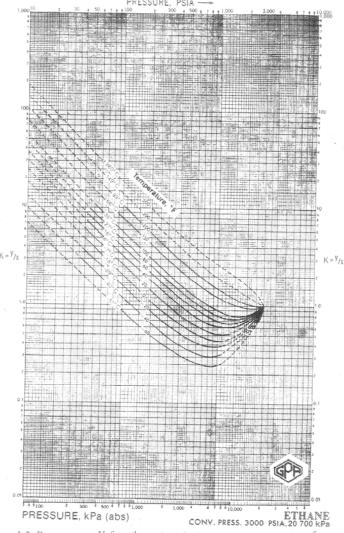


Figure J-2. Pressure .vs. K for ethane (C_2H_6) at convergence pressure of 3000 psia (20,700 kPa). Used by permission, Gas Processors Suppliers Association Data Book, 12^{th} Ed., V. 1 and 2, (2004), Tulsa, Okla.

Figure J-2. Pressure .vs. K for ethane (C_2H_6) at convergence pressure of 3000 psia (20,700 kPa). Used by permission, Gas Processors Suppliers Association Data Book, 12^{th} Ed., V. 1 and 2, (2004), Tulsa, Okla.

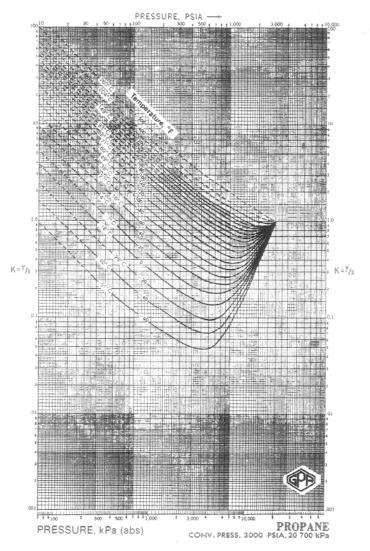


Figure J-3. Pressure .vs. K for propane (C_3H_8) at convergence pressure of 3000 psia (20,700 kPa). Used by permission, Gas Processors Suppliers Association Data Book, 12^{th} Ed., V. 1 and 2, (2004), Tulsa, Okla.

Figure J-3. Pressure .vs. K for propane (C_3H_8) at convergence pressure of 3000 psia (20,700 kPa). Used by permission, Gas Processors Suppliers Association Data Book, 12^{th} Ed., V. 1 and 2, (2004), Tulsa, Okla.

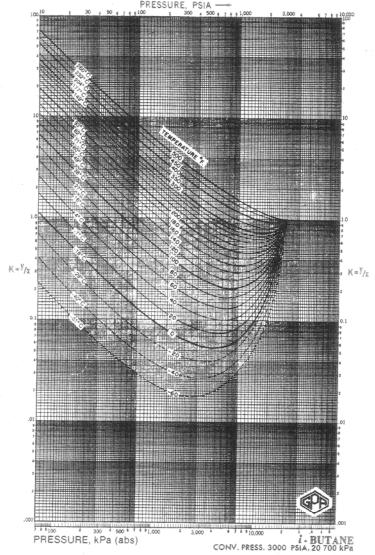


Figure J-4. Pressure .vs. K for i-butane ($i-C_4H_{10}$) at convergence pressure of 3000 psia (20,700 kPa). Used by permission, Gas Processors Suppliers Association Data Book, 12^{th} Ed., V. 1 and 2, (2004), Tulsa, Okla.

Figure J-4. Pressure .vs. K for i-butane $(i-C_4H_{10})$ at convergence pressure of 3000 psia (20,700 kPa). Used by permission, Gas Processors Suppliers Association Data Book, 12^{th} Ed., V. 1 and 2, (2004), Tulsa, Okla.

Figure J-5. Pressure .vs. K for n-butane $(n-C_4H_{10})$ at convergence pressure of 3000 psia (20,700 kPa). Used by permission, Gas Processors Suppliers Association Data Book, 12^{th} Ed., V. 1 and 2, (2004), Tulsa, Okla.

Figure J-5. Pressure .vs. K for n-butane $(n-C_4H_{10})$ at convergence pressure of 3000 psia (20,700 kPa). Used by permission, Gas Processors Suppliers Association Data Book, 12^{th} Ed., V. 1 and 2, (2004), Tulsa, Okla.

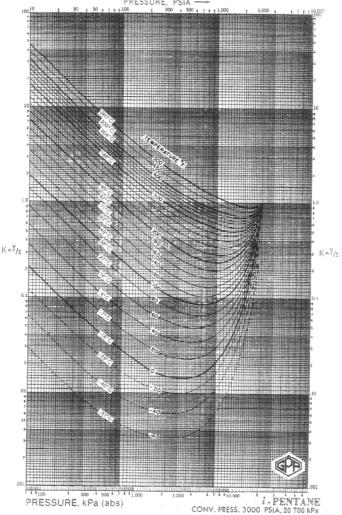


Figure J-6. Pressure .vs. K for i-pentane ($i-C_5H_{12}$) at convergence pressure of 3000 psia (20,700 kPa). Used by permission, Gas Processors Suppliers Association Data Book, 12^{th} Ed., V. 1 and 2, (2004), Tulsa, Okla.

Figure J-6. Pressure .vs. K for i-pentane $(i-C_5H_{12})$ at convergence pressure of 3000 psia (20,700 kPa). Used by permission, Gas Processors Suppliers Association Data Book, 12^{th} Ed., V. 1 and 2, (2004), Tulsa, Okla.

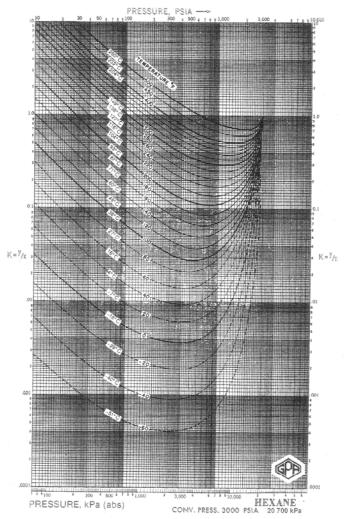


Figure J-7. Pressure .vs. K for hexane (C_bH_{14}) at convergence pressure of 3000 psia (20,700 kPa). Used by permission, Gas Processors Suppliers Association Data Book, 12^{th} Ed., V. 1 and 2, (2004), Tulsa, Okla.

Figure J-7. Pressure .vs. K for hexane (C_6H_{14}) at convergence pressure of 3000 psia (20,700 kPa). Used by permission, Gas Processors Suppliers Association Data Book, 12^{th} Ed., V. 1 and 2, (2004), Tulsa, Okla.

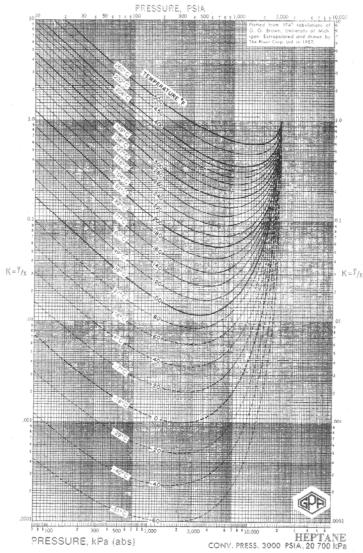


Figure J- 8. Pressure .vs. K for heptane (C_7H_{16}) at convergence pressure of 3000 psia (20,700 kPa). Used by permission, Gas Processors Suppliers Association Data Book, 12^{th} Ed., V. 1 and 2, (2004), Tulsa, Okla.

Figure J- 8. Pressure .vs. K for heptane (C_7H_{16}) at convergence pressure of 3000 psia (20,700 kPa). Used by permission, Gas Processors Suppliers Association Data Book, 12^{th} Ed., V. 1 and 2, (2004), Tulsa, Okla.

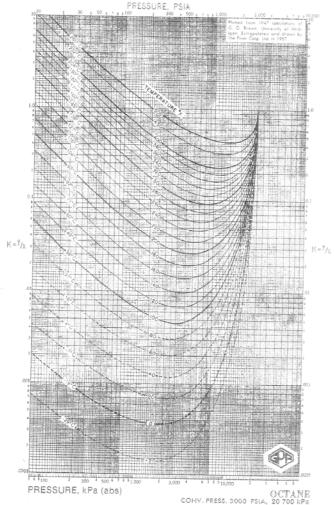


Figure J-9. Pressure .vs. K for Octane (C_8H_{18}) at convergence pressure of 3000 psia (20,700 kPa). Used by permission, Gas Processors Suppliers Association Data Book, 12th Ed., V. 1 and 2, (2004), Tulsa, Okla.

Figure J-9. Pressure .vs. K for Octane (C_8H_{18}) at convergence pressure of 3000 psia (20,700 kPa). Used by permission, Gas Processors Suppliers Association Data Book, 12^{th} Ed., V. 1 and 2, (2004), Tulsa, Okla.

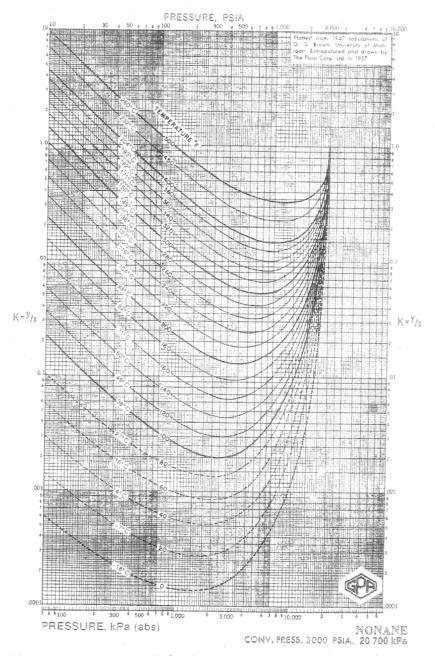


Figure J-10. Pressure .vs. K for Nonane at convergence pressure of 3000 psia (20,700 kPa). Used by permission, Gas Processors Suppliers Association Data Book, 12th Ed., V. 1 and 2, (2004), Tulsa, Okla.

Figure J-10. Pressure .vs. K for Nonane at convergence pressure of 3000 psia (20,700 kPa). Used by permission, Gas Processors Suppliers Association Data Book, 12th Ed., V. 1 and 2, (2004), Tulsa, Okla.

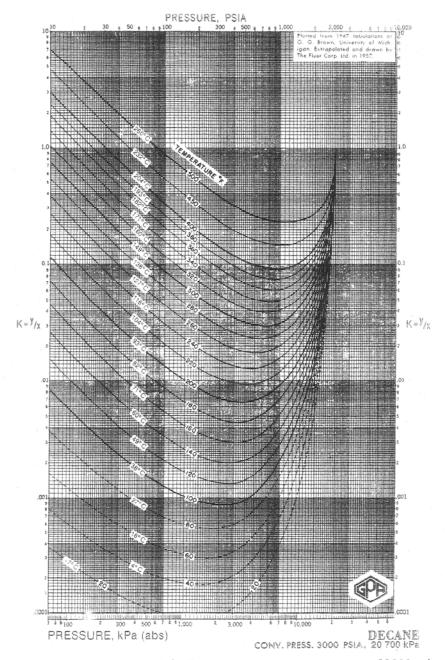


Figure J-11. Pressure .vs. K for Decane at convergence pressure of 3000 psia (20,700 kPa). Used by permission, Gas Processors Suppliers Association Data Book, 12^{th} Ed., V. 1 and 2, (2004), Tulsa, Okla.

Figure J-11. Pressure .vs. K for Decane at convergence pressure of 3000 psia (20,700 kPa). Used by permission, Gas Processors Suppliers Association Data Book, 12th Ed., V. 1 and 2, (2004), Tulsa, Okla.

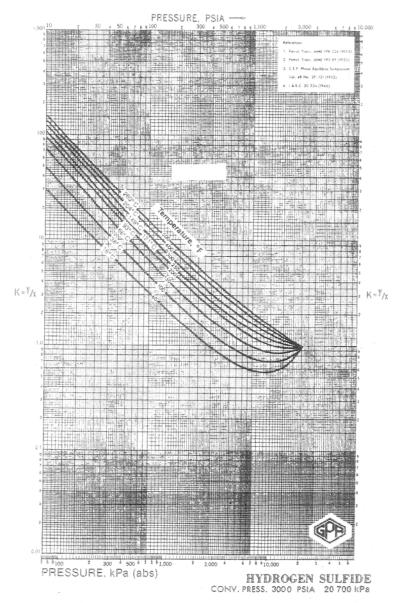


Figure J-12. Pressure .vs. K for hydrogen sulfide (H_2S) at convergence pressure of 3000 psia (20,700 kPa). Used by permission, Gas Processors Suppliers Association Data Book, 12^{th} Ed., V. 1 and 2, (2004), Tulsa, Okla.

Figure J-12. Pressure .vs. K for hydrogen sulfide (H_2S) at convergence pressure of 3000 psia (20,700 kPa). Used by permission, Gas Processors Suppliers Association Data Book, 12^{th} Ed., V. 1 and 2, (2004), Tulsa, Okla.