Appendix J

EQUILIBRIUM K-VALUES

Figure J-1. Pressure .vs. K for nitrogen at convergence pressure of 2000 psia (13,800 $\mathrm{kPa})$. Used by permission, Gas Processors Suppliers Association Data Book, $12^{\text {th }}$ Ed., V. 1 and 2, (2004), Tulsa, Okla.

Figure J-2. Pressure .vs. K for ethane $\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)$ at convergence pressure of 3000 psia ($20,700 \mathrm{kPa}$). Used by permission, Gas Processors Suppliers Association Data Book, $12^{\text {th }}$ Ed., V. 1 and 2, (2004), Tulsa, Okla.

Figure J-3. Pressure .vs. K for propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$ at convergence pressure of 3000 psia $(20,700 \mathrm{kPa})$. Used by permission, Gas Processors Suppliers Association Data Book, $12{ }^{\text {th }}$ Ed., V. 1 and 2, (2004), Tulsa, Okla.

Figure J-4. Pressure .vs. K for i-butane $\left(\mathrm{i}-\mathrm{C}_{4} \mathrm{H}_{10}\right)$ at convergence pressure of 3000 psia ($20,700 \mathrm{kPa}$). Used by permission, Gas Processors Suppliers Association Data Book, $12^{\text {th }}$ Ed., V. 1 and 2, (2004), Tulsa, Okla.

Figure J-5. Pressure .vs. K for n-butane ($\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{10}$) at convergence pressure of 3000 psia ($20,700 \mathrm{kPa}$). Used by permission, Gas Processors Suppliers Association Data Book, $12{ }^{\text {th }}$ Ed., V. 1 and 2, (2004), Tulsa, Okla.

Figure J-6. Pressure .vs. K for i-pentane $\left(\mathrm{i}-\mathrm{C}_{5} \mathrm{H}_{12}\right)$ at convergence pressure of 3000 psia ($20,700 \mathrm{kPa}$). Used by permission, Gas Processors Suppliers Association Data Book, $12^{\text {th }}$ Ed., V. 1 and 2, (2004), Tulsa, Okla.

Figure J-7. Pressure .vs. K for hexane $\left(\mathrm{C}_{6} \mathrm{H}_{14}\right)$ at convergence pressure of 3000 psia ($20,700 \mathrm{kPa}$). Used by permission, Gas Processors Suppliers Association Data Book, $12^{\text {th }}$ Ed., V. 1 and 2, (2004), Tulsa, Okla.

Figure J- 8. Pressure .vs. K for heptane $\left(\mathrm{C}_{7} \mathrm{H}_{16}\right)$ at convergence pressure of 3000 psia ($20,700 \mathrm{kPa}$). Used by permission, Gas Processors Suppliers Association Data Book, $12^{\text {th }}$ Ed., V. 1 and 2, (2004), Tulsa, Okla.

Figure J-9. Pressure .vs. K for Octane $\left(\mathrm{C}_{8} \mathrm{H}_{18}\right)$ at convergence pressure of 3000 psia ($20,700 \mathrm{kPa}$). Used by permission, Gas Processors Suppliers Association Data Book, $12^{\text {th }}$ Ed., V. 1 and 2, (2004), Tulsa, Okla.

Figure J-10. Pressure .vs. K for Nonane at convergence pressure of 3000 psia (20,700 kPa). Used by permission, Gas Processors Suppliers Association Data Book, $12^{\text {th }}$ Ed., V. 1 and 2, (2004), Tulsa, Okla.

Figure J-11. Pressure .vs. K for Decane at convergence pressure of 3000 psia (20,700 kPa). Used by permission, Gas Processors Suppliers Association Data Book, $12^{\text {th }}$ Ed., V. 1 and 2, (2004), Tulsa, Okla.

Figure J-12. Pressure .vs. K for hydrogen sulfide $\left(\mathrm{H}_{2} \mathrm{~S}\right)$ at convergence pressure of 3000 psia (20,700 kPa). Used by permission, Gas Processors Suppliers Association Data Book, $12^{\text {th }}$ Ed., V. 1 and 2, (2004), Tulsa, Okla.

